首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wu L  Cai C  Wang X  Liu M  Li X  Tang H 《FEBS letters》2011,585(9):1322-1330
RAC1 regulates a diverse array of cellular events including migration and invasion. MicroRNAs (miRNAs) have a key role in the regulation of gene expression. In this study, we demonstrated that microRNA-142-3p (miR-142-3p) acted as a negative regulator of human RAC1. Overexpression of miR-142-3p decreased RAC1 mRNA and protein levels. Moreover, the overexpression of miR-142-3p suppressed, while blocking of miR-142-3p increased colony formation, migration and invasion in hepatocellular carcinoma (HCC) cell lines (QGY-7703 and SMMC-7721). RAC1 overexpression without the 3'untranslated region abolished the effect of miR-142-3p in the QGY-7703 and SMMC-7721 cells. These results demonstrated that miR-142-3p directly and negatively regulates RAC1 in HCC cells, which highlights the importance of miRNAs in tumorigenesis.  相似文献   

2.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.  相似文献   

3.
为了探讨MKI67在肝癌细胞发生发展中的作用,采用实时定量 PCR 方法检测人肝细胞癌 QGY 7703 细胞中MKI67 基因表达水平, 以及 MKI67在肝细胞癌组织和癌旁正常组织中的表达情况,设计并合成针对MKI67 的siRNA,利用脂质体转染法将其转入QGY-7703 细胞内,通过MTT和细胞集落形成实验观察MKI67-siRNA 对QGY-7703细胞生长活性和增殖能力的影响.实时定量PCR结果表明,MKI67在肝细胞癌组织中的表达水平明显高于癌旁正常组织(P< 0.01). MTT和细胞集落形成实验结果显示,转染MKI67-siRNA 的QGY-7703细胞生长活性和集落形成率明显低于对照组(P< 0.01).由此得出结论:MKI67 在肝癌细胞系QGY-7703细胞中的表达水平较高,且它在肝癌组织中的表达水平明显上调. 同时,MKI67-siRNA 可以有效抑制QGY-7703细胞的生长活性和增殖能力,提示MKI67可能与肝细胞癌的发生、发展相关.  相似文献   

4.
Long noncoding RNAs (lncRNAs) have been reported to dysregulate and involve in the pathology of hepatocellular carcinoma (HCC). Nonetheless, the functional role of lncRNA T cell leukemia/lymphoma 6 (TCL6) and its underlying mechanism in HCC remain unclear. Herein, we analyzed the expression of TCL6 and elucidated its mechanistic involvement in HCC. Bioinformatics analyses indicated TCL6 was evidently downregulated in HCC tissues compared with normal controls. TCL6 was downregulated while microRNA-106a-5p (miR-106a-5p) was upregulated in HCC cell lines. Moreover, knockdown or overexpression of TCL6 significantly raised or diminished the expression level of miR-106a-5p in HCC cells, similar to the effect of miR-106a-5p on TCL6 expression. Functionally, TCL6 inhibited the proliferative, migratory, and invasive potentials of HCC cells as analyzed by cell counting kit-8, scratch wound healing, and transwell assays, respectively. Conversely, miR-106a-5p exerted an opposite effect on the proliferative, migratory, and invasive potentials of HCC. RNA immune precipitation and luciferase reporter assays revealed TCL6 directly bound to miR-106a-5p and luciferase reporter assay verified phosphatase and tensin homolog (PTEN) was a target gene of miR-106a-5p. Mechanistically, TCL6 knockdown evidently reduced PTEN expression at both messenger RNA and protein levels, and miR-106a-5p inhibitor partially rescued this reduction effect in HCC cells. Additionally, western blot assays demonstrated miR-106a-5p downregulation or TCL6 overexpression promoted the protein level of PTEN, and suppressed the phosphorylation level of AKT, the protein level of phosphatidylinositol 3-kinase (PI3K). Collectively, these results revealed TCL6 as a tumor-suppressive lncRNA regulates PI3K/AKT signaling pathway via directly binding to miR-106a-5p in HCC. This mechanism provides a theoretical basis for HCC pathogenesis and a potential therapeutic strategy for HCC treatment.  相似文献   

