首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
RNA editing is a process whereby nucleotide insertion, deletion, or base substitution results in the production of an RNA whose sequence differs from that of its template. The mitochondrial RNAs of Physarum polycephalum are processed specifically at multiple sites by both mono- and dinucleotide insertions, as well as apparent cytidine (C) to uridine (U) changes. The precise mechanism and timing of these processing events are currently unknown. We describe here the development of an isolated mitochondrial system in which exogenously supplied nucleotides can be incorporated into RNAs under defined conditions. The results of S1 nuclease protection, nearest neighbor and RNase T1 fingerprint analyses indicate that the vast majority of these newly synthesized mitochondrial RNAs have been accurately and efficiently processed by both mono- and dinucleotide insertions. This work provides a direct demonstration of faithful nucleotide insertion in a mitochondrial editing system. In contrast, the newly synthesized RNAs are not processed by C to U changes in the isolated mitochondria, suggesting that the base changes observed in Physarum are unlikely to occur via a deletion/insertion mechanism.  相似文献   

4.
5.
The complete sequence of the mitochondrial DNA (mtDNA) of the true slime mold Physarun polycephalum has been determined. The mtDNA is a circular 62,862-bp molecule with an A+T content of 74.1%. A search with the program BLAST X identified the protein-coding regions. The mitochondrial genome of P. polycephalum was predicted to contain genes coding for 12 known proteins [for three cytochrome c oxidase subunits, apocytochrome b, two F1Fo-ATPase subunits, five NADH dehydrogenase (nad) subunits, and one ribosomal protein], two rRNA genes, and five tRNA genes. However, the predicted ORFs are not all in the same frame, because mitochondrial RNA in P. polycephalum undergoes RNA editing to produce functional RNAs. The nucleotide sequence of an nad7 cDNA showed that 51 nucleotides were inserted at 46 sites in the mRNA. No guide RNA-like sequences were observed in the mtDNA of P. polycephalum. Comparison with reported Physarum mtDNA sequences suggested that sites of RNA editing vary among strains. In the Physarum mtDNA, 20 ORFs of over 300 nucleotides were found and ORFs 14 19 are transcribed.  相似文献   

6.
7.
8.
9.
10.
A computational analysis of RNA editing sites was performedon protein-coding sequences of plant mitochondrial genomes fromArabidopsis thaliana, Beta vulgaris, Brassica napus, and Oryzasativa. The distribution of nucleotides around edited and uneditedcytidines was compared in 41 nucleotide segments and included1481 edited cytidines and 21,390 unedited cytidines in the 4genomes. The distribution of nucleotides was examined in 1,2, and 3 nucleotide windows by comparison of nucleotide frequencyratios and relative entropy. The relative entropy analyses indicatethat information is encoded in the nucleotide sequences in the5 prime flank (–18 to –14, –13 to –10,–6 to –4, –2/–1) and the immediate 3prime flanking nucleotide (+1), and these regions may be importantin editing site recognition. The relative entropy was largewhen 2 or 3 nucleotide windows were analyzed, suggesting thatseveral contiguous nucleotides may be involved in editing siterecognition. RNA editing sites were frequently preceded by 2pyrimidines or AU and followed by a guanidine (HYCG) in themonocot and dicot mitochondrial genomes, and rarely precededby 2 purines. Analysis of chloroplast editing sites from a dicot,Nicotiana tabacum, and a monocot, Zea mays, revealed a similardistribution of nucleotides around editing sites (HYCA). Thesimilarity of this motif around editing sites in monocots anddicots in both mitochondria and chloroplasts suggests that amechanistic basis for this motif exists that is common in thesedifferent organelle and phylogenetic systems. The preferredsequence distribution around RNA editing sites may have an importantimpact on the acquisition of editing sites in evolution becausethe immediate sequence context of a cytidine residue may rendera cytidine editable or uneditable, and consequently determinewhether a T to C mutation at a specific position may be correctedby RNA editing. The distribution of editing sites in many protein-codingsequences is shown to be non-random with editing sites clusteredin groups separated by regions with no editing sites. The sporadicdistribution of editing sites could result from a mechanismof editing site loss by gene conversion utilizing edited sequenceinformation, possibly through an edited cDNA intermediate.  相似文献   

