首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blind mole rat (Spalax) is a wild, long‐lived rodent that has evolved mechanisms to tolerate hypoxia and resist cancer. Previously, we demonstrated high DNA repair capacity and low DNA damage in Spalax fibroblasts following genotoxic stress compared with rats. Since the acquisition of senescence‐associated secretory phenotype (SASP) is a consequence of persistent DNA damage, we investigated whether cellular senescence in Spalax is accompanied by an inflammatory response. Spalax fibroblasts undergo replicative senescence (RS) and etoposide‐induced senescence (EIS), evidenced by an increased activity of senescence‐associated beta‐galactosidase (SA‐β‐Gal), growth arrest, and overexpression of p21, p16, and p53 mRNAs. Yet, unlike mouse and human fibroblasts, RS and EIS Spalax cells showed undetectable or decreased expression of the well‐known SASP factors: interleukin‐6 (IL6), IL8, IL1α, growth‐related oncogene alpha (GROα), SerpinB2, and intercellular adhesion molecule (ICAM‐1). Apparently, due to the efficient DNA repair in Spalax, senescent cells did not accumulate the DNA damage necessary for SASP activation. Conversely, Spalax can maintain DNA integrity during replicative or moderate genotoxic stress and limit pro‐inflammatory secretion. However, exposure to the conditioned medium of breast cancer cells MDA‐MB‐231 resulted in an increase in DNA damage, activation of the nuclear factor κB (NF‐κB) through nuclear translocation, and expression of inflammatory mediators in RS Spalax cells. Evaluation of SASP in aging Spalax brain and intestine confirmed downregulation of inflammatory‐related genes. These findings suggest a natural mechanism for alleviating the inflammatory response during cellular senescence and aging in Spalax, which can prevent age‐related chronic inflammation supporting healthy aging and longevity.  相似文献   

2.
3.
Cellular senescence is a unique cell fate characterized by stable proliferative arrest and the extensive production and secretion of various inflammatory proteins, a phenomenon known as the senescence‐associated secretory phenotype (SASP). The molecular mechanisms responsible for generating a SASP in response to senescent stimuli remain largely obscure. Here, using unbiased gene expression profiling, we discover that the scavenger receptor CD36 is rapidly upregulated in multiple cell types in response to replicative, oncogenic, and chemical senescent stimuli. Moreover, ectopic CD36 expression in dividing mammalian cells is sufficient to initiate the production of a large subset of the known SASP components via activation of canonical Src–p38–NF‐κB signaling, resulting in the onset of a full senescent state. The secretome is further shown to be ligand‐dependent, as amyloid‐beta (Aβ) is sufficient to drive CD36‐dependent NF‐κB and SASP activation. Finally, loss‐of‐function experiments revealed a strict requirement for CD36 in secretory molecule production during conventional senescence reprogramming. Taken together, these results uncover the Aβ–CD36–NF‐κB signaling axis as an important regulator of the senescent cell fate via induction of the SASP.  相似文献   

4.
Interleukin‐1 alpha (IL‐1α) is a powerful cytokine that modulates immunity, and requires canonical cleavage by calpain for full activity. Mature IL‐1α is produced after inflammasome activation and during cell senescence, but the protease cleaving IL‐1α in these contexts is unknown. We show IL‐1α is activated by caspase‐5 or caspase‐11 cleavage at a conserved site. Caspase‐5 drives cleaved IL‐1α release after human macrophage inflammasome activation, while IL‐1α secretion from murine macrophages only requires caspase‐11, with IL‐1β release needing caspase‐11 and caspase‐1. Importantly, senescent human cells require caspase‐5 for the IL‐1α‐dependent senescence‐associated secretory phenotype (SASP) in vitro, while senescent mouse hepatocytes need caspase‐11 for the SASP‐driven immune surveillance of senescent cells in vivo. Together, we identify IL‐1α as a novel substrate of noncanonical inflammatory caspases and finally provide a mechanism for how IL‐1α is activated during senescence. Thus, targeting caspase‐5 may reduce inflammation and limit the deleterious effects of accumulated senescent cells during disease and Aging.  相似文献   