5.
Chemoresistance in cancer cells is frequently associated with an over-expression of the P-glycoprotein (P-gp). The expression of P-gp can be regulated as the cells encounter a number of chemical, physical or environmental stimuli. In this study, P-gp was found gradually expressed in a human hepatocellular carcinoma (HCC) QGY-7703 cells after 48 h of culturing in glucose-free medium. This phenomenon disappeared after the removal of glucose deprivation culture conditions. Mdr1-cDNA isolated from the cell line cultured in glucose-free conditions (namely QGY-7703G), was transiently transformed into the parent QGY-7703 cells, and multi-drug resistance was eventually induced. Results from XTT cytotoxicity assays indicated that the mdr1 gene was functional and the P-gp could restore the QGY-7703 cell's ability to withstand high concentrations of a number of chemotherapeutic agents. A P-gp inhibitor, verapamil, could completely reverse the cellular drug resistance when applied to the QGY-7703G cells. Our results indicated that an alteration of a specific state in cells caused by an external stimulus in vitro may lead to an expression of stress proteins (e.g. P-gp), which may enhance the cells' survival in adverse conditions. The expressed P-gp induced by glucose deprivation has a functional role in affecting the chemosensitivity in HCC QGY-7703G cells. Inhibition of P-gp activity may enhance the effect of the cancer cells towards cancer chemotherapy.  相似文献   

6.
7.
目的: 探讨miR-193a-5p靶向CDK14并调控卵巢癌细胞OVAC的增殖和上皮间充质转变(EMT)的作用。方法: 通过TargetScanHuman分析miR-193a-5p与CDK14的匹配情况,通过荧光素酶报告系统检测miR-193a-5p靶向CDK14情况;在miR-193a-5p mimics过表达或者miR-193a-5p inhibitor基因沉默miR-193a-5p的情况下,采用免疫印迹检测CDK14,EMT相关蛋白质E-cadherin、vimentin、fibronectin和N-cadherin的表达量,采用CCK-8检测卵巢癌细胞OVAC增殖情况, MMT检测卵巢癌细胞OVAC的细胞活力。结果: miR-193a-5p靶向CDK14的3‘UTR;过表达miR-193a-5后, CDK14的表达下降,EMT相关蛋白质E-cadherin的表达上升,vimentin、fibronectin和N-cadherin的表达下降,卵巢癌细胞OVAC的增殖和细胞活力均增加;同时,基因沉默miR-193a-5p后, CDK14的表达上升,EMT相关蛋白质E-cadherin的表达下降,vimentin、fibronectin和N-cadherin的表达量上升,卵巢癌细胞OVAC的增殖和细胞活力均减少。结论: miR-193a-5p通过靶向CDK14的3‘UTR降低卵巢癌细胞OVAC的增殖、细胞活力和EMT。  相似文献   

8.
Increasing evidence has shown that numerous long noncoding RNAs (lncRNAs) play critical roles in tumorigenesis. Herein, we investigated the biological role of lncRNA linc00467 in the cancer biology of hepatocellular carcinoma (HCC). We observed that linc00467 was upregulated in HCC tissues and cells. Silencing of linc00467 using small interfering RNA interference significantly inhibited the growth and motility of HCC cells, and increased cell apoptosis through regulating the Bcl-2/Bax axis and the caspase cascade, suggesting that linc00467 exerted oncogenic functions in the progression of HCC. Moreover, we found that linc00467 could target miR-18a-5p, and NEDD9 was a target for miR-18a-5p in HCC cells. Furthermore, either the miR-18a-5p inhibitor or upregulation of NEDD9 could recover the inhibitory effects caused by silencing of linc00467. In conclusion, our data highlighted the oncogenic role of linc00467 in HCC progression by regulating the miR-18a-5p/NEDD9 axis.  相似文献   

9.
K-homology (KH)-type splicing regulatory protein (KHSRP) is an RNA binding protein that participates in RNA variable splicing and stability, and facilitates the biogenesis of miRNAs that target mRNA. However, to date, the role of KHSRP in colorectal cancer (CRC) progression has not been reported. In this study, the function of KHSRP in CRC proliferation and 5-fluoruracil (5-FU) resistance was investigated. The upregulation of KHSRP expression was confirmed in CRC patient tissues and two CRC cell lines. Manipulating KHSRP expression altered cell proliferation and 5-FU resistance in CRC cells. ERRFI1, a downstream effector of KHSRP in CRC cells, reduced CRC cell proliferation. Sensitivity to 5-FU mediated by KHSRP knockdown was reversed by ERRFI1 knockdown. We found that KHSRP decreased ERRFI1 mRNA expression indirectly. By screening KHSRP-regulated miRNAs, we further found that miR-501-5p directly combines with KHSRP in CRC cells. Mechanistically, the results of a luciferase assay suggested that miR-501-5p directly binds to the ERRFI1 3′-untranslated region. Taken together, our data indicated that modification of ERRFI1 by KHSRP occurs through miR-501-5p, an essential mechanism driving CRC proliferation and 5-FU resistance. Insight into this mechanism may provide novel targets for overcoming drug resistance in CRC.  相似文献   

