首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Studies of insect assemblages are suited to the simultaneous DNA‐based identification of multiple taxa known as metabarcoding. To obtain accurate estimates of diversity, metabarcoding markers ideally possess appropriate taxonomic coverage to avoid PCR‐amplification bias, as well as sufficient sequence divergence to resolve species. We used in silico PCR to compare the taxonomic coverage and resolution of newly designed insect metabarcodes (targeting 16S) with that of existing markers [16S and cytochrome oxidase c subunit I (COI)] and then compared their efficiency in vitro. Existing metabarcoding primers amplified in silico <75% of insect species with complete mitochondrial genomes available, whereas new primers targeting 16S provided >90% coverage. Furthermore, metabarcodes targeting COI appeared to introduce taxonomic PCR‐amplification bias, typically amplifying a greater percentage of Lepidoptera and Diptera species, while failing to amplify certain orders in silico. To test whether bias predicted in silico was observed in vitro, we created an artificial DNA blend containing equal amounts of DNA from 14 species, representing 11 insect orders and one arachnid. We PCR‐amplified the blend using five primer sets, targeting either COI or 16S, with high‐throughput amplicon sequencing yielding more than 6 million reads. In vitro results typically corresponded to in silico PCR predictions, with newly designed 16S primers detecting 11 insect taxa present, thus providing equivalent or better taxonomic coverage than COI metabarcodes. Our results demonstrate that in silico PCR is a useful tool for predicting taxonomic bias in mixed template PCR and that researchers should be wary of potential bias when selecting metabarcoding markers.  相似文献   

2.
DNA metabarcoding is a promising approach for rapidly surveying biodiversity and is likely to become an important tool for measuring ecosystem responses to environmental change. Metabarcoding markers need sufficient taxonomic coverage to detect groups of interest, sufficient sequence divergence to resolve species, and will ideally indicate relative abundance of taxa present. We characterized zooplankton assemblages with three different metabarcoding markers (nuclear 18S rDNA, mitochondrial COI, and mitochondrial 16S rDNA) to compare their performance in terms of taxonomic coverage, taxonomic resolution, and correspondence between morphology‐ and DNA‐based identification. COI amplicons sequenced on separate runs showed that operational taxonomic units representing >0.1% of reads per sample were highly reproducible, although slightly more taxa were detected using a lower annealing temperature. Mitochondrial COI and nuclear 18S showed similar taxonomic coverage across zooplankton phyla. However, mitochondrial COI resolved up to threefold more taxa to species compared to 18S. All markers revealed similar patterns of beta‐diversity, although different taxa were identified as the greatest contributors to these patterns for 18S. For calanoid copepod families, all markers displayed a positive relationship between biomass and sequence reads, although the relationship was typically strongest for 18S. The use of COI for metabarcoding has been questioned due to lack of conserved primer‐binding sites. However, our results show the taxonomic coverage and resolution provided by degenerate COI primers, combined with a comparatively well‐developed reference sequence database, make them valuable metabarcoding markers for biodiversity assessment.  相似文献   

3.
Environmental DNA studies targeting multiple taxa using metabarcoding provide remarkable insights into levels of species diversity in any habitat. The main drawbacks are the presence of primer bias and difficulty in identifying rare species. We tested a DNA sequence‐capture method in parallel with the metabarcoding approach to reveal possible advantages of one method over the other. Both approaches were performed using the same eDNA samples and the same 18S and COI regions, followed by high throughput sequencing. Metabarcoded eDNA libraries were PCR amplified with one primer pair from 18S and COI genes. DNA sequence‐capture libraries were enriched with 3,639 baits targeting the same gene regions. We tested amplicon sequence variants (ASVs) and operational taxonomic units (OTUs) in silico approaches for both markers and methods, using for this purpose the metabarcoding data set. ASVs methods uncovered more species for the COI gene, whereas the opposite occurred for the 18S gene, suggesting that clustering reads into OTUs could bias diversity richness especially using 18S with relaxed thresholds. Additionally, metabarcoding and DNA sequence‐capture recovered 80%–90% of the control sample species. DNA sequence‐capture was 8x more expensive, nonetheless it identified 1.5x more species for COI and 13x more genera for 18S than metabarcoding. Both approaches offer reliable results, sharing ca. 40% species and 72% families and retrieve more taxa when nuclear and mitochondrial markers are combined. eDNA metabarcoding is quite well established and low‐cost, whereas DNA‐sequence capture for biodiversity assessment is still in its infancy, is more time‐consuming but provides more taxonomic assignments.  相似文献   

