首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Gaining meaningful insights into bacterial communities associated with animal hosts requires the provision of high-quality nucleic acids. Although many studies have compared DNA extraction methods for samples with low bacterial biomass (e.g. water) or specific PCR inhibitors (e.g. plants), DNA extraction bias in samples without inherent technical constraint (e.g. animal samples) has received little attention. Furthermore, there is an urgent need to identify a DNA extraction methods in a high-throughput format that decreases the cost and time for processing large numbers of samples. We here evaluated five DNA extraction protocols, using silica membrane-based spin columns and a 96-well microplate format and based on either mechanical or enzymatic lysis or a combination of both, using three bacterial mock communities and Illumina sequencing of the V4 region of the 16SrRNA gene. Our results showed that none of the DNA extraction methods fully eliminated bias associated with unequal lysis efficiencies. However, we identified a DNA extraction method with a lower bias for each mock community standard. Of these methods, those including an enzymatic lysis showed biases specific to some bacteria. Altogether, these results again demonstrate the importance of DNA extraction standardization to be able to compare the microbiome results of different samples. In this attempt, we advise for the use of the 96-well DNeasy Blood and Tissue kit (Qiagen) with a zirconia bead-beating procedure, which optimizes altogether the cost, handling time and bacteria-specific effects associated with enzymatic lysis.  相似文献   

2.
本研究通过环境DNA(eDNA)技术的样品采集及DNA提取方法,采用微滴式数字PCR(ddPCR)技术检测了长江干流宜昌江段不同水层、不同断面四大家鱼的eDNA浓度,分析了eDNA浓度变化与卵苗密度的关系,探讨了利用eDNA技术监测四大家鱼自然繁殖情况的可行性。结果表明: 与传统调查结果相比,四大家鱼的eDNA浓度与卵苗密度呈极显著相关,浓度最大值与卵苗峰值的出现时间较为一致,利用eDNA技术可以预判家鱼集群产卵行为的发生。连续两年的断面eDNA浓度检测认为,渔洋溪上游4.5 km和下游1 km为家鱼产卵场。该范围位于传统方法预估的胭脂坝下至红花套的产卵场范围内。这说明eDNA技术作为一种新兴的生态调查方法,可更为准确地判定有一定种群规模的鱼种的分布情况,因此具有很好的应用前景。  相似文献   

3.
Investigation of seasonal variation in fungal communities is essential for understanding biodiversity and ecosystem functions. However, the conventional sampling method, with substrate removal and high spatial heterogeneity of community composition, makes surveying the seasonality of fungal communities challenging. Recently, water environmental DNA (eDNA) analysis has been explored for its utility in biodiversity surveys. In this study, we assessed whether the seasonality of fungal communities can be detected by monitoring eDNA in a forest stream. We conducted monthly water sampling in a forest stream over 2 years and used DNA metabarcoding to identify fungal eDNA. The stream water contained DNA from functionally diverse aquatic and terrestrial fungi, such as plant decomposers, parasites and mutualists. The variation in the fungal assemblage showed a regular annual periodicity, meaning that the assemblages in a given season were similar, irrespective of the year or sampling. Furthermore, the strength of the annual periodicity varied among functional groups. Our results suggest that forest streams may act as a ‘trap’ for terrestrial fungal DNA derived from different habitats, allowing the analysis of fungal DNA in stream water to provide information about the temporal variation in fungal communities in both the aquatic and the surrounding terrestrial ecosystems.  相似文献   

4.
Stygofauna are aquatic fauna that have evolved to live underground. The impacts of anthropogenic climate change, extraction and pollution on groundwater pose major threats to groundwater health, prompting the need for efficient and reliable means to detect and monitor stygofaunal communities. Conventional survey techniques for these species rely on morphological identification and can be biased, labour-intensive and often indeterminate to lower taxonomic levels. By contrast, environmental DNA (eDNA)-based methods have the potential to dramatically improve on existing stygofaunal survey methods in a large range of habitats and for all life stages, reducing the need for the destructive manual collection of often critically endangered species or for specialized taxonomic expertise. We compared eDNA and haul-net samples collected in 2020 and 2021 from 19 groundwater bores and a cave on Barrow Island, northwest Western Australia, and assessed how sampling factors influenced the quality of eDNA detection of stygofauna. The two detection methods were complementary; eDNA metabarcoding was able to detect soft-bodied taxa and fish often missed by nets, but only detected seven of the nine stygofaunal crustacean orders identified from haul-net specimens. Our results also indicated that eDNA metabarcoding could detect 54%–100% of stygofauna from shallow-water samples and 82%–90% from sediment samples. However, there was significant variation in stygofaunal diversity between sample years and sampling types. The findings of this study demonstrate that haul-net sampling has a tendency to underestimate stygofaunal diversity and that eDNA metabarcoding of groundwater can substantially improve the efficiency of stygofaunal surveys.  相似文献   