10.
Colorectal cancer (CRC) is the fourth most deadly cancer worldwide, drug resistance impedes treatment of CRC. It is still urgent to find new molecular targets to improve the sensitivity of chemotherapeutic drugs. In this study, circ-ERBB2 was upregulated in CRC cells. Upregulation of circ-ERBB2 promoted CRC cells proliferation and clone formation, but inhibited apoptosis. We identified miR-181a-5p as circ-ERBB2's target. The effect of miR-181a-5p on CRC cells was contrary to circ-ERBB2, miR-181a-5p downregulation abolished the function of circ-ERBB2 silencing in CRC cells. In addition, phosphatase and tensin homolog (PTEN) was verified as miR-181a-5p's downstream target, circ-ERBB2 activates the Akt pathway and inhibits cell apoptosis through modulating miR-181a-5p/PTEN. Circ-ERBB2 silencing significantly reduced CRC cell resistance to 5-FU. miR-181a-5p downregulation abolished the role of circ-ERBB2 knockdown in CRC cell resistance to 5-FU. In conclusion, upregulation of circ-ERBB2 promoted the malignancy of CRC and reduced CRC cell resistance to 5-FU. Besides, additional mechanism study provided a novel regulatory pathways that circ-ERBB2 knockdown promoted CRC cell sensitivity to 5-FU by regulating miR-181a-5p/PTEN/Akt pathway. This research indicated that circ-ERBB2 may be a valuable biomarker for the diagnosis and treatment of CRC.  相似文献   

11.
Chemoresistance is one of the major obstacles in chemotherapy-based hepatocellular carcinoma (HCC) intervention. Aluminum (Al) is an environmental pollutant that plays a vital role in carcinogenesis, tumorigenesis, and metastasis. However, the effect of Al on chemoresistance remains unknown. 5-Fluorouracil (5-FU) is a widely used antitumor drug. Therefore, we investigated the effects of aluminum chloride (AlCl3) on the chemoresistance of HepG2 cells to 5-FU and explored the underlying mechanisms of these effects. The results demonstrated that AlCl3 pretreatment attenuated 5-FU-induced apoptosis through Erk activation and reversed 5-FU-induced cell cycle arrest by downregulating p-Chk2Thr68 levels. In addition, AlCl3 markedly increased the levels of proteins associated with cell migration, such as MMP-2 and MMP-9. Further investigation demonstrated that an Erk inhibitor (U0126) reversed the AlCl3-induced decrease in apoptosis, enhancement of cell cycle progression, promotion of cell migration, and attenuation of oxidative stress. In summary, AlCl3 induced chemoresistance to 5-FU in HepG2 cells. The present study suggests a potential influence of AlCl3 on 5-FU therapy. These findings may help others to understand and properly address the resistance of HCC to chemotherapeutic agents.  相似文献   

12.
Chemotherapy resistance is still a key hurdle in current hepatocellular carcinoma (HCC) treatment. Therefore, clarifying the molecular mechanisms contributing to this acquired resistance is urgent for the effective treatment of liver cancer. In this research, we observed that lncRNA FAM225A expression is dramatically up-regulated not only in HCC tissues and cell lines but also in sorafenib-resistant HepG2/SOR cells. Moreover, FAM225A knockdown significantly weakened HepG2/SOR cells resistance to sorafenib treatment by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Similar results were obtained from the tumor xenograft model in mice. Further mechanistic researches revealed that the direct interaction between FAM225A and miR-130a-5p, while miR-130a-5p negatively modulated Cyclin G1 (CCNG1) expression by targeting 3′UTR of CCNG1. MiR-130a-5p inhibition or CCNG1 overexpression could partially offset FAM225A knockdown-induced increased viability of HepG2/SOR cells in response to sorafenib challenge. Collectively, our findings provide evidence that FAM225A/miR-130a-5p/CCNG1 interaction network regulates the resistance of HCC cells to sorafenib treatment and could supply a possible strategy for restoring sorafenib sensitivity in HCC therapy.  相似文献   