11.
12.
13.
Apolipoprotein B (apoB) RNA editing involves a cytidine to uridine transition at nucleotide 6666 (C6666) 5' of an essential cis -acting 11 nucleotide motif known as the mooring sequence. APOBEC-1 (apoB editing catalytic sub-unit 1) serves as the site-specific cytidine deaminase in the context of a multiprotein assembly, the editosome. Experimental over-expression of APOBEC-1 resulted in an increased proportion of apoB mRNAs edited at C6666, as well as editing of sites that would otherwise not be recognized (promiscuous editing). In the rat hepatoma McArdle cell line, these sites occurred predominantly 5' of the mooring sequence on either rat or human apoB mRNA expressed from transfected cDNA. In comparison, over-expression of APOBEC-1 in HepG2 (HepG2-APOBEC) human hepatoma cells, induced promiscuous editing primarily 5' of the mooring sequence, but sites 3' of the C6666 were also used more efficiently. The capacity for promiscuous editing was common to rat, rabbit and human sources of APOBEC-1. The data suggested that differences in the distribution of promiscuous editing sites and in the efficiency of their utilization may reflect cell-type-specific differences in auxiliary proteins. Deletion of the mooring sequence abolished editing at the wild type site and markedly reduced, but did not eliminate, promiscuous editing. In contrast, deletion of a pair of tandem UGAU motifs 3' of the mooring sequence in human apoB mRNA selectively reduced promiscuous editing, leaving the efficiency of editing at the wild type site essentially unaffected. ApoB RNA constructs and naturally occurring mRNAs such as NAT-1 (novel APOBEC-1 target-1) that lack this downstream element were not promiscuously edited in McArdle or HepG2 cells. These findings underscore the importance of RNA sequences and the cellular context of auxiliary factors in regulating editing site utilization.  相似文献   

14.
Human apolipoprotein (apo) B mRNA is edited in a tissue specific reaction, to convert glutamine codon 2153 (CAA) to a stop translation codon. The RNA editing product templates and hybridises as uridine, but the chemical nature of this reaction and the physical identity of the product are unknown. After editing in vitro of [32P] labelled RNA, we are able to demonstrate the production of uridine from cytidine; [alpha 32P] cytidine triphosphate incorporated into RNA gave rise to [32P] uridine monophosphate after editing in vitro, hydrolysis with nuclease P1 and thin layer chromatography using two separation systems. By cleaving the RNA into ribonuclease T1 fragments, we show that uridine is produced only at the authentic editing site and is produced in quantities that parallel an independent primer extension assay for editing. We conclude that apo B mRNA editing specifically creates a uridine from a cytidine. These observations are inconsistent with the incorporation of a uridine nucleotide by any polymerase, which would replace the alpha-phosphate and so rule out a model of endonucleolytic excision and repair as the mechanism for the production of uridine. Although transamination and transglycosylation remain to be formally excluded as reaction mechanisms our results argue strongly in favour of the apo B mRNA editing enzyme as a site-specific cytidine deaminase.  相似文献   

15.
RNAs in the mitochondria of Physarum polycephalum contain nonencoded nucleotides that are added during RNA synthesis. Essentially all steady-state RNAs are accurately and fully edited, yet the signals guiding these precise nucleotide insertions are presently unknown. To localize the regions of the template that are required for editing, we constructed a series of chimeric templates that substitute varying amounts of DNA either upstream of or downstream from C insertion sites. Remarkably, all sequences necessary for C addition are contained within ∼9 base pairs on either side of the insertion site. In addition, our data strongly suggest that sequences within this critical region affect different steps in the editing reaction. Template alterations upstream of an editing site influence nucleotide selection and/or insertion, while downstream changes affect editing site recognition and templated extension from the added, unpaired nucleotide. The data presented here provide the first evidence that individual regions of the DNA template play discrete mechanistic roles and represent a crucial initial step toward defining the source of the editing specificity in Physarum mitochondria. In addition, these findings have mechanistic implications regarding the potential involvement of the mitochondrial RNA polymerase in the editing reaction.  相似文献   

