首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 136 毫秒
1.
To meet US renewable fuel mandates, perennial grasses have been identified as important potential feedstocks for processing into biofuels. Triploid Miscanthus × giganteus, a sterile, rhizomatous grass, has proven to be a high‐yielding biomass crop over the past few decades in the European Union and, more recently, in the United States. However, high establishment costs from rhizomes are a limitation to more widespread plantings without government subsidies. A recently developed tetraploid cultivar of M. × giganteus producing viable seeds (seeded miscanthus) shows promise in producing high yields with reduced establishment costs. Field experiments were conducted in Urbana, Illinois from 2011 to 2013 to optimize seeded miscanthus establishment by comparing seeding rates (10, 20, and 40 seeds m?2) and planting methods (drilling seeds at 38 and 76 cm row spacing vs. hydroseeding with and without premoistened seeds) under irrigated and rainfed conditions. Drought conditions in 2011 and 2012 coincided with stand establishment failure under rainfed conditions, suggesting that seeded miscanthus may not establish well in water‐stressed environments. In irrigated plots, hydroseeding without premoistening was significantly better than hydroseeding with premoistening, drilling at 38 cm and drilling at 76 cm with respect to plant number (18%, 54%, and 59% higher, respectively), plant frequency (13%, 30%, and 40% better, respectively), and the rate of canopy closure (18%, 33%, and 43% faster, respectively) when averaged across seeding rates. However, differences in second‐year biomass yields among treatments were less pronounced, as plant size partially compensated for plant density. Both hydroseeding and drilling at rates of 20 or 40 seeds m?2 appear to be viable planting options for establishing seeded miscanthus provided sufficient soil moisture, but additional strategies are required for this new biomass production system under rainfed conditions.  相似文献   

2.
Rangeland degradation is a serious problem in semiarid Africa. Extensive areas of bare, compacted, nutrient‐poor soils limit the productivity and biodiversity of many areas. We conducted a set of restoration experiments in which all eight combinations of soil tilling, fertilization, and seeding with native perennial grasses were carried out in replicated plots. After 6 months, little aboveground biomass was produced in plots without tilling, regardless of seeding or fertilization. Tilling alone tripled plant biomass, mostly of herbaceous forbs and annual grasses. Perennial grasses were essentially limited to plots that were both tilled and seeded. The addition of fertilizer had no significant additional effects. After 7 years, vegetation had declined, but there were still large differences among treatments. After 10 years, one tilled (and seeded) plot had reverted to bare ground, but the other tilled plots still had substantial vegetation. Only one seeded grass (Cenchrus ciliaris) was still a contributor to total cover after 10 years. We suggest that restoration efforts on these soils be directed first to breaking up the surface crust, and second to the addition of desirable seed. A simple ripping trial inspired by this experiment showed considerable promise as a low‐cost restoration technique.  相似文献   

3.
Question: Does aspect affect hydroseeding success and the development of vegetation during early vegetation establishment on the steep slopes of coal wastes during the reclamation process? Location: Open‐pit coal mine near Villanueva de la Peña, northern Spain. Methods: In the first year after hydroseeding, we monitored the dynamics of hydroseeded species in three permanent plots of 20 m2 on north‐ and south‐facing slopes every two months. Soil properties and weather conditions were also monitored. Results: Aspect was related to total plant cover during early revegetation, and south‐facing slopes had the lowest cover. Aspect also influenced the early dynamics of hydroseeded grasses and legumes establishing on these slopes. Grass cover was greater on the north slope throughout the study, but differences in plant cover between north and south slopes appeared later for the legumes. Aspect also affected the relative contribution of both of grasses and legumes to the total plant cover, with grasses dominant on both northern and southern slopes, except during the summer on the southern slope. The species with the greatest difference in cover between the north‐ and south‐facing slopes were Festuca spp., Lolium perenne and Trifolium repens. Conclusion: In coal mine reclamation areas of Mediterranean climates, differences in the development of hydroseeded species depended on the slope of the coal mine reclamation areas, and this information is of importance to managers in selecting species for use in reclamation.  相似文献   