5.
Endothelial cell senescence is a hallmark of vascular aging that predisposes to vascular disease. We aimed to explore the capacity of the renin–angiotensin system (RAS) heptapeptide angiotensin (Ang)‐(1‐7) to counteract human endothelial cell senescence and to identify intracellular pathways mediating its potential protective action. In human umbilical vein endothelial cell (HUVEC) cultures, Ang II promoted cell senescence, as revealed by the enhancement in senescence‐associated galactosidase (SA‐β‐gal+) positive staining, total and telomeric DNA damage, adhesion molecule expression, and human mononuclear adhesion to HUVEC monolayers. By activating the G protein‐coupled receptor Mas, Ang‐(1‐7) inhibited the pro‐senescence action of Ang II, but also of a non‐RAS stressor such as the cytokine IL‐1β. Moreover, Ang‐(1‐7) enhanced endothelial klotho levels, while klotho silencing resulted in the loss of the anti‐senescence action of the heptapeptide. Indeed, both Ang‐(1‐7) and recombinant klotho activated the cytoprotective Nrf2/heme oxygenase‐1 (HO‐1) pathway. The HO‐1 inhibitor tin protoporphyrin IX prevented the anti‐senescence action evoked by Ang‐(1‐7) or recombinant klotho. Overall, the present study identifies Ang‐(1‐7) as an anti‐senescence peptide displaying its protective action beyond the RAS by consecutively activating klotho and Nrf2/HO‐1. Ang‐(1‐7) mimetic drugs may thus prove useful to prevent endothelial cell senescence and its related vascular complications.  相似文献   

6.
Collagen fibrils become resistant to cleavage over time. We hypothesized that resistance to type I collagen proteolysis not only marks biological aging but also drives it. To test this, we followed mice with a targeted mutation (Col1a1r/r) that yields collagenase‐resistant type I collagen. Compared with wild‐type littermates, Col1a1r/r mice had a shortened lifespan and developed features of premature aging including kyphosis, weight loss, decreased bone mineral density, and hypertension. We also found that vascular smooth muscle cells (SMCs) in the aortic wall of Col1a1r/r mice were susceptible to stress‐induced senescence, displaying senescence‐associated ß‐galactosidase (SA‐ßGal) activity and upregulated p16INK4A in response to angiotensin II infusion. To elucidate the basis of this pro‐aging effect, vascular SMCs from twelve patients undergoing coronary artery bypass surgery were cultured on collagen derived from Col1a1r/r or wild‐type mice. This revealed that mutant collagen directly reduced replicative lifespan and increased stress‐induced SA‐ßGal activity, p16INK4A expression, and p21CIP1 expression. The pro‐senescence effect of mutant collagen was blocked by vitronectin, a ligand for αvß3 integrin that is presented by denatured but not native collagen. Moreover, inhibition of αvß3 with echistatin or with αvß3‐blocking antibody increased senescence of SMCs on wild‐type collagen. These findings reveal a novel aging cascade whereby resistance to collagen cleavage accelerates cellular aging. This interplay between extracellular and cellular compartments could hasten mammalian aging and the progression of aging‐related diseases.  相似文献   

7.
It is well established that inflammation in the body promotes organism aging, and recent studies have attributed a similar effect to senescent cells. Considering that certain pro‐inflammatory cytokines can induce cellular senescence, systematically evaluating the effects of pro‐inflammatory cytokines in cellular senescence is an important and urgent scientific problem, especially given the ongoing surge in aging human populations. Treating IMR90 cells and HUVECs with pro‐inflammatory cytokines identified six factors able to efficiently induce cellular senescence. Of these senescence‐inducing cytokines, the activity of five (namely IL‐1β, IL‐13, MCP‐2, MIP‐3α, and SDF‐1α) was significantly inhibited by treatment with cetuximab (an antibody targeting epidermal growth factor receptor [EGFR]), gefitinib (a small molecule inhibitor of EGFR), and EGFR knockdown. In addition, treatment with one of the senescence‐inducing cytokines, SDF‐1α, significantly increased the phosphorylation levels of EGFR, as well as Erk1/2. These results suggested that pro‐inflammatory cytokines induce cellular senescence by activating EGFR signaling. Next, we found that EGF treatment could also induce cellular senescence of IMR90 cells and HUVECs. Mechanically, EGF induced cellular senescence via excessive activation of Ras and the Ras‐BRaf‐Erk1/2 signaling axis. Moreover, EGFR activation induced IMR90 cells to secrete certain senescence‐associated secretory phenotype factors (IL‐8 and MMP‐3). In summary, we report that certain pro‐inflammatory cytokines induce cellular senescence through activation of the EGFR‐Ras signaling pathway. Our study thus offers new insight into a long‐ignored mechanism by which EGFR could regulate cellular senescence and suggests that growth signals themselves may catalyze aging under certain conditions.  相似文献   

8.
9.
10.
Aging leads to increased cellular senescence and is associated with decreased potency of tissue‐specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32–86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A, SA‐β‐gal, DNA damage γH2AX, telomere length, senescence‐associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK‐ATTAC or wild‐type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67‐, EdU‐positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.  相似文献   