16.
17.
Editing of RNA via the insertion, deletion or substitution of genetic information affects gene expression in a variety of systems. Previous characterization of the Physarum polycephalum cytochrome c oxidase subunit I (col) mRNA revealed that both nucleotide insertions and base substitutions occur during the maturation of this mitochondrial message. Both types of editing are known to be developmentally regulated in other systems, including mammals and trypanosomatids. Here we show that the col mRNA present in Physarum mitochondria is edited via specific nucleotide insertions and C to U conversions at every stage of the life cycle. Primer extension sequencing of the RNA indicates that this editing is both accurate and efficient. Using a sensitive RT-PCR assay to monitor the extent of editing at individual sites of C insertion, we estimate that greater than 98% of the steady-state amount of col mRNA is edited throughout the Physarum developmental cycle.  相似文献   

18.
Editing of RNA via the insertion, deletion or substitution of genetic information affects gene expression in a variety of systems. Previous characterization of the Physarum polycephalum cytochrome c oxidase subunit I (col) mRNA revealed that both nucleotide insertions and base substitutions occur during the maturation of this mitochondrial message. Both types of editing are known to be developmentally regulated in other systems, including mammals and trypanosomatids. Here we show that the col mRNA present in Physarum mitochondria is edited via specific nucleotide insertions and C to U conversions at every stage of the life cycle. Primer extension sequencing of the RNA indicates that this editing is both accurate and efficient. Using a sensitive RT-PCR assay to monitor the extent of editing at individual sites of C insertion, we estimate that greater than 98% of the steady-state amount of col mRNA is edited throughout the Physarum developmental cycle.  相似文献   

19.
RNA editing in an untranslated region of the Ginkgo chloroplast genome.   总被引:7,自引:0,他引:7  
J Kudla  R Bock 《Gene》1999,234(1):81-86
mRNAs in plant cell organelles can be subject to RNA editing, an RNA processing step altering the identity of single nucleotide residues. In higher plant chloroplasts, editing proceeds by C-to-U conversions at highly specific sites. All known plastid RNA editing sites are located in protein-coding regions and, typically, change the coding properties of the mRNA. To gain more insight into the evolution of editing, we have determined the molecular structure and RNA editing pattern of the psbE operon of the primitive seed plant Ginkgo biloba. We report here the identification of altogether four sites of C-to-U editing, two of which are unique to Ginkgo and have not been found in other species. Surprisingly, one of the sites is located in an intercistronic spacer, thus being the first chloroplast editing site detected outside a protein-coding region. This indicates that the plastid editing machinery can operate also in untranslated regions and without having apparent functional consequences.  相似文献   

20.
Gene finding is complicated in organisms that exhibit insertional RNA editing. Here, we demonstrate how our new algorithm Predictor of Insertional Editing (PIE) can be used to locate genes whose mRNAs are subjected to multiple frameshifting events, and extend the algorithm to include probabilistic predictions for sites of nucleotide insertion; this feature is particularly useful when designing primers for sequencing edited RNAs. Applying this algorithm, we successfully identified the nad2, nad4L, nad6 and atp8 genes within the mitochondrial genome of Physarum polycephalum, which had gone undetected by existing programs. Characterization of their mRNA products led to the unanticipated discovery of nucleotide deletion editing in Physarum. The deletion event, which results in the removal of three adjacent A residues, was confirmed by primer extension sequencing of total RNA. This finding is remarkable in that it comprises the first known instance of nucleotide deletion in this organelle, to be contrasted with nearly 500 sites of single and dinucleotide addition in characterized mitochondrial RNAs. Statistical analysis of this larger pool of editing sites indicates that there are significant biases in the 2 nt immediately upstream of editing sites, including a reduced incidence of nucleotide repeats, in addition to the previously identified purine-U bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号