首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Computational analysis of RNA editing sites in plant mitochondrial genomes reveals similar information content and a sporadic distribution of editing sites
Authors:Mulligan R Michael  Chang Kenneth L C  Chou Chia Ching
Institution:* Department of Developmental and Cell Biology, University of California, Irvine
{dagger} Department of Information and Computer Science, University of California, Irvine
Abstract:A computational analysis of RNA editing sites was performedon protein-coding sequences of plant mitochondrial genomes fromArabidopsis thaliana, Beta vulgaris, Brassica napus, and Oryzasativa. The distribution of nucleotides around edited and uneditedcytidines was compared in 41 nucleotide segments and included1481 edited cytidines and 21,390 unedited cytidines in the 4genomes. The distribution of nucleotides was examined in 1,2, and 3 nucleotide windows by comparison of nucleotide frequencyratios and relative entropy. The relative entropy analyses indicatethat information is encoded in the nucleotide sequences in the5 prime flank (–18 to –14, –13 to –10,–6 to –4, –2/–1) and the immediate 3prime flanking nucleotide (+1), and these regions may be importantin editing site recognition. The relative entropy was largewhen 2 or 3 nucleotide windows were analyzed, suggesting thatseveral contiguous nucleotides may be involved in editing siterecognition. RNA editing sites were frequently preceded by 2pyrimidines or AU and followed by a guanidine (HYCG) in themonocot and dicot mitochondrial genomes, and rarely precededby 2 purines. Analysis of chloroplast editing sites from a dicot,Nicotiana tabacum, and a monocot, Zea mays, revealed a similardistribution of nucleotides around editing sites (HYCA). Thesimilarity of this motif around editing sites in monocots anddicots in both mitochondria and chloroplasts suggests that amechanistic basis for this motif exists that is common in thesedifferent organelle and phylogenetic systems. The preferredsequence distribution around RNA editing sites may have an importantimpact on the acquisition of editing sites in evolution becausethe immediate sequence context of a cytidine residue may rendera cytidine editable or uneditable, and consequently determinewhether a T to C mutation at a specific position may be correctedby RNA editing. The distribution of editing sites in many protein-codingsequences is shown to be non-random with editing sites clusteredin groups separated by regions with no editing sites. The sporadicdistribution of editing sites could result from a mechanismof editing site loss by gene conversion utilizing edited sequenceinformation, possibly through an edited cDNA intermediate.
Keywords:RNA editing  relative entropy  gene conversion  copy correction  non-random distribution  evolution of editing  editing site recognition  retroconversion  gene transfer
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号