首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
目的:探讨Sestrin2蛋白对热暴露肺上皮细胞凋亡的干预作用及其作用机制。方法:体外培养的Beas-2B细胞分为对照组(37℃)和热暴露组(39℃、40℃和41℃),在上述温度中暴露不同时间(0、3、6和12 h),胰酶消化后收集细胞,分别通过Western blot、荧光分光光度计、流式细胞仪等方法检测细胞中的Sestrin2、超氧化物歧化酶(SOD)、活性氧自由基(ROS)表达水平,细胞线粒体膜电位及细胞凋亡率。基因序列克隆入高表达质粒pcDNA 3.1+中,采用Lipfectamine 2000方法转染Beas-2B细胞,构建Sestrin2和SOD高表达细胞,观察细胞线粒体膜电位及细胞凋亡等指标的变化。结果:随着暴露温度的升高,与对照组相比,热暴露组细胞Sestrin2蛋白表达水平下降。在41℃热暴露Beas-2B细胞,不同时间点ROS水平显著上升,线粒体膜电位显著下降,细胞凋亡率增加。Sestrin2和SOD高表达细胞,在41℃暴露条件下,与对照组比较,ROS表达水平显著降低,线粒体膜电位下降幅度减小,热暴露导致细胞凋亡率降低。结论: Sestrin2能够通过线粒体膜电位和SOD缓解热暴露引起肺上皮细胞的凋亡,对Beas-2B细胞具有保护作用。  相似文献   

2.
目的:研究慢性间断低氧暴露对大鼠心肌线粒体Na 、K -ATPase和Ca2 、Mg2 -ATPase以及呼吸链酶复合物Ⅰ、Ⅱ、Ⅲ、Ⅳ活性的影响.方法:经慢性间断低氧暴露(模拟海拔3 000 m、5 000 m分别低氧,每天4 h,共2周,最后8 000 m低氧4 h)和急性低氧(模拟海拔8 000 m低氧4 h)的大鼠,断头处死,迅速取出心脏,分离心肌线粒体,用水解磷酸根法测定ATP酶活性,用Clark氧电极法测定呼吸链酶复合物的活性.结果:①慢性间断低氧暴露对大鼠心肌线粒体Na 、K -ATPase的活性无明显影响.②急性低氧大鼠心肌线粒体Ca2 、Mg2 -ATPase的活性较正常大鼠显著降低,而慢性间断低氧暴露大鼠心肌线粒体Ca2 、Mg2 -ATPase的活性则明显升高,接近正常水平.③急性低氧大鼠心肌线粒体呼吸链酶复合物I(NADH-CoQ还原酶)、复合物Ⅱ(琥珀酸-CoQ还原酶)、复合物IV(细胞色素氧化酶)活性较正常大鼠显著降低,而经慢性间断低氧暴露后,三者的活性均显著提高.相同实验条件下,低氧对复合物Ⅲ(CoQ-细胞色素C还原酶)活性无明显影响.结论:慢性间断低氧暴露可以显著提高心肌线粒体Ca2 、Mg2 -ATPase和呼吸链酶复合物Ⅰ、Ⅱ、Ⅳ的活性,从而改善低氧时心肌线粒体呼吸链的功能,维持心肌正常能量代谢,最终提高心肌收缩和舒张功能.  相似文献   

3.
将体外传代培养的PC12细胞,经50 Hz、100μT的工频磁场暴露24 h。采用噻唑蓝比色法检测细胞增殖活力,流式细胞术检测细胞周期,吖啶橙/溴化乙锭免疫荧光双染色法检测细胞凋亡。结果表明:1)细胞增殖活力于磁场暴露终止后0 h明显下降(P<0.01);4 h未见著变;8 h(P<0.05)和12 h(P<0.01)显著升高。2)磁场暴露终止后0 h,G0/G1期细胞百分比显著增高(P<0.01),S期细胞百分比显著下降(P<0.05);6 h的G2/M期细胞百分比显著增高(P<0.05);12 h的G0/G1期细胞百分比明显下降(P<0.01),S期细胞百分比显著升高(P<0.05);24 h未见著变。3)磁场暴露期间,6 h细胞凋亡率未见显著改变,12、18和24 h凋亡明显增加,至暴露终止后4、8、12和24 h均显著升高,未见恢复。以上结果说明50 Hz、100μT的工频磁场急性暴露,可导致PC12细胞周期和增殖活力的改变,以及细胞凋亡增多。  相似文献   