4.
PCR has been extensively used for amplification of DNA sequences. We conducted a study to obtain the best amplification conditions for cytochrome b (Cyt b), cytochrome c oxidase I (COI) and 12S rRNA (12S) gene fragments of Malayan gaur mtDNA. DNA from seven Malayan gaur samples were extracted for PCR amplification. Various trials and combinations were tested to determine the best conditions of PCR mixture and profile to obtain the best PCR products for sequencing purposes. Four selected target factors for enhancing PCR, annealing temperature, concentration of primer pairs, amount of Taq polymerase, and PCR cycle duration, were optimized by keeping the amount of DNA template (50 ng/μL) and concentration of PCR buffer (1X), MgCl(2) (2.5 mM) and dNTP mixture (200 μM each) constant. All genes were successfully amplified, giving the correct fragment lengths, as assigned for both forward and reverse primers. The optimal conditions were determined to be: 0.1 μM primers for Cyt b and COI, 0.3 μM primers for 12S, 1 U Taq polymerase for all genes, 30 s of both denaturation and annealing cycles for Cyt b, 1 min of both stages for 12S and COI and annealing temperature of 58.4 ° C for Cyt b, 56.1 ° C for 12S and 51.3 ° C for COI. PCR products obtained under these conditions produced excellent DNA sequences.  相似文献   

5.
冯芸芝  孙栋  邵倩文  王春生 《生态学报》2022,42(21):8544-8554
浮游动物是海洋生态系统的关键类群,其覆盖门类广泛,多样性高。传统形态鉴定技术需要检测人员具备专业的形态鉴定知识,且费时费力。宏条形码技术无需分离生物个体,而是提取拖网采集到的浮游动物混合样本的总DNA,或者水体中的环境DNA (eDNA),依托高通量测序平台测序,能够实现对大规模样本快速、准确、经济的分析,在海洋浮游动物生态学研究中得到越来越广泛的应用。分析了DNA宏条形码技术常用的核糖体和线粒体分子标记,在浮游动物多样性和数量研究中的可靠性和不足,并给出在海洋浮游动物群落监测,食物关系分析及生物入侵早期预警等研究中的应用。未来,开发多基因片段组合条形码,发展完备的参考数据库及实现准确的量化研究是DNA宏条形码技术发展的重要方向。  相似文献   

6.
DNA metabarcoding allows the analysis of insect communities faster and more efficiently than ever before. However, metabarcoding can be conducted through several approaches, and the consistency of results across methods has rarely been studied. We compare the results obtained by DNA metabarcoding of the same communities using two different markers – COI and 16S – and three different sampling methods: (a) homogenized Malaise trap samples (homogenate), (b) preservative ethanol from the same samples, and (c) soil samples. Our results indicate that COI and 16S offer partly complementary information on Malaise trap samples, with each marker detecting a significant number of species not detected by the other. Different sampling methods offer highly divergent estimates of community composition. The community recovered from preservative ethanol of Malaise trap samples is significantly different from that recovered from homogenate. Small and weakly sclerotized insects tend to be overrepresented in ethanol while strong and large taxa are overrepresented in homogenate. For soil samples, highly degenerate COI primers pick up large amounts of nontarget DNA and only 16S provides adequate analyses of insect diversity. However, even with 16S, very little overlap in molecular operational taxonomic unit (MOTU) content was found between the trap and the soil samples. Our results demonstrate that none of the tested sampling approaches is satisfactory on its own. For instance, DNA extraction from preservative ethanol is not a valid replacement for destructive bulk extraction but a complement. In future metabarcoding studies, both should ideally be used together to achieve comprehensive representation of the target community.  相似文献   

7.
Metabarcode surveys of DNA extracted from environmental samples are increasingly popular for biodiversity assessment in natural communities. Such surveys rely heavily on robust genetic markers. Therefore, analysis of PCR efficiency and subsequent biodiversity estimation for different types of genetic markers and their corresponding primers is important. Here, we test the PCR efficiency and biodiversity recovery potential of three commonly used genetic markers – nuclear small subunit ribosomal DNA (18S), mitochondrial cytochrome c oxidase subunit I (COI) and 16S ribosomal RNA (mt16S) – using 454 pyrosequencing of a zooplankton community collected from Hamilton Harbour, Ontario. We found that biodiversity detection power and PCR efficiency varied widely among these markers. All tested primers for COI failed to provide high‐quality PCR products for pyrosequencing, but newly designed primers for 18S and 16S passed all tests. Furthermore, multiple analyses based on large‐scale pyrosequencing (i.e. 1/2 PicoTiter plate for each marker) showed that primers for 18S recover more (38 orders) groups than 16S (10 orders) across all taxa, and four vs. two orders and nine vs. six families for Crustacea. Our results showed that 18S, using newly designed primers, is an efficient and powerful tool for profiling biodiversity in largely unexplored communities, especially when amplification difficulties exist for mitochondrial markers such as COI. Universal primers for higher resolution markers such as COI are still needed to address the possible low resolution of 18S for species‐level identification.  相似文献   