13.
The functions of microRNAs (miRNAs) as either oncogenes or tumor suppressors in regulating cancer-related events have been established. We analyzed the alterations in the miRNA expression profile of the glioma cell line U-251 caused by ionizing radiation (IR) by using an miRNA array and identified several miRNAs whose expression was significantly affected by IR. Among the IR-responsive miRNAs, we further examined the function of miR-193a-3p, which exhibited the most significant growth-inhibiting effect. miR-193a-3p was observed to induce apoptosis in both U-251 and HeLa cells. We also demonstrated that miR-193a-3p induces the accumulation of intracellular reactive oxygen species (ROS) and DNA damage as determined by the level of γH2AX and by performing the comet assay. The induction of both apoptosis and DNA damage by miR-193a-3p was blocked by antioxidant treatment, indicating the crucial role of ROS in the action of miR-193a-3p. Among the putative target proteins, the expression of Mcl-1, an anti-apoptotic Bcl-2 family member, decreased because of miR-193a-3p transfection. A reporter assay using a luciferase construct containing the 3′-untranslated region of Mcl-1 confirmed that Mcl-1 is a direct target of miR-193a-3p. Down-regulation of Mcl-1 by siRNA transfection closely mimicked the outcome of miR-193a-3p transfection showing increased ROS, DNA damage, cytochrome c release, and apoptosis. Ectopic expression of Mcl-1 suppressed the pro-apoptotic action of miR-193a-3p, suggesting that Mcl-1 depletion is critical for miR-193a-3p induced apoptosis. Collectively, our results suggest a novel function for miR-193a-3p and its potential application in cancer therapy.  相似文献   

14.
Development of drug resistance is one of the major causes of colorectal cancer recurrence, yet mechanistic understanding and therapeutic options remain limited. Here, we show that expression of microRNA (miR)-520g is correlated with drug resistance of colon cancer cells. Ectopic expression of miR-520g conferred resistance to 5-fluorouracil (5-FU)- or oxaliplatin-induced apoptosis in vitro and reduced the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicated that miR-520g mediated drug resistance through down-regulation of p21 expression. Moreover, p53 suppressed miR-520g expression, and deletion of p53 up-regulated miR-520g expression. Inhibition of miR-520g in p53−/− cells increased their sensitivity to 5-FU treatment. Importantly, studies of patient samples indicated that expression of miR-520g correlated with chemoresistance in colorectal cancer. These findings indicate that the p53/miR-520g/p21 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of miR-520g or restoration of p21 expression may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, especially in those with mutant p53.  相似文献   

15.
Microsatellite instability (MSI) defines a subtype of colorectal cancer (CRC) with typical clinicopathologic characteristics. CRCs with MSI (MSI CRCs) frequently acquire accelerated carcinogenesis and 5-FU resistance, and the exact underlying mechanism remains incompletely understood. Our previous study has identified the microRNA (miRNA) expression profile in MSI CRCs. In this study, three miRNAs (miR-181a, miR-135a and miR-302c) were validated by qRT-PCR to be dramatically decreased in 67 CRC samples. Proliferation and apoptosis assays demonstrated that miR-181a/135a/302c function as tumor suppressors via repressing PLAG1/IGF2 signaling. Moreover, we presented compelling evidence that restoration of miR-181a/135a/302c expression promoted sensitivity of MSI CRC cells to 5-FU treatment. miR-181a/135a/302c exerted their effect on chemoresistance through attenuating PLAG1 expression. Notably, the hypermethylation status of MSI CRC accounts for the decrements of miR-181a/135a/302c. Our results contribute to a better understanding of the mechanism of chemoresistance in MSI CRCs, and provide a clue for digging the biomarkers and therapeutic targets for CRC patients.  相似文献   

16.
Long noncoding RNA (lncRNA) differentiation antagonizing nonprotein coding RNA (DANCR) has been identified as an oncogene in several cancers. However, the biological function and role of DANCR in hepatocellular carcinoma (HCC) remain unclear. Our current study aimed to investigate the detailed mechanism of DANCR in HCC. We found that DANCR was significantly upregulated in HCC cell lines in comparison to LO2 cells. Then, we observed that knockdown of DANCR could greatly inhibit Huh7 and HepG2 cell proliferation. In addition, HCC cell apoptosis was increased by silence of DANCR and meanwhile, cell cycle progression was blocked in G1 phase. Apart from these, downregulation of DANCR repressed HCC cell migration and invasion ability obviously. As predicted by the bioinformatics analysis, microRNA-216a-5p (miR-216a-5p) could serve as a direct target of DANCR. MiR-216a-5p has been reported to be involved in many cancers. Here, the correlation between miR-216a-5p and DANCR was confirmed using dual-luciferase reporter assay and radioimmunoprecipitation assay. Subsequently, Kruppel-like factor 12 (KLF12) exerts an important role in different tumor types. KLF12 can function as a downstream target of miR-216a-5p. Finally, the in vivo experiments were used and the data proved that DANCR also strongly suppressed HCC tumor growth in vivo via targeting miR-216a-5p and KLF12. In conclusion, our study indicated that DANCR might provide a new perspective for HCC treatment.  相似文献   