4.
目的: 探讨低氧肺血管结构重建时是否伴有PASMCs凋亡.方法: 体外低氧培养大鼠PASMCs,BCECF法测定细胞内pH值、光镜及电镜观察细胞形态、流式细胞仪测细胞周期、原位细胞凋亡(TUNEL法)观察细胞凋亡.结果: PASMCs在低氧早期即出现细胞内碱化,低氧6 h即出现G0/G1期细胞比例减少,G2/M期细胞比例增加,至24 h丝裂活动最强,但细胞凋亡率无显著变化.结论: 低氧PASMCs在细胞内碱化、细胞增殖的过程中不伴有细胞凋亡的改变.  相似文献   

5.
高原低氧免疫损伤及其干预措施的研究   总被引:1,自引:0,他引:1  
目的:探讨高原低氧损伤免疫系统的特征及其可能机制,研究高原低氧免疫损伤的干预措施。方法:测定低氧暴露不同时间小鼠免疫器官指数、外周血和免疫器官T淋巴细胞亚群的变化;观察小鼠免疫器官淋巴细胞凋亡率及小鼠肺脏和肾脏病理学改变。采用预防给药方式,研究中药组方对低氧免疫损伤小鼠的干预作用。结果:①模拟海拔8000m低氧暴露8h后,小鼠胸腺CD4+CD8+细胞数显著下降,CD4+CD8-、CD4-CD8+细胞数显著增加(P0.01);低氧暴露3d后,外周血CD4+细胞明显减少(P0.05),CD4+/CD8+比值显著降低(P0.05),胸腺CD4+CD8+细胞数进一步下降,CD4+CD8-、CD4-CD8+细胞数进一步增加,小鼠脾脏、胸腺淋巴细胞晚期凋亡和坏死率均显著增加(P0.05);低氧暴露6d后,小鼠脾指数显著性增加(P0.01);胸腺指数显著性降低(P0.01),脾CD4+、CD8+细胞数显著降低(P0.01),脾脏和胸腺淋巴细胞晚期凋亡率和坏死率进一步增加(P0.01),活细胞率显著降低(P0.01),脾脏淋巴细胞早期凋亡率显著增加(P0.01)。整个低氧暴露过程中外周血CD8+无显著性变化。②新复方党参、香杞多糖、二者联合应用均能显著增加低氧免疫损伤小鼠外周血CD3+、CD4+、脾脏CD4+的细胞水平(P0.01,P0.05),对脾脏CD8+细胞水平没有显著影响。香杞多糖及其与新复方党参联合应用均能进一步降低胸腺CD4+CD8+,进一步增加CD4+CD8-的细胞水平(P0.01),未见对CD4-CD8+细胞水平的影响;新复方党参对低氧免疫损伤小鼠胸腺没有显著性影响。结论:模拟海拔8000m低氧暴露后小鼠外周发挥免疫作用的淋巴细胞数减少可能与低氧暴露早期淋巴细胞凋亡率和坏死率增加和肺脏淋巴细胞分布增多有关。新复方党参和香杞多糖作为低氧免疫损伤干预措施,具有一定发展前景。  相似文献   

6.
目的:研究新型ATP敏感性钾通道开放剂埃他卡林(Ipt)对间歇性低氧暴露肺微动脉扩张作用特征。方法:将雄性SD大鼠随机分为3组,对照组(Control),低氧暴露组,置于常压低氧舱内(O210%±0.5%)8 h/d,每周6d,和低氧暴露+醋氮酰胺(Acz)干预组(灌胃给予Acz 80 mg/(kg.d))。12周后分离大鼠管径为(197±4)μm的肺微动脉组织,利用DMT微血管张力测定仪在6 nmol/L内皮素-1(ET-1)致血管预收缩条件下,考察不同浓度Ipt对间歇性低氧暴露肺微动脉张力变化并利用ACh考察肺微动脉内皮活性。结果:与常压常氧组对比,10-5mol/LACh对间歇性低氧暴露肺微动脉舒张率显著降低(P<0.01),而与80 mg/kg Acz干预组肺微动脉舒张率无显著性差异(P>0.05);Ipt在(10-11~10-4)mol/L对间歇性低氧暴露肺微动脉呈剂量依赖性舒张作用,与80 mg/kg Acz干预组间无显著性差异(P>0.05),而对常压常氧组肺微动脉无明显的舒张作用。结论:间歇性低氧暴露肺微动脉内皮细胞功能受损,Ipt可选择性扩张低氧暴露肺微动脉;Acz可改善低氧所致内皮细胞功能异常,但并不影响Ipt对低氧暴露肺微动脉的选择性扩张作用。  相似文献   