8.
The application of high‐throughput sequencing to retrieve multi‐taxon DNA from different substrates such as water, soil, and stomach contents has enabled species identification without prior knowledge of taxon compositions. Here we used three minibarcodes designed to target mitochondrial COI in plankton, 16S in fish, and 16S in crustaceans, to compare ethanol‐ and tissue‐derived DNA extraction methodologies for metabarcoding. The stomach contents of pygmy devilrays (Mobula kuhlii cf. eregoodootenkee) were used to test whether ethanol‐derived DNA would provide a suitable substrate for metabarcoding. The DNA barcoding assays indicated that tissue‐derived operational taxonomic units (OTUs) were greater compared to those from extractions performed directly on the ethanol preservative. Tissue‐derived DNA extraction is therefore recommended for broader taxonomic coverage. Metabarcoding applications should consider including the following: (i) multiple barcodes, both taxon specific (e.g., 12S or 16S) and more universal (e.g., COI or 18S) to overcome bias and taxon misidentification and (ii) PCR inhibitor removal steps that will likely enhance amplification yields. However, where tissue is limited or no longer available, but the ethanol‐preservative medium is still available, metabarcoding directly from ethanol does recover the majority of common OTUs, suggesting the ethanol‐retrieval method could be applicable for dietary studies. Metabarcoding directly from preservative ethanol may also be useful where tissue samples are limited or highly valued; bulk samples are collected, such as for rapid species inventories; or mixed‐voucher sampling is conducted (e.g., for plankton, insects, and crustaceans).  相似文献   

9.
The bushmeat trade in tropical Africa represents illegal, unsustainable off‐takes of millions of tons of wild game – mostly mammals – per year. We sequenced four mitochondrial gene fragments (cyt b, COI, 12S, 16S) in >300 bushmeat items representing nine mammalian orders and 59 morphological species from five western and central African countries (Guinea, Ghana, Nigeria, Cameroon and Equatorial Guinea). Our objectives were to assess the efficiency of cross‐species PCR amplification and to evaluate the usefulness of our multilocus approach for reliable bushmeat species identification. We provide a straightforward amplification protocol using a single ‘universal’ primer pair per gene that generally yielded >90% PCR success rates across orders and was robust to different types of meat preprocessing and DNA extraction protocols. For taxonomic identification, we set up a decision pipeline combining similarity‐ and tree‐based approaches with an assessment of taxonomic expertise and coverage of the GENBANK database. Our multilocus approach permitted us to: (i) adjust for existing taxonomic gaps in GENBANK databases, (ii) assign to the species level 67% of the morphological species hypotheses and (iii) successfully identify samples with uncertain taxonomic attribution (preprocessed carcasses and cryptic lineages). High levels of genetic polymorphism across genes and taxa, together with the excellent resolution observed among species‐level clusters (neighbour‐joining trees and Klee diagrams) advocate the usefulness of our markers for bushmeat DNA typing. We formalize our DNA typing decision pipeline through an expert‐curated query database – DNAbushmeat – that shall permit the automated identification of African forest bushmeat items.  相似文献   

10.
DNA metabarcoding is a technique used to survey biodiversity in many ecological settings, but there are doubts about whether it can provide quantitative results, that is, the proportions of each species in the mixture as opposed to a species list. While there are several experimental studies that report quantitative metabarcoding results, there are a similar number that fail to do so. Here, we provide the rationale to understand under what circumstances the technique can be quantitative. In essence, we simulate a mixture of DNA of S species with a defined initial abundance distribution. In the simulated PCR, each species increases its concentration following a certain amplification efficiency. The final DNA concentration will reflect the initial one when the efficiency is similar for all species; otherwise, the initial and final DNA concentrations would be poorly related. Although there are many known factors that modulate amplification efficiency, we focused on the number of primer–template mismatches, arguably the most important one. We used 15 common primers pairs targeting the mitochondrial COI region and the mitogenomes of ca. 1,200 insect species. The results showed that some primers pairs produced quantitative results under most circumstances, whereas some other primers failed to do so. In conclusion, depending on the primer pair used in the PCR amplification and on the characteristics of the mixture analysed (i.e., high species richness, low evenness), DNA metabarcoding can provide a quantitative estimate of the relative abundances of different species.  相似文献   