5.
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long‐term gill‐net data set available in the UK. Seventy‐eight 2L water samples were collected along depth profile transects, gill‐net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill‐net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods.  相似文献   

6.
Estimating species richness using environmental DNA   总被引:1,自引:0,他引:1       下载免费PDF全文
The foundation for any ecological study and for the effective management of biodiversity in natural systems requires knowing what species are present in an ecosystem. We assessed fish communities in a stream using two methods, depletion‐based electrofishing and environmental DNA metabarcoding (eDNA) from water samples, to test the hypothesis that eDNA provides an alternative means of determining species richness and species identities for a natural ecosystem. In a northern Indiana stream, electrofishing yielded a direct estimate of 12 species and a mean estimated richness (Chao II estimator) of 16.6 species with a 95% confidence interval from 12.8 to 42.2. eDNA sampling detected an additional four species, congruent with the mean Chao II estimate from electrofishing. This increased detection rate for fish species between methods suggests that eDNA sampling can enhance estimation of fish fauna in flowing waters while having minimal sampling impacts on fish and their habitat. Modern genetic approaches therefore have the potential to transform our ability to build a more complete list of species for ecological investigations and inform management of aquatic ecosystems.  相似文献   

7.
Environmental DNA (eDNA) analysis is increasingly used for biomonitoring and research of fish populations and communities by environmental resource managers and academic researchers. Although managers are much interested in expanding the use of eDNA as a survey technique, they are sceptical about both its utility (given that information is often limited to presence/absence of a species) and feasibility (given the need for proper laboratory facilities for sample processing). Nonetheless, under the right circumstances, eDNA analysis is cost-effective compared to many traditional aquatic survey methods and does not disturb habitat or harm the animals being surveyed. This article presents a case study in which eDNA analysis was successfully used to document the presence of a rare fish species in a waterway earmarked for restoration. The authors discuss the conditions that allowed this study to occur quickly and smoothly and speculate on how the goals of researchers and managers can be integrated for efficient and informative use of this tool.  相似文献   

8.
In this article, we describe ednaoccupancy , an r package for fitting Bayesian, multiscale occupancy models. These models are appropriate for occupancy surveys that include three nested levels of sampling: primary sample units within a study area, secondary sample units collected from each primary unit and replicates of each secondary sample unit. This design is commonly used in occupancy surveys of environmental DNA (eDNA). ednaoccupancy allows users to specify and fit multiscale occupancy models with or without covariates, to estimate posterior summaries of occurrence and detection probabilities, and to compare different models using Bayesian model‐selection criteria. We illustrate these features by analysing two published data sets: eDNA surveys of a fungal pathogen of amphibians and eDNA surveys of an endangered fish species.  相似文献   

9.
Terrestrial arthropods comprise the most species‐rich communities on Earth, and grassland flowers provide resources for hundreds of thousands of arthropod species. Diverse grassland ecosystems worldwide are threatened by various types of environmental change, which has led to decline in arthropod diversity. At the same time, monitoring grassland arthropod diversity is time‐consuming and strictly dependent on declining taxonomic expertise. Environmental DNA (eDNA) metabarcoding of complex samples has demonstrated that information on species compositions can be efficiently and non‐invasively obtained. Here, we test the potential of wild flowers as a novel source of arthropod eDNA. We performed eDNA metabarcoding of flowers from several different plant species using two sets of generic primers, targeting the mitochondrial genes 16S rRNA and COI. Our results show that terrestrial arthropod species leave traces of DNA on the flowers that they interact with. We obtained eDNA from at least 135 arthropod species in 67 families and 14 orders, together representing diverse ecological groups including pollinators, parasitoids, gall inducers, predators, and phytophagous species. Arthropod communities clustered together according to plant species. Our data also indicate that this experiment was not exhaustive, and that an even higher arthropod richness could be obtained using this eDNA approach. Overall, our results demonstrate that it is possible to obtain information on diverse communities of insects and other terrestrial arthropods from eDNA metabarcoding of wild flowers. This novel source of eDNA represents a vast potential for addressing fundamental research questions in ecology, obtaining data on cryptic and unknown species of plant‐associated arthropods, as well as applied research on pest management or conservation of endangered species such as wild pollinators.  相似文献   