7.
目的:观察内源性内皮素-1(ET-1)在低氧所致心肌细胞凋亡中的作用及受体机制。方法:培养的新生乳鼠心肌细胞分为低氧对照组和内皮素受体拮抗剂预处理+低氧组,前者仅给DMEM液,后者给予ETA受体拮抗剂BQ610或BQ123及ETB受体拮抗剂BQ788后低氧培养24 h,TUNEL和AnnexinV-FITC/PI双标记流式细胞术检测心肌细胞凋亡情况。结果:TUNEL检测显示低氧24 h对照组心肌细胞凋亡百分数为24.2%±2.2%,BQ6105μmol/L+低氧24 h组为13.2%±3.7%,显著低于低氧24 h组(P<0.01)。流式细胞术检测显示BQ123(0.04,0.2,1.0μmol/L)浓度依赖性地抑制低氧引起的心肌细胞凋亡及浓度依赖性提高低氧培养心肌细胞存活率,而BQ788对低氧引起的心肌细胞凋亡及存活率的降低无明显影响。结论:内源性ET-1参与促进低氧引起的心肌细胞凋亡,该作用主要是通过ETA受体介导。  相似文献   

8.
为研究青海湖裸鲤(Gymnocypris przewalskii)端脑在低氧胁迫下的生理响应机制,选取体重(97.68±0.12) g、体长(24.11±0.12) cm的健康青海湖裸鲤进行低氧[溶解氧含量(0.7±0.1) mg/L]胁迫,设常氧[溶解氧含量(8.4±0.1) mg/L]为对照组,分别在低氧胁迫8h和24h时采集青海湖裸鲤的端脑组织,进行脑细胞线粒体超微结构和膜电位、抗氧化酶活性、脑细胞凋亡和凋亡相关基因(Caspase 3、Bax和Bcl-2)及低氧诱导反应相关基因(Hif-2α和EGLN1)表达测定。结果显示,在低氧胁迫过程中:(1)端脑神经细胞线粒体出现肿胀、嵴溶解;线粒体膜电位在8h时显著升高, 24h时显著降低,表明随着低氧胁迫时间的延长端脑神经细胞线粒体可能受到了损伤。(2)TUNEL检测显示端脑细胞发生了凋亡,但随着低氧胁迫时间延长端脑细胞凋亡率无显著差异;qPCR显示,随着低氧胁迫时间的延长端脑细胞Caspase 3、Bax和Bcl-2基因表达水平升高; Bcl-2/Bax比值随低氧胁迫时间的延长显著降低; Hif-2α基因表达水平显著升高; EGLN...  相似文献   

9.
目的:研究红景天苷(Salidroside,Sal)对在MPP+诱导SH-SY5Y细胞线粒体形态和功能的影响及其机制。方法:采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide,MTT)检测细胞活性,Mito Tracker Red CMXRos进行线粒体染色,四甲基罗丹明乙酯(Tetramethylrhodamine ethyl ester,TMRE)检测线粒体膜电位,Western blot检测PINK1和Parkin蛋白表达水平。结果:单纯Sal处理24 h对细胞活性、线粒体形态和MMP无影响(P0.05)。MPP+(500μM)处理SH-SY5Y细胞24 h后,与正常组比较,细胞活性、MMP水平均降低,线粒体长度减短(P0.01),并发生碎片化。Sal(25μM)预处理24 h可以显著抑制MPP+诱导的细胞活性降低(P0.01),并维持线粒体长度和增加MMP水平(P0.01)。而且,Sal(25μM)预处理24 h可以显著恢复MPP+诱导的PINK1和Parkin蛋白表达水平下降(P0.01)。结论:体外实验证实Sal可以保护MPP+诱导的SH-SY5Y细胞活性降低、线粒体形态和功能异常,而PINK1-Parkin通路可能是其机制之一,为进一步临床开发Sal治疗PD的新药提供实验依据。  相似文献   