11.
Activated protein C (APC) has an anticoagulant action and plays an important role in blood coagulation homeostasis. In addition to its anticoagulant action, APC is known to have cytoprotective effects, such as anti‐apoptotic action and endothelial barrier protection, on vascular endothelial cells and monocytes. However, the effects of APC on DCs have not been clarified. To investigate the effects of APC on human DCs, monocytes were isolated from peripheral blood and DC differentiation induced with LPS. APC significantly inhibited the production of inflammatory cytokines TNF‐α and IL‐6 during differentiation of immature DCs to mature DCs, but did not inhibit the production of IL‐12 and anti‐inflammatory cytokine IL‐10. Interestingly, treatment with 5 μg/mL, but not 25 μg/mL, of APC significantly enhanced production of IL‐10. In addition, protein C, which is the zymogen of APC, did not affect production of these cytokines. On the other hand, flow cytometric analysis of DC's surface molecules indicated that APC does not significantly affect expression of CD83, a marker of mDC differentiation, and the co‐stimulatory molecules CD40, CD80 and CD86. These results suggest that APC has anti‐inflammatory effects on human DCs and may be effective against some inflammatory diseases in which the pathogenesis involves TNF‐α and/or IL‐6 production.  相似文献   

12.
13.
Increasing evidence has demonstrated that the senescence of vascular endothelial cells (VECs) has critical roles in the pathogenesis of vascular dysfunction. Finding important factors that regulate VEC senescence will help provide novel therapeutic strategies for vascular disorders. Previously, we found that integrin β4 was involved in VEC senescence. However, the mechanism underlying VEC senescence mediated by integrin β4 remains poorly understand. In this study, we used a mouse in vivo model and showed that the level of integrin β4 in the endothelium of mouse thoracic aorta was increased during natural aging and atherosclerosis. Furthermore, we found that H‐ras, caveolin‐1, and AP‐1 were implicated in the senescent signal pathway mediated by integrin β4 in human umbilical vein ECs (HUVECs). Knockdown of integrin β4 could attenuate HUVEC senescent features, including increased interleukin‐8 (IL‐8) release and decreased endothelial nitric oxide synthase (eNOS) and NO levels and mitochondrial membrane potential in vitro. Our findings provide new clues illustrating the mechanism of VEC senescence. Integrin β4 might be a potential target for therapy in cardiovascular diseases. J. Cell. Physiol. 225: 673–681, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Allogeneic mesenchymal stem cell (MSC) transplantation improves cardiac function, but cellular differentiation results in loss of immunoprivilege and rejection. To explore the mechanism involved in this immune rejection, we investigated the influence of interleukin‐6 (IL‐6), a factor secreted by MSCs, on immune privilege after myogenic, endothelial and smooth muscle cell differentiation induced by 5‐azacytidine, VEGF, and transforming growth factor‐β (TGF‐β), respectively. Both RT‐PCR and ELISA showed that myogenic differentiation of MSCs was associated with significant downregulation of IL‐6 expression (P < 0.01), which was also observed following endothelial (P < 0.01) and smooth muscle cell differentiation (P < 0.05), indicating that IL‐6 downregulation was dependent on differentiation but not cell phenotype. Flow cytometry demonstrated that IL‐6 downregulation as a result of myogenic differentiation was associated with increased leucocyte‐mediated cell death in an allogeneic leucocyte co‐culture study (P < 0.01). The allogeneic reactivity associated with IL‐6 downregulation was also observed following MSC differentiation to endothelial and smooth muscle cells (P < 0.01), demonstrating that leucocyte‐mediated cytotoxicity was also dependent on differentiation but not cell phenotype. Restoration of IL‐6 partially rescued the differentiated cells from leucocyte‐mediated cell death. These findings suggest that rejection of allogeneic MSCs after implantation may be because of a reduction in cellular IL‐6 levels, and restoration of IL‐6 may be a new target to retain MSC immunoprivilege.  相似文献   