10.
Environmental DNA (eDNA) metabarcoding provides an efficient approach for documenting biodiversity patterns in marine and terrestrial ecosystems. The complexity of these data prevents current methods from extracting and analyzing all the relevant ecological information they contain, and new methods may provide better dimensionality reduction and clustering. Here we present two new deep learning-based methods that combine different types of neural networks (NNs) to ordinate eDNA samples and visualize ecosystem properties in a two-dimensional space: the first is based on variational autoencoders and the second on deep metric learning. The strength of our new methods lies in the combination of two inputs: the number of sequences found for each molecular operational taxonomic unit (MOTU) detected and their corresponding nucleotide sequence. Using three different datasets, we show that our methods accurately represent several biodiversity indicators in a two-dimensional latent space: MOTU richness per sample, sequence α-diversity per sample, Jaccard's and sequence β-diversity between samples. We show that our nonlinear methods are better at extracting features from eDNA datasets while avoiding the major biases associated with eDNA. Our methods outperform traditional dimension reduction methods such as Principal Component Analysis, t-distributed Stochastic Neighbour Embedding, Nonmetric Multidimensional Scaling and Uniform Manifold Approximation and Projection for dimension reduction. Our results suggest that NNs provide a more efficient way of extracting structure from eDNA metabarcoding data, thereby improving their ecological interpretation and thus biodiversity monitoring.  相似文献   

11.
Fruiting bodies of fungi constitute an important resource for thousands of other taxa. The structure of these diverse assemblages has traditionally been studied with labour‐intensive methods involving cultivation and morphology‐based species identification, to which molecular information might offer convenient complements. To overcome challenges in DNA extraction and PCR associated with the complex chemical properties of fruiting bodies, we developed a pipeline applicable for extracting amplifiable total DNA from soft fungal samples of any size. Our protocol purifies DNA in two sequential steps: (a) initial salt–isopropanol extraction of all nucleic acids in the sample is followed by (b) an extra clean‐up step using solid‐phase reversible immobilization (SPRI) magnetic beads. The protocol proved highly efficient, with practically all of our samples—regardless of biomass or other properties—being successfully PCR‐amplified using metabarcoding primers and subsequently sequenced. As a proof of concept, we apply our methods to address a topical ecological question: is host specificity a major characteristic of fungus‐associated communities, that is, do different fungus species harbour different communities of associated organisms? Based on an analysis of 312 fungal fruiting bodies representing 10 species in five genera from three orders, we show that molecular methods are suitable for studying this rich natural microcosm. Comparing to previous knowledge based on rearing and morphology‐based identifications, we find a species‐rich assemblage characterized by a low degree of host specialization. Our method opens up new horizons for molecular analyses of fungus‐associated interaction webs and communities. Fruiting bodies of fungi constitute an important resource for thousands of other taxa. The structure of these diverse assemblages has traditionally been studied with labour‐intensive methods involving cultivation and morphology‐based species identification, to which molecular information might offer convenient complements. To overcome challenges in DNA extraction and PCR associated with the complex chemical properties of fruiting bodies, we developed a pipeline applicable for extracting amplifiable total DNA from soft fungal samples of any size. Our protocol purifies DNA in two sequential steps: (a) initial salt–isopropanol extraction of all nucleic acids in the sample is followed by (b) an extra clean‐up step using solid‐phase reversible immobilization (SPRI) magnetic beads. The protocol proved highly efficient, with practically all of our samples—regardless of biomass or other properties—being successfully PCR‐amplified using metabarcoding primers and subsequently sequenced. As a proof of concept, we apply our methods to address a topical ecological question: is host specificity a major characteristic of fungus‐associated communities, that is, do different fungus species harbour different communities of associated organisms? Based on an analysis of 312 fungal fruiting bodies representing 10 species in five genera from three orders, we show that molecular methods are suitable for studying this rich natural microcosm. Comparing to previous knowledge based on rearing and morphology‐based identifications, we find a species‐rich assemblage characterized by a low degree of host specialization. Our method opens up new horizons for molecular analyses of fungus‐associated interaction webs and communities.  相似文献   