11.
Environmental DNA (eDNA) techniques refer to utilizing the organisms’ DNA extracted from environment samples to genetically identify target species without capturing actual organisms. eDNA metabarcoding via high‐throughput sequencing can simultaneously detect multiple fish species from a single water sample, which is a powerful tool for the qualitative detection and quantitative estimates of multiple fish species. However, sequence counts obtained from eDNA metabarcoding may be influenced by many factors, of which primer bias is one of the foremost causes of methodological error. The performance of 18 primer pairs for COI, cytb, 12S rRNA, and 16S rRNA mitochondrial genes, which are all frequently used in fish eDNA metabarcoding, were evaluated in the current study. The ribosomal gene markers performed better than the protein‐coding gene markers during in silico screening, resulting in higher taxonomic coverage and appropriate barcode lengths. Four primer pairs—AcMDB07, MiFish‐U, Ve16S1, and Ve16S3—designed for various regions of the 12S and 16S rRNA genes were screened for tank metabarcoding in a case study targeting six freshwater fish species. The four primer pairs were able to accurately detect all six species in different tanks, while only MiFish‐U, Ve16S1, and Ve16S3 revealed a significant positive relationship between species biomass and read count for the pooled tank data. The positive relationship could not be found in all species within the tanks. Additionally, primer efficiency differed depending on the species while primer preferential species varied in different fish assemblages. This case study supports the potential for eDNA metabarcoding to assess species diversity in natural ecosystems and provides an alternative strategy to evaluate the performance of candidate primers before application of eDNA metabarcoding in natural ecosystems.  相似文献   

12.
Automated species identification based on data produced with metabarcoding offers an alternative for assessing biodiversity of bulk insect samples obtained with traps. We used a standard two‐step PCR approach to amplify a 313 bp fragment of the barcoding region of the mitochondrial COI gene. The PCR products were sequenced on an Illumina MiSeq platform, and the OTUs production and taxonomic identifications were performed with a customized pipeline and database. The DNA used in the PCR procedures was extracted directly from the preservative ethanol of bulk insect samples obtained with automatic light traps in 12 sampling areas located in different biomes of Brazil, during wet and dry seasons. Agricultural field and forest edge habitats were collected for all sampling areas. A total of 119 insect OTUs and nine additional OTUs assigned to other arthropod taxa were obtained at a ≥97% sequence similarity level. The alpha and beta diversity analyses comparing biomes, habitats, and seasons were mostly inconclusive, except for a significant difference in beta diversity between biomes. In this study, we were able to metabarcode and HTS adult insects from their preservative medium. Notwithstanding, our results underrepresent the true magnitude of insect diversity expected from samples obtained with automatic light traps in Brazil. Although biological and technical factors might have impacted our results, measures to optimize and standardize eDNA HTS should be in place to improve taxonomic coverage of samples of unknown diversity and stored in suboptimal conditions, which is the case of most eDNA samples.  相似文献   

13.
Assessing diet variability is of main importance to better understand the biology of bats and design conservation strategies. Although the advent of metabarcoding has facilitated such analyses, this approach does not come without challenges. Biases may occur throughout the whole experiment, from fieldwork to biostatistics, resulting in the detection of false negatives, false positives or low taxonomic resolution. We detail a rigorous metabarcoding approach based on a short COI minibarcode and two‐step PCR protocol enabling the “all at once” taxonomic identification of bats and their arthropod prey for several hundreds of samples. Our study includes faecal pellets collected in France from 357 bats representing 16 species, as well as insect mock communities that mimic bat meals of known composition, negative and positive controls. All samples were analysed using three replicates. We compare the efficiency of DNA extraction methods, and we evaluate the effectiveness of our protocol using identification success, taxonomic resolution, sensitivity and amplification biases. Our parallel identification strategy of predators and prey reduces the risk of mis‐assigning prey to wrong predators and decreases the number of molecular steps. Controls and replicates enable to filter the data and limit the risk of false positives, hence guaranteeing high confidence results for both prey occurrence and bat species identification. We validate 551 COI variants from arthropod including 18 orders, 117 family, 282 genus and 290 species. Our method therefore provides a rapid, resolutive and cost‐effective screening tool for addressing evolutionary ecological issues or developing “chirosurveillance” and conservation strategies.  相似文献   