15.
With the onset of advanced age, cardiac‐associated pathologies have increased in prevalence. The hallmarks of cardiac aging include cardiomyocyte senescence, fibroblast proliferation, inflammation, and hypertrophy. The imbalance between levels of reactive oxygen species (ROS) and antioxidant enzymes is greatly enhanced in aging cells, promoting cardiac remodeling. In this work, we studied the long‐term impact of phenolic compounds (PC) on age‐associated cardiac remodeling. Three‐month‐old Wistar rats were treated for 14 months till middle‐age with either 2.5, 5, 10, or 20 mg kg?1 day?1 of PC. PC treatment showed a dose‐dependent preservation of cardiac ejection fraction and fractional shortening as well as decreased hypertrophy reflected by left ventricular chamber diameter and posterior wall thickness as compared to untreated middle‐aged control animals. Analyses of proteins from cardiac tissue showed that PC attenuated several hypertrophic pathways including calcineurin/nuclear factor of activated T cells (NFATc3), calcium/calmodulin‐dependent kinase II (CAMKII), extracellular regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3ß (GSK 3ß). PC‐treated groups exhibited reduced plasma inflammatory and fibrotic markers and revealed as well ameliorated extracellular matrix remodeling and interstitial inflammation by a downregulated p38 pathway. Myocardia from PC‐treated middle‐aged rats presented less fibrosis with suppression of profibrotic transforming growth factor‐ß1 (TGF‐ß1) Smad pathway. Additionally, reduction of apoptosis and oxidative damage in the PC‐treated groups was reflected by elevated antioxidant enzymes and reduced RNA/DNA damage markers. Our findings pinpoint that a daily consumption of phenolic compounds could preserve the heart from the detrimental effects of aging storm.  相似文献   

16.
Increased cardiovascular disease in aging is partly a consequence of the vascular endothelial cell (EC) senescence and associated vascular dysfunction. In this contest, EC senescence is a pathophysiological process of structural and functional changes including dysregulation of vascular tone, increased endothelium permeability, arterial stiffness, impairment of angiogenesis and vascular repair, and a reduction of EC mitochondrial biogenesis. Dysregulation of cell cycle, oxidative stress, altered calcium signaling, hyperuricemia, and vascular inflammation have been implicated in the development and progression of EC senescence and vascular disease in aging. A number of abnormal molecular pathways are associated with these underlying pathophysiological changes including Sirtuin 1, Klotho, fibroblast growth factor 21, and activation of the renin angiotensin-aldosterone system. However, the molecular mechanisms of EC senescence and associated vascular impairment in aging are not completely understood. This review provides a contemporary update on molecular mechanisms, pathophysiological events, as well functional changes in EC senescence and age-associated cardiovascular disease. This article is part of a Special Issue entitled: Genetic and epigenetic regulation of aging and longevity edited by Jun Ren & Megan Yingmei Zhang.  相似文献   

17.
Cellular senescence is a typical tumor‐suppressive mechanism that restricts the proliferation of premalignant cells. However, mounting evidence suggests that senescent cells, which also persist in vivo, can promote the incidence of aging‐related disorders principally via the senescence‐associated secretory phenotype (SASP), among which cancer is particularly devastating. Despite the beneficial effects of the SASP on certain physiological events such as wound healing and tissue repair, more studies have demonstrated that senescent cells can substantially contribute to pathological conditions and accelerate disease exacerbation, particularly cancer resistance, relapse and metastasis. To limit the detrimental properties while retaining the beneficial aspects of senescent cells, research advancements that support screening, design and optimization of anti‐aging therapeutic agents are in rapid progress in the setting of prospective development of clinical strategies, which together represent a new wave of efforts to control human malignancies or mitigate degenerative complications.  相似文献   

18.
19.
20.
Aging is an independent risk factor for cardiovascular diseases and therefore of particular interest for the prevention of cardiovascular events. However, the mechanisms underlying vascular aging are not well understood. Since carcinoembryonic antigen‐related cell adhesion molecule 1 (CEACAM1) is crucially involved in vascular homeostasis, we sought to identify the role of CEACAM1 in vascular aging. Using human internal thoracic artery and murine aorta, we show that CEACAM1 is upregulated in the course of vascular aging. Further analyses demonstrated that TNF‐α is CEACAM1‐dependently upregulated in the aging vasculature. Vice versa, TNF‐α induces CEACAM1 expression. This results in a feed‐forward loop in the aging vasculature that maintains a chronic pro‐inflammatory milieu. Furthermore, we demonstrate that age‐associated vascular alterations, that is, increased oxidative stress and vascular fibrosis, due to increased medial collagen deposition crucially depend on the presence of CEACAM1. Additionally, age‐dependent upregulation of vascular CEACAM1 expression contributes to endothelial barrier impairment, putatively via increased VEGF/VEGFR‐2 signaling. Consequently, aging‐related upregulation of vascular CEACAM1 expression results in endothelial dysfunction that may promote atherosclerotic plaque formation in the presence of additional risk factors. Our data suggest that CEACAM1 might represent an attractive target in order to delay physiological aging and therefore the transition to vascular disorders such as atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号