首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of p57(KIP2) gene mutation in Beckwith-Wiedemann syndrome   总被引:4,自引:0,他引:4  
Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder involving developmental anomalies, tissue and organ hyperplasia and an increased risk of embryonic tumours (most commonly Wilms' tumour). This multigenic disorder is caused by dysregulation of the expression of imprinted genes in the 11p15 chromosomal region. It may involve paternal uniparental disomy (UPD), loss of imprinting of the IGF2 gene, maternal inherited translocations and trisomy with paternal duplication. Recently, a small proportion of BWS patients has been shown to have a mutation in the paternal imprinted p57(KIP2) gene, which encodes a cyclin-dependent kinase inhibitor and negatively regulates cell proliferation. We screened for p57(KIP2) gene mutations in 21 BWS patients with no 11p15 UPD in leucocyte DNA. All patients had a phenotype typical of BWS. We analysed the entire coding sequence of p57(KIP2), including intron-exon boundaries, by direct sequencing of five PCR-amplified fragments. No mutation was found in the p57(KIP2) gene. Our results are consistent with those of previous studies showing that mutation of p57(KIP2) is infrequent in BWS. Thus, other mechanisms of p57(KIP2) silencing (imprinting errors) and/or other 11p15 genes are probably involved in the pathogenesis of BWS.  相似文献   

2.
To clarify the chromatin-based imprinting mechanism of the p57(KIP2)/LIT1 subdomain at chromosome 11p15.5 and the mouse ortholog at chromosome 7F5, we investigated the histone-modification status at a differentially CpG methylated region of Lit1/LIT1 (DMR-Lit1/LIT1), which is an imprinting control region for the subdomain and is demethylated in half of patients with Beckwith-Wiedemann syndrome (BWS). Chromatin-immunoprecipitation assays revealed that, in both species, DMR-Lit1/LIT1 with the CpG-methylated, maternally derived inactive allele showed histone H3 Lys9 methylation, whereas the CpG-unmethylated, paternally active allele was acetylated on histone H3/H4 and methylated on H3 Lys4. We have also investigated the relationship between CpG methylation and histone H3 Lys9 methylation at DMR-LIT1 in patients with BWS. In a normal individual and in patients with BWS with normal DMR-LIT1 methylation, histone H3 Lys9 methylation was detected on the maternal allele; however, it disappeared completely in the patients with the DMR-LIT1 imprinting defect. These findings suggest that the histone-modification status at DMR-Lit1/LIT1 plays an important role in imprinting control within the subdomain and that loss of histone H3 Lys9 methylation, together with CpG demethylation on the maternal allele, may lead to the BWS phenotype.  相似文献   

3.
The Beckwith-Wiedemann syndrome (BWS) is marked by fetal organ overgrowth and conveys a predisposition to certain childhood tumors, including Wilms tumor (WT). The genetics of BWS have implicated a gene that maps to chromosome 11p15 and is paternally imprinted, and the gene encoding the cyclin-cdk inhibitor p57KIP2 has been a strong candidate. By complete sequencing of the coding exons and intron/exon junctions, we found a maternally transmitted coding mutation in the cdk-inhibitor domain of the KIP2 gene in one of five cases of BWS. The BWS mutation was an in-frame three-amino-acid deletion that significantly reduced but did not fully abrogate growth-suppressive activity in a transfection assay. In contrast, no somatic coding mutations in KIP2 were found in a set of 12 primary WTs enriched for cases that expressed KIP2 mRNA, including cases with and without 11p15.5 loss of heterozygosity. Two other 11p15.5 loci, the linked and oppositely imprinted H19 and IGF2 genes, have been previously implicated in WT pathogenesis, and several of the tumors with persistent KIP2 mRNA expression and absence of KIP2 coding mutations showed full inactivation of H19. These data suggest that KIP2 is a BWS gene but that it is not uniquely equivalent to the 11p15.5 "WT2" tumor-suppressor locus.  相似文献   