4.
The increasing global rate of road construction is leading to a parallel increase of areas of degraded soil conditions and steep slopes that need revegetation. Hydroseeding with commercial seeds of fast‐growing grasses and legumes is a common practice in revegetation of motorway slopes. We carried out 3 years of monitoring of vegetation dynamics on hydroseeded and nonhydroseeded motorway slopes (48 slopes) in a maritime Mediterranean zone in Málaga (southern Spain). Our main objectives were to test whether hydroseeding significantly increases species richness and plant cover and whether hydroseeded species act as starters, facilitating the establishment of the vegetation and quickly disappearing once the communities are established. A hydroseeding success index (HSI, ranging from 0 to 1) was used to assess the relative abundance over time of the 14 species from the hydroseeding mixture. Species richness and cover was significantly higher on embankments (50–70 species per embankment, 80–90% cover) than on roadcuts (6–10 species per roadcut, 18–30% cover). Performance of hydroseeded species was poor from the very beginning (HSI, 0.2–0.3). On embankments, either presence or abundance of hydroseeded species did not significantly vary throughout the study. Both hydroseeded and nonhydroseeded communities exhibited a significant decrease in species richness, a significant increase in plant cover, and a highly dynamic species composition over time, with Sorensen index of 0.3–0.5 between years. There were no significant differences in plant cover, species richness, and aboveground biomass between hydroseeded and nonhydroseeded plots on embankments throughout the study. Our results demonstrate that there are situations in which the use of hydroseeding for revegetation is not needed. Further research should focus on understanding the establishment of autochthonous species and identifying environmental conditions under which the addition of commercial seeds may not be needed, or indeed situations where it may be harmful in suppressing autochthonous species.  相似文献   

5.
Soil solution chemistry reflects the most dynamic processes occurring in soils and is responsible for their current status. This study was undertaken to determine the soil solution status in 25 mountainous soils. The major cations in the studied soil solutions are in the decreasing order of Ca2+ > Mg2+ > Na+ > K+. The anions are also arranged in decreasing order as HCO? 3 > Cl? > NO? 3 > SO 2? 4 . Concentrations of NO? 3 , P, and K+ in soil solutions were in the range of 12–364 mg l?1, 1.75–34.8 mg l?1, and 0.78– 198 mg l?1, respectively. Results suggest that the concentration of P in the soil solutions could be primarily controlled by of the solubility of octacalcium phosphate and ß-tricalcium phosphate. In general, the greater the dissolved P concentration in the soil solution, the closer the solution was to equilibrium with respect to the more soluble Ca2+ phosphate minerals. Surface soil accumulations of P, NO? 3 , and K+ have occurred in these soils to such an extent that loss of these nutrients in surface runoff and the high risk for nutrient transfer into groundwater in concentrations exceeding the groundwater quality standard has become a priority management concern.  相似文献   

6.
Shrub steppe communities with depleted perennial herbaceous understories often need to be restored to increase resilience and resistance. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) steppe plant communities to reduce sagebrush dominance and restore native herbaceous vegetation, but success has been limited and hampered by increases in exotic annuals. Seeding native bunchgrasses after mowing may accelerate recovery and limit exotics. We compared mowing followed by drill‐seeding native bunchgrasses to mowing and an untreated control at five sites in southeastern Oregon over a 4‐year period. Mowing and seeding bunchgrasses increased bunchgrass density; however, bunchgrass cover did not differ among treatments. Exotic annuals increased with mowing whether or not post‐mowing seeding occurred. Mowing, whether or not seeding occurred, also reduced biological soil crusts. Longer term evaluation is needed to determine if seeded bunchgrasses will increase enough to suppress exotic annuals. Seeded bunchgrasses may have been limited by increases in exotic annuals. Though restoration of sagebrush communities with degraded understories is needed, we do not recommend mowing and seeding native bunchgrasses because this treatment produced mixed results that may lower the resilience and resistance of these communities. Before this method is applied, research is needed to increase our understanding of how to improve establishment of seeded native bunchgrasses. Alternatively, restoration practitioners may need to apply treatments to control exotic annuals and repeatedly seed native bunchgrasses.  相似文献   