14.
The accuracy and reliability of DNA metabarcoding analyses depend on the breadth and quality of the reference libraries that underpin them. However, there are limited options available to obtain and curate the huge volumes of sequence data that are available on public repositories such as NCBI and BOLD. Here, we provide a pipeline to download, clean and annotate mitochondrial DNA sequence data for a given list of fish species. Features of this pipeline include (a) support for multiple metabarcode markers; (b) searches on species synonyms and taxonomic name validation; (c) phylogeny assisted quality control for identification and removal of misannotated sequences; (d) automatically generated coverage reports for each new GenBank release update; and (e) citable, versioned DOIs. As an example we provide a ready-to-use curated reference library for the marine and freshwater fishes of the U.K. To augment this reference library for environmental DNA metabarcoding specifically, we generated 241 new MiFish-12S sequences for 88 U.K. marine species, and make available new primer sets useful for sequencing these. This brings the coverage of common U.K. species for the MiFish-12S fragment to 93%, opening new avenues for scaling up fish metabarcoding across wide spatial gradients. The Meta-Fish-Lib reference library and pipeline is hosted at https://github.com/genner-lab/meta-fish-lib .  相似文献   

15.
As an evolutionary marker, 23S ribosomal RNA (rRNA) offers more diagnostic sequence stretches and greater sequence variation than 16S rRNA. However, 23S rRNA is still not as widely used. Based on 80 metagenome samples from the Global Ocean Sampling (GOS) Expedition, the usefulness and taxonomic resolution of 23S rRNA were compared to those of 16S rRNA. Since 23S rRNA is approximately twice as large as 16S rRNA, twice as many 23S rRNA gene fragments were retrieved from the GOS reads than 16S rRNA gene fragments, with 23S rRNA gene fragments being generally about 100 bp longer. Datasets for 16S and 23S rRNA sequences revealed similar relative abundances for major marine bacterial and archaeal taxa. However, 16S rRNA sequences had a better taxonomic resolution due to their significantly larger reference database.Reevaluation of the specificity of previously published PCR amplification primers and group specific fluorescence in situ hybridization probes on this metagenomic set of non-amplified 23S rRNA sequences revealed that out of 16 primers investigated, only two had more than 90% target group coverage. Evaluations of two probes, BET42a and GAM42a, were in accordance with previous evaluations, with a discrepancy in the target group coverage of the GAM42a probe when evaluated against the GOS metagenomic dataset.  相似文献   

16.
Targeted species‐specific and community‐wide molecular diagnostics tools are being used with increasing frequency to detect invasive or rare species. Few studies have compared the sensitivity and specificity of these approaches. In the present study environmental DNA from 90 filtered seawater and 120 biofouling samples was analyzed with quantitative PCR (qPCR), droplet digital PCR (ddPCR) and metabarcoding targeting the cytochrome c oxidase I (COI) and 18S rRNA genes for the Mediterranean fanworm Sabella spallanzanii. The qPCR analyses detected S. spallanzanii in 53% of water and 85% of biofouling samples. Using ddPCR S. spallanzanii was detected in 61% of water of water and 95% of biofouling samples. There were strong relationships between COI copy numbers determined via qPCR and ddPCR (water R2 = 0.81, p < .001, biofouling R2 = 0.68, p < .001); however, qPCR copy numbers were on average 125‐fold lower than those measured using ddPCR. Using metabarcoding there was higher detection in water samples when targeting the COI (40%) compared to 18S rRNA (5.4%). The difference was less pronounced in biofouling samples (25% COI, 29% 18S rRNA). Occupancy modelling showed that although the occupancy estimate was higher for biofouling samples (ψ = 1.0), higher probabilities of detection were derived for water samples. Detection probabilities of ddPCR (1.0) and qPCR (0.93) were nearly double metabarcoding (0.57 to 0.27 marker dependent). Studies that aim to detect specific invasive or rare species in environmental samples should consider using targeted approaches until a detailed understanding of how community and matrix complexity, and primer biases affect metabarcoding data.  相似文献   