4.
5.
Low frequency of p57KIP2 mutation in Beckwith-Wiedemann syndrome.   总被引:9,自引:0,他引:9       下载免费PDF全文
Beckwith-Wiedemann syndrome (BWS) is an autosomal dominant disorder of increased prenatal growth and predisposition to embryonal cancers such as Wilms tumor. BWS is thought to involve one or more imprinted genes, since some patients show paternal uniparental disomy, and others show balanced germ-line chromosomal rearrangements involving the maternal chromosome. We previously mapped BWS, by genetic linkage analysis, to 11p15.5, which we and others also found to contain several imprinted genes; these include the gene for insulin-like growth factor II (IGF2) and H19, which show abnormal imprint-specific expression and/or methylation in 20% of BWS patients, and p57KIP2, a cyclin-dependent kinase inhibitor, which we found showed biallelic expression in one of nine BWS patients studied. In addition, p57KIP2 was recently reported to show mutations in two of nine BWS patients. We have now analyzed the entire coding sequence and intron-exon boundaries of p57KIP2 in 40 unrelated BWS patients. Of these patients, only two (5%) showed mutations, both involving frameshifts in the second exon. In one case, the mutation was transmitted to the proband's mother, who was also affected, from the maternal grandfather, suggesting that p57KIP2 is not imprinted in at least some affected tissues at a critical stage of development and that haploinsufficiency due to mutation of either parental allele may cause at least some features of BWS. The low frequency of p57KIP2 mutations, as well as our recent discovery of disruption of the K(v)LQT1 gene in patients with chromosomal rearrangements, suggest that BWS can involve disruption of multiple independent 11p15.5 genes.  相似文献   

6.
Beckwith-Wiedeman syndrome (BWS) and Klippel-Trenaunay-Weber syndrome (KTWS) are different human disorders characterized, among other features, by tissue overgrowth. Deregulation of one or more imprinted genes located at chromosome 11p15.5, of which insulin-like growth factor 2 (IGF2) is the most likely candidate, is believed to cause BWS, whereas the etiology of KTWS is completely obscure. We report a case of BWS and a case of KTWS in a single family. The probands, sons of two sisters, showed relaxation of the maternal IGF2 imprinting, although they inherited different 11p15.5 alleles from their mothers and did not show any chromosome rearrangement. The patient with BWS also displayed hypomethylation at KvDMR1, a maternally methylated CpG island within an intron of the KvLQT1 gene. The unaffected brother of the BWS proband shared the same maternal and paternal 11p15.5 haplotype with his brother, but the KvDMR1 locus was normally methylated. Methylation of the H19 gene was normal in both the BWS and KTWS probands. Linkage between the insulin-like growth factor 2 receptor (IGF2R) gene and the tissue overgrowth was also excluded. These results raise the possibility that a defective modifier or regulatory gene unlinked to 11p15.5 caused a spectrum of epigenetic alterations in the germ line or early development of both cousins, ranging from the relaxation of IGF2 imprinting in the KTWS proband to disruption of both the imprinted expression of IGF2 and the imprinted methylation of KvDMR1 in the BWS proband. Analysis of these data also indicates that loss of IGF2 imprinting is not necessarily linked to alteration of methylation at the KvDMR1 or H19 loci and supports the notion that IGF2 overexpression is involved in the etiology of the tissue hypertrophy observed in different overgrowth disorders, including KTWS.  相似文献   