10.
目的:研究低氧暴露对大鼠脑和肺微动脉内皮功能的影响以及埃他卡林(Ipt)对以上微动脉的扩张作用特征。方法:将雄性SD大鼠随机分为2组,常压常氧组(control)和低氧暴露组(hypoxic),后者置于常压低氧暴露舱内(O27.8%)8 h。分离大鼠管径为(204±5)μm的脑基底动脉、肺微动脉组织,利用DMT微血管张力测定仪在6nmol/L内皮素-1(ET-1)致血管预收缩条件下,利用乙酰胆碱(ACh)考察微动脉内皮功能及观察不同浓度Ipt对脑和肺微动脉张力变化的影响。结果:与常压常氧组对比,10-5 mol/L乙酰胆碱(ACh)对低氧暴露脑肺微动脉扩张率显著降低(P0.05);新型ATP敏感性钾通道开放剂Ipt在(10-11~10-3)mol/L对低氧暴露肺微动脉呈剂量依赖性扩张作用,明显强于对常压常氧组(P0.01),在(10-11~10-3)mol/L对低氧暴露脑微动脉呈剂量依赖性扩张作用,但与常压常氧组相比无显著差异。结论:低氧暴露可导致脑基底动脉和肺微动脉内皮功能受损,Ipt具有选择性增强扩张低氧暴露肺微动脉的作用,但不影响以上条件低氧暴露后脑基底动脉的扩张作用,提示该药可应用于改善低氧暴露所致的肺微血管收缩,为Ipt发展为新型治疗肺动脉高压的药物提供理论基础。  相似文献   

11.
In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-β and HIF1α signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-β signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1α knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1α signaling appears to play an important role in this process.  相似文献   

12.
Lung epithelial cells produce increased reactive oxygen species (ROS) after hypoxia exposure, and they are more susceptible after hypoxia to injury by agents that generate superoxide [O2-; e.g., 2,3-dimethoxy-1,4-naphthoquinone (DMNQ)]. Cellular GSH and MnSOD both decrease in hypoxic lung epithelial cells, altering the redox state. Because ROS participate in signaling pathways involved in cell death or survival, we tested the hypothesis that mitogen-activated protein kinases (MAPK) were involved in a protective response against cellular injury during reoxygenation. Human lung epithelial A549 cells were incubated in hypoxia (<1% O2 for 24 h) and then reoxygenated by return to air. p38mapk and MKK3 phosphorylation both decreased after hypoxia. During reoxygenation, cells were incubated with DMNQ (0-50 microM), a redox cycling quinone that produces O2-. Hypoxia preexposure significantly increased epithelial cell lysis resulting from DMNQ. Addition of the p38mapk inhibitors SB-202190 or SB-203580 markedly increased cytotoxicity, as did the mitogen/extracellular signal-regulated kinase (MEK) 1/2 inhibitor PD-98059 (all 10 microM), suggesting a protective effect of downstream molecules activated by the kinases. Transfection of A549 cells with a dominant active MKK3 plasmid (MKK3[Glu]) partially inhibited cytolysis resulting from DMNQ, whereas the inactive MKK3 plasmid (MKK3[Ala]) had less evident protective effects. Stress-related signaling pathways in epithelial cells are modulated by hypoxia and confer protection from reoxygenation, since hypoxia and chemical inhibition of p38mapk and MEK1/2 similarly increase cytolysis resulting from O2-.  相似文献   

13.
Smoking is associated with an increased risk of respiratory diseases, including lung cancer and asthma. However, the mechanisms or diagnostic markers for smoking‐related diseases remain largely unknown. Here we investigated the role of cigarette smoke condensate (CSC) in the regulation of human bronchial epithelial cell (BEAS‐2B) behavior. We found that exposure to CSC significantly inhibited BEAS‐2B cell viability, impaired cell morphology, induced cell apoptosis, triggered oxidative damage, and promoted inflammatory response, which suggests a deleterious effect of CSC on bronchial epithelial cells. In addition, CSC markedly altered the expression of apoptosis‐associated protein factors, including p21, soluble tumor necrosis factor receptor 1, and Fas ligand. In sum, our study identified a panel of novel protein factors that may mediate the actions of CSC on bronchial epithelial cells and have a predictive value for the development and progression of smoking‐related diseases, thus providing insights into the development of potential diagnostic and therapeutic strategies against these diseases.  相似文献   