17.
Towards next-generation biodiversity assessment using DNA metabarcoding   总被引:3,自引:0,他引:3  
Virtually all empirical ecological studies require species identification during data collection. DNA metabarcoding refers to the automated identification of multiple species from a single bulk sample containing entire organisms or from a single environmental sample containing degraded DNA (soil, water, faeces, etc.). It can be implemented for both modern and ancient environmental samples. The availability of next-generation sequencing platforms and the ecologists' need for high-throughput taxon identification have facilitated the emergence of DNA metabarcoding. The potential power of DNA metabarcoding as it is implemented today is limited mainly by its dependency on PCR and by the considerable investment needed to build comprehensive taxonomic reference libraries. Further developments associated with the impressive progress in DNA sequencing will eliminate the currently required DNA amplification step, and comprehensive taxonomic reference libraries composed of whole organellar genomes and repetitive ribosomal nuclear DNA can be built based on the well-curated DNA extract collections maintained by standardized barcoding initiatives. The near-term future of DNA metabarcoding has an enormous potential to boost data acquisition in biodiversity research.  相似文献   

18.
【目的】本研究旨在使用基于线粒体基因通用引物的双重PCR技术同时扩增单一样本中两条标记基因,从而达到简化节肢动物物种鉴定流程的目的。【方法】在一次PCR实验中同时加入可扩增线粒体COI基因和16S rDNA两个不同分子标记的引物,对3纲8目14科的14种节肢动物物种标本的基因组DNA进行扩增;扩增产物经电泳和胶回收后测序,并BLAST在线搜索相似序列,验证基于通用引物的双重PCR在不同的动物类群中用于物种鉴定的有效性。【结果】应用基于COI和16S rDNA的引物从分属于3纲8目14科的14种节肢动物基因组DNA中均可成功扩增目的基因;扩增产物测序结果进一步证实了扩增的准确性。【结论】通过本方法进行物种的分子鉴定,不仅可以保证物种鉴定的高准确率,还可以明显减少时间与DNA样本量的消耗,这对需要快速准确鉴定物种或珍稀的材料样本十分重要。  相似文献   

19.
In diet metabarcoding analyses, insufficient taxonomic coverage of PCR primer sets generates false negatives that may dramatically distort biodiversity estimates. In this paper, we investigated the taxonomic coverage and complementarity of three cytochrome c oxidase subunit I gene (COI) primer sets based on in silico analyses and we conducted an in vivo evaluation using fecal and spider web samples from different invertivores, environments, and geographic locations. Our results underline the lack of predictability of both the coverage and complementarity of individual primer sets: (a) sharp discrepancies exist observed between in silico and in vivo analyses (to the detriment of in silico analyses); (b) both coverage and complementarity depend greatly on the predator and on the taxonomic level at which preys are considered; (c) primer sets’ complementarity is the greatest at fine taxonomic levels (molecular operational taxonomic units [MOTUs] and variants). We then formalized the “one‐locus‐several‐primer‐sets” (OLSP) strategy, that is, the use of several primer sets that target the same locus (here the first part of the COI gene) and the same group of taxa (here invertebrates). The proximal aim of the OLSP strategy is to minimize false negatives by increasing total coverage through multiple primer sets. We illustrate that the OLSP strategy is especially relevant from this perspective since distinct variants within the same MOTUs were not equally detected across all primer sets. Furthermore, the OLSP strategy produces largely overlapping and comparable sequences, which cannot be achieved when targeting different loci. This facilitates the use of haplotypic diversity information contained within metabarcoding datasets, for example, for phylogeography and finer analyses of prey–predator interactions.  相似文献   

20.
The main objective of this work was to develop and validate a robust and reliable “from‐benchtop‐to‐desktop” metabarcoding workflow to investigate the diet of invertebrate‐eaters. We applied our workflow to faecal DNA samples of an invertebrate‐eating fish species. A fragment of the cytochrome c oxidase I (COI) gene was amplified by combining two minibarcoding primer sets to maximize the taxonomic coverage. Amplicons were sequenced by an Illumina MiSeq platform. We developed a filtering approach based on a series of nonarbitrary thresholds established from control samples and from molecular replicates to address the elimination of cross‐contamination, PCR/sequencing errors and mistagging artefacts. This resulted in a conservative and informative metabarcoding data set. We developed a taxonomic assignment procedure that combines different approaches and that allowed the identification of ~75% of invertebrate COI variants to the species level. Moreover, based on the diversity of the variants, we introduced a semiquantitative statistic in our diet study, the minimum number of individuals, which is based on the number of distinct variants in each sample. The metabarcoding approach described in this article may guide future diet studies that aim to produce robust data sets associated with a fine and accurate identification of prey items.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号