7.
Human chromosomal region 11p15.5, which is homologous to mouse chromosome region 7F5, is a well-known imprinted region. The CDKN1C/KCNQ1OT1 imprinted domain, which is one of two imprinted domains at 11p15.5, includes nine imprinted genes regulated by an imprinting center (IC). The CDKN1C/KCNQ1OT1 IC is a differentially methylated region of KCNQ1OT1(KCNQ1OT-DMR) with DNA methylation on the maternal allele and no methylation on the paternal allele. CDKN1C (alias p57KIP2), an imprinted gene with maternal expression, encoding a cyclin-dependent kinase inhibitor, is a critical gene within the CDKN1C/KCNQ1OT1 domain. In Beckwith-Wiedemann syndrome (BWS), approximately 50% of patients show loss of DNA methylation accompanied by loss of histone H3 Lys9 dimethylation on maternal KCNQ1OT-DMR, namely an imprinting disruption, leading to diminished expression of CDKN1C. In cancer, at least three molecular mechanisms--imprinting disruption, aberrant DNA methylations at the CDKN1C promoter, and loss of heterozygosity (LOH) of the maternal allele--are seen and all three result in diminished expression of CDKN1C. Imprinting disruption of the CDKN1C/KCNQ1OT1 domain is involved in the development of both BWS and cancer and it changes the maternal epigenotype to the paternal type, leading to diminished CDKN1C expression. In this review, we describe recent advances in epigenetic control of the CDKN1C/KCNQ1OT1 imprinted domain in both humans and mice.  相似文献   

8.
Beckwith-Wiedemann syndrome (BWS) is characterized by numerous growth abnormalities and an increased risk of childhood tumors. The gene for BWS is localized in the 11p15.5 region, as determined by linkage analysis of autosomal dominant pedigrees. The increased maternal transmission pattern seen in the autosomal dominant-type pedigrees and the findings of paternal uniparental disomy reported for a subgroup of patients indicate that the gene for BWS is imprinted. Previously, we found p57 KIP2 , which is a Cdk-kinase inhibitor located at 11p15, is mutated in two BWS patients. Here, we screened for the mutation of the gene in 15 BWS patients. Received: 25 March 1997 / Accepted: 22 May 1997  相似文献   

9.
10.
Summary Aim: To compare the expression of p57 as indirect marker of genomic imprinting of CDKN1C in a series of infantile hemangiomas (IH) of patients with and without Beckwith–Wiedemann syndrome. Materials and methods: Cases of mammary, salivary gland, liver (one each), and placental (2 cases) capillary hemangiomas all with histological features akin to IH as well as typical examples of cutaneous (8 cases) IH were analyzed by immunohistochemistry with antibody against p57KIP2. This protein is the product of CDKN1C an imprinted, maternally expressed gene. The liver hemangioma and both chorioangiomas were from patients with Beckwith–Wiedemann syndrome. Positive and negative controls included normal placental tissue and complete hydatidiform mole, respectively. Positive staining was localized to nuclei. Results: Endothelial cells from the skin, breast and salivary gland hemangiomas were p57KIP2 positive while chorioangiomas and liver IH presenting in patients with Beckwith–Wiedemann syndrome were negative. Controls reacted appropriately. Conclusions: Endothelial cells of IH not associated with BWS normally express p57KIP2 while chorioangiomas and IH of the liver associated with BWS do not. These results suggest that the BWS IH may result from dysregulation of the cell cycle.  相似文献   

11.
Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder resulting from dysregulation of multiple imprinted genes through a variety of distinct mechanisms. A frequent alteration in BWS involves changes in the imprinting status of the coordinately regulated IGF2 and H19 genes on 11p15. Patients have been categorized according to alterations in the imprinted expression, allele-specific methylation, and regional replication timing of these genes. In this work, IGF2/H19 expression, H19 DNA methylation, and IGF2 regional replication timing were studied in nine karyotypically normal BWS fibroblasts and two BWS patients with maternally inherited 11p15 chromosomal rearrangements. Informative patients (9/9) maintained normal monoallelic H19 expression/methylation, despite biallelic IGF2 expression in 6/9. Replication timing studies revealed no changes in the pattern of asynchronous replication timing for both a patient with biallelic IGF2 expression and a patient carrying an 11p15 inversion. In contrast, a patient with a chromosome 11;22 translocation and normal H19 expression/methylation exhibited partial loss of asynchrony and a shift toward earlier replication times. These results indicate that in BWS, (1) H19 imprinting alterations are less frequent than previously estimated, (2) IGF2 imprinting and H19 imprinting are not necessarily coordinated, and (3) alterations in regional replication timing are generally not correlated with either chromosomal rearrangements or the imprinting status of IGF2 and H19.  相似文献   