14.
Subacute exposure to moderate hypoxia can promote pulmonary edema formation. The tachykinins, a family of proinflammatory neuropeptides, have been implicated in the pathogenesis of pulmonary edema in some settings, including the pulmonary vascular leak associated with exposure to hypoxia. The effects of hypoxia on tachykinin receptor and peptide expression in the lung, however, remain poorly understood. We hypothesized that subacute exposure to moderate hypoxia increases lung neurokinin-1 (NK-1) receptor expression as well as lung substance P levels. We tested this hypothesis by exposing weanling Sprague-Dawley rats to hypobaric hypoxia (barometric pressure 0.5 atm) for 0, 24, 48, or 72 h. Hypoxia led to time-dependent increases in lung NK-1 receptor mRNA expression and lung NK-1 receptor protein levels at 48 and 72 h of exposure (P < 0.05). Immunohistochemistry and in situ NK-1 receptor labeling with substance P-conjugated fluorescent nanocrystals demonstrated that hypoxia increased NK-1 expression primarily in the pulmonary microvasculature and in alveolar macrophages. Hypoxia also led to increases in lung substance P levels by 48 and 72 h (P < 0.05) but led to a decrease in preprotachykinin mRNA levels (P < 0.05). We conclude that subacute exposure to moderate hypoxia upregulates lung NK-1 receptor expression and lung substance P peptide levels primarily in the lung microvasculature. We speculate that this effect may contribute to the formation of pulmonary edema in the setting of regional or environmental hypoxia.  相似文献   

15.
16.
During lung injury alveolar epithelial cells are directly exposed to changes in PO(2) and PCO(2). Integrity of alveolar epithelial type II cells (AECII) is critical in lung injury but the effect of hypoxia and hypercapnia on AECII function, viability and proliferation has not been clearly investigated. Aim of the present work was to determine the direct effect of hypoxia and hypercapnia on surfactant protein expression, proliferation and apoptosis of lung epithelial cells in vitro. A549 alveolar epithelia cells were subjected to hypoxia (1%O(2)-5% CO(2)) or hypercapnia (21% O(2-) 15% CO(2)) and expression of surfactant protein C was measured and compared to normal conditions (21% O(2)- 5% CO(2)). Cell cycle progression and apoptosis were measured by flow cytometric analysis. RESULTS: A549 alveolar epithelial cells produce surfactant proteins, including surfactant protein C, when cultured under normal conditions, which is reduced under hypoxic conditions. Specifically, pro-SpC expression is moderately decreased after 8 h of culture in hypoxia, and is completely attenuated after 48 h. Hypercapnia decreases pro-SpC expression only after 48 h of exposure. Stimulation with TNF-alpha partly reverses pSPC decrease observed under hypoxic and hypercapnic conditions. Hypoxic culture of A549 cells results in progressive arrest of cells in the G1 phase of the cell cycle and increased apoptosis first observed 4 h following exposure and peaking at 24 h. In contrast hypercapnia has no significant effect on alveolar epithelial cell proliferation or apoptosis. CONCLUSIONS: Taken together we can conclude that hypoxia rapidly and severely affects AECII function and viability while hypercapnia has an inhibitory effect on pro-SpC production only after prolonged exposure.  相似文献   

17.
Bradykinin is a potent mediator of inflammation that has been shown to participate in allergic airway inflammation. The biologic effects of bradykinin are mediated by binding and activation of its cognate receptor, the B(2) receptor (B(2)R). In the lung fibroblast cell line IMR-90, binding of bradykinin to B(2)R triggers down-regulation of receptor surface expression, suggesting that bradykinin-induced inflammation is transient and self-limited. Notably, subjects with chronic airway inflammation continue to respond to BK following a first challenge. B(2)Rs are expressed on many different lung cell types, including airway epithelial cells. We therefore compared IMR-90 cells with the human lung epithelial cell line BEAS2B and found that B(2)R expression in the two cell types is differently regulated by BK. Whereas BK induces down-regulation of B(2)R in IMR-90 cells, the same treatment leads to up-regulation of the receptor in BEAS2B cells. These results provide a possible explanation for the potency of bradykinin in inducing ongoing airway inflammation.  相似文献   