12.
Current methods for monitoring marine fish (including bony fishes and elasmobranchs) diversity mostly rely on trawling surveys, which are invasive, costly, and time‐consuming. Moreover, these methods are selective, targeting a subset of species at the time, and can be inaccessible to certain areas. Here, we used environmental DNA (eDNA), the DNA present in the water column as part of shed cells, tissues, or mucus, to provide comprehensive information about fish diversity in a large marine area. Further, eDNA results were compared to the fish diversity obtained in pelagic trawls. A total of 44 5 L‐water samples were collected onboard a wide‐scale oceanographic survey covering about 120,000 square kilometers in Northeast Atlantic Ocean. A short region of the 12S rRNA gene was amplified and sequenced through metabarcoding generating almost 3.5 million quality‐filtered reads. Trawl and eDNA samples resulted in the same most abundant species (European anchovy, European pilchard, Atlantic mackerel, and blue whiting), but eDNA metabarcoding resulted in more detected bony fish and elasmobranch species (116) than trawling (16). Although an overall correlation between fishes biomass and number of reads was observed, some species deviated from the common trend, which could be explained by inherent biases of each of the methods. Species distribution patterns inferred from eDNA metabarcoding data coincided with current ecological knowledge of the species, suggesting that eDNA has the potential to draw sound ecological conclusions that can contribute to fish surveillance programs. Our results support eDNA metabarcoding for broad‐scale marine fish diversity monitoring in the context of Directives such as the Common Fisheries Policy or the Marine Strategy Framework Directive.  相似文献   

13.
The effectiveness and accuracy of detection using environmental DNA (eDNA) is dependent on understanding the influence laboratory methods such as DNA extraction and PCR strategies have on detection probability. Ideally choice of sampling and extraction method will maximize eDNA yield and detection probability. Determining the survey effort required to reach a satisfactory detection probability (via increased PCR replicates or more sampling) could compensate for a lower eDNA yield if the sampling and extraction method has other advantages for a study, species or system. I analysed the effect of three different sampling and extraction methods on eDNA yield, detection probability and PCR replication for detecting the endangered freshwater fish Macquaria australasica from water samples. The impact of eDNA concentration, PCR strategy, target amplicon size and two marker regions: 12S (a mitochondrial gene) and 18S (a nuclear gene) was also assessed. The choice of sampling and extraction method and PCR strategy, rather than amplicon size and marker region, had the biggest effect on detection probability and PCR replication. The PCR replication effort required to achieve a detection probability of 0.95, ranged from 2 to 6 PCR replicates depending on the laboratory method used. As all methods yielded eDNA from which M. australasica was detected using the three target amplicons, differences in eDNA yield and detection probability between the three methods could be mitigated by determining the appropriate PCR replication effort. Evaluating the effect sampling and extraction methods will have on the detection probability and determining the laboratory protocols and PCR replication required to maximize detection and minimize false positives and negatives is a useful first step for eDNA occupancy studies.  相似文献   

14.
Biological diversities of multiple kingdoms potentially respond in similar ways to environmental changes. However, studies either compare details of microbial diversity across general vegetation or land use classes or relate details of plant community diversity with the extent of microbially governed soil processes, via physiological profiling. Here, we test the hypothesis of shared responses of plant and rhizosphere bacterial, fungal and metazoan biodiversities (especially across‐habitat β‐diversity patterns) along a disturbance gradient encompassing grazed to abandoned Alpine pasture, on acid soil in the European Central Alps. Rhizosphere biological diversity was inferred from eDNA fractions specific to bacteria, fungi and metazoans from contrasting plant habitats indicative of different disturbance levels. We found that soil β‐diversity patterns were weakly correlated with plant diversity measures and similarly ordinated along an evident edaphic (pH, C:N, assimilable P) and disturbance gradient but, contrary to our hypothesis, did not demonstrate the same diversity patterns. While plant communities were well separated along the disturbance gradient, correlating with fungal diversity, the majority of bacterial taxa were shared between disturbance levels (75% of bacteria were ubiquitous, cf. 29% plant species). Metazoa exhibited an intermediate response, with communities at the lowest levels of disturbance partially overlapping. Thus, plant and soil biological diversities were only loosely dependent and did not exhibit strictly linked environmental responses. This probably reflects the different spatial scales of organisms (and their habitats) and capacity to invest resources in persistent multicellular tissues, suggesting that vegetation responses to environmental change are unreliable indicators of below‐ground biodiversity responses.  相似文献   

15.
16.
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High‐throughput sequencing (“HTS”) platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed “environmental DNA” or “eDNA”). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called “eDNA metabarcoding” and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.  相似文献   

17.
Metabarcoding is often presented as an alternative identification tool to compensate for coarse taxonomic resolution and misidentification encountered with traditional morphological approaches. However, metabarcoding comes with two major impediments which slow down its adoption. First, the picking and destruction of organisms for DNA extraction are time and cost consuming and do not allow organism conservation for further evaluations. Second, current metabarcoding protocols include a PCR enrichment step which induces errors in the estimation of species diversity and relative biomasses. In this study, we first evaluated the capacity of capture enrichment to replace PCR enrichment using controlled freshwater macrozoobenthos mock communities. Then, we tested if DNA extracted from the fixative ethanol (etDNA) of the same mock communities can be used as an alternative to DNA extracted from pools of whole organisms (bulk DNA). We show that capture enrichment provides more reliable and accurate representation of species occurrences and relative biomasses in comparison with PCR enrichment for bulk DNA. While etDNA does not permit to estimate relative biomasses, etDNA and bulk DNA provide equivalent species detection rates. Thanks to its robustness to mismatches, capture enrichment is already an efficient alternative to PCR enrichment for metabarcoding and, if coupled to etDNA, is a time‐saver option in studies where presence information only is sufficient.  相似文献   