12.
p57 KIP2 is a potent tight-binding inhibitor of several G1 cyclin/cyclin-dependent kinase (Cdk) complexes, and is a negative regulator of cell proliferation. The gene encoding p57 KIP2 is located at 11p15.5, a region implicated in both sporadic cancers and Beckwith-Wiedemann syndrome (BWS). Previously we demonstrated that p57 KIP2 is imprinted and only the maternal allele is expressed in both mice and humans. We also showed mutations found in p57 KIP2 in patients with BWS that were transmitted from the patients’ carrier mothers, indicating that the expressed maternal allele was mutant and that the repressed paternal allele was normal. In the study reported here, we performed functional analysis of the two mutated p57 KIP2 genes. We showed that the nonsense mutation found in the Cdk inhibitory domain in a BWS patient rendered the protein inactive with consequent complete loss of its role as a cell cycle inhibitor and of its nuclear localization. We also showed that the mutation in the QT domain, although completely retaining its cell cycle regulatory activity, lacked nuclear localization and was thus prevented from performing its role as an active cell cycle inhibitor. Consequently, no active p57 KIP2 would have existed, which might have caused the disorders in BWS patients. Received: 7 November 1998 / Accepted: 19 December 1998  相似文献   

13.
Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder characterized by somatic overgrowth, congenital malformations, and predisposition to childhood tumors. Aberrant expression of multiple imprinted genes, including H19, IGF2, KCNQ1OT1, and CDKN1C, has been observed in BWS patients. It has been estimated that mutations in CDKN1C occur in 12-17% of BWS patients. We have screened 10 autosomal dominant pedigrees and 65 sporadic BWS cases by PCR/heteroduplex analysis and DNA sequencing and have identified four mutations, two of which were associated with biallelic IGF2 expression and normal H19 and KCNQ1OT1 imprinting. One patient demonstrated phenotypic expression of paternally transmitted mutation in this maternally expressed gene, a second proband is the child of one of a pair of monozygotic twin females who carry the mutation de novo, and a third patient exhibited unusual skeletal changes more commonly found in other overgrowth syndromes. When considered with other studies published to date, this work reveals the frequency of CDKN1C mutations in BWS to be only 4.9%. This is the first report of an analysis of the imprinting status of genes in the 11p15 region where CDKN1C mutations were associated with loss of IGF2 imprinting and maintenance of H19 and KCNQ1OT1 imprinting.  相似文献   

14.
Beckwith-Wiedemann syndrome (BWS) is a congenital cancer-predisposition syndrome associated with embryonal cancers, macroglossia, macrosomia, ear pits or ear creases, and midline abdominal-wall defects. The most common constitutional abnormalities in BWS are epigenetic, involving abnormal methylation of either H19 or LIT1, which encode untranslated RNAs on 11p15. We hypothesized that different epigenetic alterations would be associated with specific phenotypes in BWS. To test this hypothesis, we performed a case-cohort study, using the BWS Registry. The cohort consisted of 92 patients with BWS and molecular analysis of both H19 and LIT1, and these patients showed the same frequency of clinical phenotypes as those patients in the Registry from whom biological samples were not available. The frequency of altered DNA methylation of H19 in patients with cancer was significantly higher, 56% (9/16), than the frequency in patients without cancer, 17% (13/76; P=.002), and cancer was not associated with LIT1 alterations. Furthermore, the frequency of altered DNA methylation of LIT1 in patients with midline abdominal-wall defects and macrosomia was significantly higher, 65% (41/63) and 60% (46/77), respectively, than in patients without such defects, 34% (10/29) and 18% (2/11), respectively (P=.012 and P=.02, respectively). Additionally, paternal uniparental disomy (UPD) of 11p15 was associated with hemihypertrophy (P=.003), cancer (P=.03), and hypoglycemia (P=.05). These results define an epigenotype-phenotype relationship in BWS, in which aberrant methylation of H19 and LIT1 and UPD are strongly associated with cancer risk and specific birth defects.  相似文献   