7.
No standardized, objective methodology exists for optimizing seeding rates when establishing herbaceous plant cover for pastures, hay fields, ecological restoration, or other revegetation activities. Seeding densities, fertilizer use, season of seeding, and the interaction of these treatments were tested using native plants on degraded sites in northern British Columbia, Canada. A mixture of 20% Achillea millefolium, 20% Carex aenea, 20% Elymus glaucus, 20% Festuca occidentalis, 16% Geum macrophyllum, and 4% Lupinus polyphyllus seed was applied at 0, 375, 750, 1,500, 3,000, and 6,000 pure live seed (PLS) per m2 in 2.5 × 2.5–m rototilled test plots, established in the fall and spring, with and without fertilizer. There was no significant difference in plant cover of sown species between fall seeding and spring seeding, and few treatment interactions were identified in the first 2 years after sowing. There was no significant difference in cover between seed densities of 3,000 and 6,000 PLS/m2 in the first year, nor among 1,500, 3,000, and 6,000 PLS/m2 treatments in the second year. Seed densities as low as 375 PLS/m2 produced year 2 plant cover equivalent to that observed at 3,000 PLS/m2 in year 1. Plots sown to seed densities less than or equal to 750 PLS/m2 generally exhibited an increase (infilling) in plant density from year 1 to year 2, whereas plots sown to seed densities greater than or equal to 1,500 PLS/m2 generally exhibited a decrease (density‐dependent mortality) in plant density. These results imply a most efficient sowing density between 750 and 1,500 PLS/m2 (corresponding to 190–301 established plants.m?2 after two growing seasons). It is suggested that net changes in plant populations observed over a range of sowing densities are a robust and objective means of determining optimal sowing densities for the establishment of herbaceous perennials.  相似文献   

8.
Many studies have shown that soil disturbance facilitates establishment of invasive, non-native plant species, and a number of mechanisms have been isolated that contribute to the process. To our knowledge no studies have isolated the role of altered soil compaction, a likely correlate of many types of soil disturbance, in facilitating invasion. To address this, we measured the response of seeded non-native and native plant species to four levels of soil compaction in mesocosms placed in an abandoned agricultural field in the Methow Valley, Washington, USA. Soil compaction levels reflected the range of resistance to penetration (0.1–3.0 kg cm−2) measured on disturbed soils throughout the study system prior to the experiment. Percent cover of non-native species, namely Bromus tectorum and Centaurea diffusa, decreased by 34% from the least to the most compacted treatments, whereas percent cover of native species, mostly Pseudoroegneria spicata and Lupinus spp., did not respond to compaction treatments. Experimental results were supported by a survey of soil penetration resistance and percent cover by species in 18 abandoned agricultural fields. Percent cover of B. tectorum was negatively related to soil compaction levels, whereas none of the native species showed any response to soil compaction. These results highlight a potentially important, though overlooked, aspect of soil disturbance that may contribute to subsequent non-native plant establishment.  相似文献   

9.
Stabilization of Motorway Slopes with Herbaceous Cover, Catalonia, Spain   总被引:1,自引:0,他引:1  
We monitored several herbaceous species for revegetating motorway slopes in Catalonia, Spain, a Mediterranean country. Two main kinds of treatments were applied: hydroseeding on bare marl, chalk, and slates, and hydroseeding on embankments over gentler slopes, where soil materials previously removed were spread before hydroseeding. The greatest herbaceous cover was obtained by hydroseeding after soil replacement, and marl was the most suitable bare substratum for hydroseeding. Physical characteristics such as schistosily plane in slates and softness or surface irregularity in chalk determined the outcome of revegetation efforts. The most immediate stabilization of soils was obtained on southern exposures with autumnal applications. Grasses, markedly of the genera Lolium and Festuca, were dominant in the herbaceous cover at the end of the monitoring period. Natural invasive vegetation was composed of ruderal species, but no representatives of the adjacent forest or maquis community were found.  相似文献   

10.
Forest fires often result in a series of biogeochemical processes that increase soil nitrate (NO3 ?) concentrations for several years; however, the dynamic nature of inorganic nitrogen (N) cycling in the plant–microbe–soil complex makes it challenging to determine the direct causes of increased soil NO3 ?. We measured gross inorganic N transformation rates in mineral soils 2 years after wildfires in three central Idaho coniferous forests to determine the causes of the elevated soil NO3 ?. We also measured key factors that could affect the soil N processes, including temperature during soil incubation in situ, soil water content, pH and carbon (C) availability. We found no significant differences (P = 0.461) in gross nitrification rates between burned and control soils. However, microbial NO3 ? uptake rates were significantly lower (P = 0.078) in burned than control soils. The reduced consumption of NO3 ? caused slightly elevated NO3 ? concentrations in the burned soils. C availability was positively correlated with microbial NO3 ? uptake rates. Despite reduced microbial NO3 ? uptake capacity in the burned soils, soil microbes were a strong enough N sink to maintain low soil NO3 ? concentrations 2 years post fire. Soil NH4 + concentrations between the treatments were not significantly different (P = 0.673). However, gross NH4 + production and microbial uptake rates in burned soils were significantly lower (P = 0.028 and 0.035, respectively) than in the controls, and these rates were positively correlated with C availability. Our results imply that C availability is an important factor regulating soil N cycling of coniferous forests in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号