17.
DNA structure and expression of p53 gene in human hepatoma cell lines SMMC-7721, YY-8103 and a spontaneously transformed liver cell line L-02 were analysed using the following method: analysis of allelic losses on chromosome 17p, PCR/SSCP, Northern blot and immunoprecipitation. There was no point mutation found in the exons 4-9 of the p53 gene, and a low level of expression of p53 gene was detected in the three cell lines. These observations were in agreement to the reported results of the relevant experiment using the human hepatoma cell line QGY-7703. Sensitivities of these cell lines and other eight human hepatoma cell lines (QGY-7703, PLC/PRF/5, Tong/HCC, Huh-7, FOCUS, Hep3B, SK-Hep-1, HepG2) with known p53 backgrounds to parvovirus H-1 was assayed using MTT method. Abnormality in the structure and/or function was observed in all of the cell lines examined except HepG2. The cell line HepG2 with normal structure and function of the p53 gene was found to be the least sensitive to H-1 in comparison to all the cell lines which have defeated structure and/or function of the p53 gene. The present study serves as a preliminary evidence that enhancement of the sensitivity of human hepatoma cell lines to H-1 is correlated to the abnormality of the structure and/or function of the p53 gene.  相似文献   

18.
19.
Nasopharyngeal carcinoma (NPC), a subclass of cancers of the neck and head, is a predominant cause of cancer-associated death worldwide. Hence, there is a critical need for research into NPC-related treatment strategies. Cisplatin is a promising therapy option for NPCs and other cancers that is frequently utilized. Some patients acquire resistance to cisplatin therapy, which complicates the successful use of cisplatin treatment in NPCs. Although exosomal transfer of oncogenic miRNAs has been shown to improve recipient cell proliferation, metastasis and chemoresistance, the molecular mechanism behind this effect on NPC has yet to be fully understood. Exosomal microRNAs (miRNAs) from cisplatin-resistant cells were identified as significant mediators of chemoresistance in NPC cells in this investigation. Initially, we found that exosomal miR-106a-5p levels in the serum of chemoresistant and last-cycle patients were greater than in that of non-resistant and first-cycle patients. Also, exosomal miR-106a-5p enhanced the proliferative ability of NPC cells. Mechanistically, exosomal miR-106a-5p targets ARNT2, which further activates AKT phosphorylation, and thus promotes NPC cell proliferation, decreases apoptosis and in turn regulates tumorigenesis. We found similar results using in vivo NPC models, where exosomal miR-106a-5p through regulation of ARNT2 (aryl hydrocarbon receptor nuclear translocator 2) promoted tumorigenesis. Taken together, these findings indicate that exosomal miR-106a-5p could be a promising diagnostic biomarker and drug target for patients with NPC.  相似文献   

20.
《Epigenetics》2013,8(1):119-128
It was previously demonstrated that miR-199a was downregulated in testicular germ cell tumor (TGCT), probably due to hypermethylation of its promoter. Further study found that re-expression of miR-199a in testicular cancer cells (NT2) led to suppression of cell growth, cancer migration, invasion and metastasis. More detailed analyses showed that these properties of miR-199a could be assigned to miR-199a-5p, one of its two derivatives. The biological role of the other derivative, miR-199a-3p in TGCT, remains largely uncharacterized. In this report, we identified DNA (cytosine-5)-methyltransferase 3A (DNMT3A), the de novo methyltransferase, as a direct target of miR-199a-3p using a 3′-UTR reporter assay. Transient expression of miR-199a-3p in NT2 cells led to decrease, while knocking down of miR-199a-3p in a normal human testicular cell line (HT) led to elevation, of DNMT3A2 (DNMT3A gene isoform 2) mRNA and protein levels. In clinical samples, DNMT3A2 was significantly overexpressed in malignant testicular tumor, and the expression of DNMT3A2 was inversely correlated with the expression of miR-199a-3p. However, DNMT3A did not affect miR-199a expression in NT2 cells. Further characterization of miR-199a-3p revealed that it negatively regulated DNA methylation, partly through targeting DNMT3A. Overexpression of miR-199a-3p restored the expression of APC and MGMT tumor-suppressor genes in NT2 cells by affecting DNA methylation of their promoter regions. Our studies demonstrated the deregulation of miR-199a-3p expression in TGCT may provide novel mechanistic insights into TGCT carcinogenesis and suggested a potentially therapeutic use of synthetic miR-199a-3p oligonucleotides as effective hypomethylating compounds in the treatment of TGCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号