15.
Beckwith–Wiedemann syndrome (BWS) is an imprinting disorder characterized by somatic overgrowth, congenital malformations, and predisposition to childhood tumors. Aberrant expression of multiple imprinted genes, including H19, IGF2, KCNQ1OT1, and CDKN1C, has been observed in BWS patients. It has been estimated that mutations in CDKN1C occur in 12–17% of BWS patients. We have screened 10 autosomal dominant pedigrees and 65 sporadic BWS cases by PCR/heteroduplex analysis and DNA sequencing and have identified four mutations, two of which were associated with biallelic IGF2 expression and normal H19 and KCNQ1OT1 imprinting. One patient demonstrated phenotypic expression of paternally transmitted mutation in this maternally expressed gene, a second proband is the child of one of a pair of monozygotic twin females who carry the mutation de novo, and a third patient exhibited unusual skeletal changes more commonly found in other overgrowth syndromes. When considered with other studies published to date, this work reveals the frequency of CDKN1C mutations in BWS to be only 4.9%. This is the first report of an analysis of the imprinting status of genes in the 11p15 region where CDKN1C mutations were associated with loss of IGF2 imprinting and maintenance of H19 and KCNQ1OT1 imprinting.  相似文献   

16.
Beckwith–Wiedemann syndrome (BWS), an overgrowth and tumor predisposition syndrome is clinically heterogeneous. Its variable presentation makes molecular diagnosis particularly important for appropriate counseling of patients with respect to embyronal tumor risk and recurrence risk. BWS is characterized by macrosomia, omphalocele, and macroglossia. Additional clinical features can include hemihyperplasia, embryonal tumors, umbilical hernia, and ear anomalies. BWS is etiologically heterogeneous arising from dysregulation of one or both of the chromosome 11p15.5 imprinting centers (IC) and/or imprinted growth regulatory genes on chromosome 11p15.5. Most BWS cases are sporadic and result from loss of maternal methylation at imprinting center 2 (IC2), gain of maternal methylation at imprinting center 1 (IC1) or paternal uniparental disomy (UPD). Heritable forms of BWS (15 %) have been attributed mainly to mutations in the growth suppressor gene CDKN1C, but have also infrequently been identified in patients with copy number variations (CNVs) in the chromosome 11p15.5 region. Four hundred and thirty-four unrelated BWS patients referred to the molecular diagnostic laboratory were tested by methylation-specific multiplex ligation-dependent probe amplification. Molecular alterations were detected in 167 patients, where 103 (62 %) showed loss of methylation at IC2, 23 (14 %) had gain of methylation at IC1, and 41 (25 %) showed changes at both ICs usually associated with paternal UPD. In each of the three groups, we identified patients in whom the abnormalities in the chromosome 11p15.5 region were due to CNVs. Surprisingly, 14 patients (9 %) demonstrated either deletions or duplications of the BWS critical region that were confirmed using comparative genomic hybridization array analysis. The majority of these CNVs were associated with a methylation change at IC1. Our results suggest that CNVs in the 11p15.5 region contribute significantly to the etiology of BWS. We highlight the importance of performing deletion/duplication testing in addition to methylation analysis in the molecular investigation of BWS to improve our understanding of the molecular basis of this disorder, and to provide accurate genetic counseling.  相似文献   