18.
AIM: As a prelude to long-term studies to characterize the microbiota of the turkey ceca, 14 DNA isolation protocols were evaluated for their ability to reproducibly characterize microbial diversity. METHODS AND RESULTS: Eight commercially available DNA extraction kits were assessed. DNA quantity and quality were assessed and competitive PCR was used to quantify the 16S bacterial rRNA genes. The Invitrogen Easy-DNA Kit extraction method for large samples yielded over eight times more DNA than any other method (3144 +/- 873 microg g(-1) of sample, P < 0.05). Bacterial and fungal species richness was estimated by Automated Ribosomal Intergenic Spacer Analysis. The Invitrogen Easy-DNA Kit generated the greatest bacterial species richness (46 +/- 7 peaks) while Bio-Rad Aquapure yielded the highest fungal species richness (71 +/- 9.5 peaks). CONCLUSION: Cluster analysis indicated different DNA extraction methods generated different microbial community compositions using the same cecal matrix from a single donor bird. SIGNIFICANCE AND IMPACT OF THE STUDY: Optimized DNA extraction protocols Invitrogen Easy-DNA Kit extraction method for large samples and Bio-Rad Aquapure outperform other methods for extraction of DNA from poultry fecal samples, although these methods do not necessarily recover all available DNA. They will be used in future studies to monitor the dynamics of microbial communities of the avian ceca.  相似文献   

19.
A large part of the soil protist diversity is missed in metabarcoding studies based on 0.25 g of soil environmental DNA (eDNA) and universal primers due to ca. 80% co-amplification of non-target plants, animals and fungi. To overcome this problem, enrichment of the substrate used for eDNA extraction is an easily implemented option but its effect has not yet been tested. In this study, we evaluated the effect of a 150 μm mesh size filtration and sedimentation method to improve the recovery of protist eDNA, while reducing the co-extraction of plant, animal and fungal eDNA, using a set of contrasted forest and alpine soils from La Réunion, Japan, Spain and Switzerland. Total eukaryotic diversity was estimated by V4 18S rRNA metabarcoding and classical amplicon sequence variant calling. A 2- to 3-fold enrichment in shelled protists (Euglyphida, Arcellinida and Chrysophyceae) was observed at the sample level with the proposed method, with, at the same time, a 2-fold depletion of Fungi and a 3-fold depletion of Embryophyceae. Protist alpha diversity was slightly lower in filtered samples due to reduced coverage in Variosea and Sarcomonadea, but significant differences were observed in only one region. Beta diversity varied mostly between regions and habitats, which explained the same proportion of variance in bulk soil and filtered samples. The increased resolution in soil protist diversity estimates provided by the filtration-sedimentation method is a strong argument in favour of including it in the standard protocol for soil protist eDNA metabarcoding studies.  相似文献   

20.
Archives and libraries all over the world suffer from biodeterioration of writings caused by microorganisms, especially fungi. With traditionally used culture-dependent methods, only a small amount of effectively colonising organisms is detected. Restoration and maintenance of written cultural heritage is therefore problematic due to incomplete knowledge of the deterioration agents.In the present study, culture-independent molecular methods were applied to identify fungal communities colonising paper samples of different composition and age. Nucleic-acid-based strategies targeting the internally transcribed spacer (ITS) regions, which are nested in the nuclear rDNA repeats, were selected to investigate the fungal diversity on paper. The ITS regions possess a high variation among taxonomically distinct fungal species and even within the species.With this aim, several molecular biological methods were optimised for working with paper materials. Here, we introduce a DNA extraction protocol, which allowed the direct extraction of PCR-amplifiable DNA from samples derived from different kinds of paper. The DNA extracts were used to amplify either the ITS1 or ITS2 region by using different fungi-specific primer sets. The ITS-amplified regions were subsequently analysed by denaturing gradient gel electrophoresis (DGGE). Conditions for DGGE analysis, gradient, voltage, and running time, were established to accurately discriminate different fungal species in complex communities. Pure fungal strains were used to constitute a marker for further comparative investigations of historic papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号