18.
Nitrate, nitrite, and other nitroso compounds (NOxs) had been proposed as possible nitric oxide (NO) storage molecules. The present work examines, by means of chemiluminescence analysis, changes in NOx serum levels in rats 1 h before and 24, 48, and 72 h after exposure to acute hypobaric hypoxia (HH; barometric pressure [P(B)] 225 mmHg, oxygen partial pressure [PO2] 48 mmHg), normobaric hypoxia (NH; P(B) 716 mmHg [Jaén city], PO2 48 mmHg), hypobaric normoxia (HN; P(B) 225 mmHg, PO2 150 mmHg), and normobaric normoxia (NN; P(B) 716 mmHg, PO2 150 mmHg) the latter as a control group. Results show a decrease in NOx levels, which reached significance 24 h after exposure in HH animals, 4 h after exposure in the HN and NH groups, and persisted after 48 h of exposure in the HN group. NOx determinations were also performed in brain (cerebral cortex, hippocampus, decorticated brain [basal ganglia-brainstem] and cerebellum), liver, kidney, lung, and heart homogenates, 72 h after the experiment, to detect persistent effects when serum NOx levels had returned to basal values. Only in cerebellum (HN group) and hippocampus (HN and NH groups) were NOx levels significantly lower than in controls. We conclude that not only acute hypobaric hypoxia but also either hypobaria or hypoxia alone induce changes in NOx serum levels. Moreover, all three episodes involve a decrease in NOxs, greater and longer-lasting in hypoxia alone than in hypobaria and hypoxia together. The exhaustion of these NO-storage molecules could be critical when, as during a hypoxic episode, the L-arginine/NOS pathway is impaired.  相似文献   

19.
Sphingosine-1-phosphate (S1P) signals to enhance or destabilize the vascular endothelial barrier depending on the receptor engaged. Here, we investigated the differential barrier effects of S1P on two influential primary endothelial cell (EC) types, human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs). S1PR1 (barrier protective) and S1PR3 (barrier disruptive) surface and gene expression were quantified by flow cytometry and immunofluorescence, and RT-qPCR, respectively. Functional evaluation of EC monolayer permeability in response to S1P was quantified with transendothelial electrical resistance (TEER) and small molecule permeability. S1P significantly enhanced HUVEC barrier function, while promoting HPMEC barrier breakdown. Immunofluorescence and flow cytometry analysis showed select, S1PR3-high HPMECs, suggesting susceptibility to barrier destabilization following S1P exposure. Reevaluation of HPMEC barrier following S1P exposure under inflamed conditions demonstrated synergistic barrier disruptive effects of pro-inflammatory cytokine and S1P. The role of the Rho-ROCK signaling pathway under these conditions was confirmed through ROCK1/2 inhibition (Y-27632). Thus, the heterogeneous responses of ECs to S1P signaling are mediated through Rho-ROCK signaling, and potentially driven by differences in the surface expression of S1PR3.  相似文献   

20.
At the initial step of carcinogenesis, transformation occurs in single cells within epithelia, where the newly emerging transformed cells are surrounded by normal epithelial cells. A recent study revealed that normal epithelial cells have an ability to sense and actively eliminate the neighboring transformed cells, a process named epithelial defense against cancer (EDAC). However, the molecular mechanism of this tumor-suppressive activity is largely unknown. In this study, we investigated a role for the sphingosine-1-phosphate (S1P)–S1P receptor 2 (S1PR2) pathway in EDAC. First, we show that addition of the S1PR2 inhibitor significantly suppresses apical extrusion of RasV12-transformed cells that are surrounded by normal cells. In addition, knockdown of S1PR2 in normal cells induces the same effect, indicating that S1PR2 in the surrounding normal cells plays a positive role in the apical elimination of the transformed cells. Of importance, not endogenous S1P but exogenous S1P is involved in this process. By using FRET analyses, we demonstrate that S1PR2 mediates Rho activation in normal cells neighboring RasV12-transformed cells, thereby promoting accumulation of filamin, a crucial regulator of EDAC. Collectively these data indicate that S1P is a key extrinsic factor that affects the outcome of cell competition between normal and transformed epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号