17.
Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome demonstrating heterogeneous molecular alterations of two imprinted domains on chromosome 11p15. The most common molecular alterations include loss of methylation at the proximal imprinting center, IC2, paternal uniparental disomy (UPD) of chromosome 11p15 and hypermethylation at the distal imprinting center, IC1. An increased incidence of female monozygotic twins discordant for BWS has been reported. The molecular basis for eleven such female twin pairs has been demonstrated to be a loss of methylation at IC2, whereas only one male monozygotic twin pair has been reported with this molecular defect. We report here two new pairs of male monozygotic twins. One pair is discordant for BWS; the affected twin exhibits paternal UPD for chromosome 11p15 whereas the unaffected twin does not. The second male twin pair is concordant for BWS and both twins of the pair demonstrate hypermethylation at IC1. Thus, this report expands the known molecular etiologies for BWS twins. Interestingly, these findings demonstrate a new epigenotype-phenotype correlation in BWS twins. That is, while female monozygotic twins with BWS are likely to show loss of imprinting at IC2, male monozygotic twins with BWS reflect the molecular heterogeneity seen in BWS singletons. These data underscore the need for molecular testing in BWS twins, especially in view of the known differences among 11p15 epigenotypes with respect to tumor risk.  相似文献   

18.
Beckwith–Wiedemann syndrome (BWS) is an overgrowth disorder resulting from dysregulation of multiple imprinted genes through a variety of distinct mechanisms. A frequent alteration in BWS involves changes in the imprinting status of the coordinately regulated IGF2 and H19 genes on 11p15. Patients have been categorized according to alterations in the imprinted expression, allele-specific methylation, and regional replication timing of these genes. In this work, IGF2/H19 expression, H19 DNA methylation, and IGF2 regional replication timing were studied in nine karyotypically normal BWS fibroblasts and two BWS patients with maternally inherited 11p15 chromosomal rearrangements. Informative patients (9/9) maintained normal monoallelic H19 expression/methylation, despite biallelic IGF2 expression in 6/9. Replication timing studies revealed no changes in the pattern of asynchronous replication timing for both a patient with biallelic IGF2 expression and a patient carrying an 11p15 inversion. In contrast, a patient with a chromosome 11;22 translocation and normal H19 expression/methylation exhibited partial loss of asynchrony and a shift toward earlier replication times. These results indicate that in BWS, (1) H19 imprinting alterations are less frequent than previously estimated, (2) IGF2 imprinting and H19 imprinting are not necessarily coordinated, and (3) alterations in regional replication timing are generally not correlated with either chromosomal rearrangements or the imprinting status of IGF2 and H19.  相似文献   

19.
The molecular characterization of two patients with features of Beckwith-Wiedemann syndrome (BWS) and chromosome abnormalities is consistent with the association of this phenotype with a duplication of a portion of chromosome 11. Quantitative Southern blot analysis of DNA from patient A defines a large inherited duplicated segment of chromosome 11. For patient B, a de novo duplication of unknown origin has been shown to contain a segment of 11p15. This chromosome segment includes the genes for insulin-like growth factor 2, beta-hemoglobin, calcitonin A (CALCA), and parathyroid hormone (PTH). However, the myogenic differentiation factor, MYOD1, is not included in the duplicated segment. This demonstrates that MYOD1 is proximal to CALCA and PTH and excludes MYOD1 as the BWS gene. These data place the BWS gene distal to MYOD1 on 11p15.  相似文献   

20.
Genomic imprinting is widespread amongst mammals, but has not yet been found in birds. To gain a broader understanding of the origin and significance of imprinting, we have characterized three genes, from three separate imprinted clusters in eutherian mammals in the developing fetus and placenta of an Australian marsupial, the tammar wallaby Macropus eugenii. Imprinted gene orthologues of human and mouse p57(KIP2), IGF2 and PEG1/MEST genes were isolated. p57(KIP2) did not show stable monoallelic expression suggesting that it is not imprinted in marsupials. In contrast, there was paternal-specific expression of IGF2 in almost all tissues, but the biased paternal expression of IGF2 in the fetal head and placenta, demonstrates the occurrence of tissue-specific imprinting, as occurs in mice and humans. There was also paternal-biased expression of PEG1/MESTalpha. The differentially methylated region (DMR) of the human and mouse PEG1/MEST promoter is absent in the wallaby. These data confirm the existence of common imprinted regions in eutherians and marsupials during development, but suggest that the regulatory mechanisms that control imprinted gene expression differ between these two groups of mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号