首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate apoptosis response 4 (Par-4) is a ubiquitously expressed proapoptotic tumor suppressor protein. Here, we show for the first time, that Par-4 is a novel substrate of caspase-3 during apoptosis. We found that Par-4 is cleaved during cisplatin-induced apoptosis in human normal and cancer cell lines. Par-4 cleavage generates a C-terminal fragment of ~25 kDa, and the cleavage of Par-4 is completely inhibited by a caspase-3 inhibitor, suggesting that caspase-3 is directly involved in the cleavage of Par-4. Caspase-3-deficient MCF-7 cells do not show Par-4 cleavage in response to cisplatin treatment, and restoration of caspase-3 in MCF-7 cells produces a decrease in Par-4 levels, with the appearance of a cleaved fragment. Additionally, knockdown of Par-4 reduces caspase-3 activation and apoptosis induction. Site-directed mutagenesis reveals that Par-4 cleavage by caspase-3 occurs at an unconventional site, EEPD(131)↓G. Interestingly, overexpression of wild-type Par-4 but not the Par-4 D131A mutant sensitizes cells to cisplatin-induced apoptosis. Upon caspase-3 cleavage, the cleaved fragment of Par-4 accumulates in the nucleus and displays increased apoptotic activity. Overexpression of the cleaved fragment of Par-4 inhibits IκBα phosphorylation and blocks NF-κB nuclear translocation. We have identified a novel specific caspase-3 cleavage site in Par-4, and the cleaved fragment of Par-4 retains proapoptotic activity.  相似文献   

2.
Despite distinct dissimilarities, diverse cancers express several common protumorigenic traits. We present here evidence that the proapoptotic protein Par-4 utilizes one such common tumorigenic trait to become selectively activated and induce apoptosis in cancer cells. Elevated protein kinase A (PKA) activity noted in cancer cells activated the apoptotic function of ectopic Par-4 or its SAC (selective for apoptosis induction in cancer cells) domain, which induces apoptosis selectively in cancer cells and not in normal or immortalized cells. PKA preferentially phosphorylated Par-4 at the T155 residue within the SAC domain in cancer cells. Moreover, pharmacological-, peptide-, or small interfering RNA-mediated inhibition of PKA activity in cancer cells resulted in abrogation of both T155 phosphorylation and apoptosis by Par-4. The mechanism of activation of endogenous Par-4 was similar to that of ectopic Par-4, and in response to exogenous stimuli, endogenous Par-4 induced apoptosis by a PKA- and phosphorylated T155-dependent mechanism. Enforced elevation of PKA activity in normal cells resulted in apoptosis by the SAC domain of Par-4 in a T155-dependent manner. Together, these observations suggest that selective apoptosis of cancer cells by the SAC domain of Par-4 involves phosphorylation of T155 by PKA. These findings uncover a novel mechanism engaging PKA, a procancerous activity commonly elevated in most tumor cells, to activate the cancer selective apoptotic action of Par-4.  相似文献   

3.
Prostate apoptosis response-4 (Par-4) was initially identified as a gene product up-regulated in prostate cancer cells undergoing apoptosis. In rat fibroblasts, coexpression of Par-4 and its interaction partner DAP-like kinase (Dlk, which is also known as zipper-interacting protein kinase [ZIPK]) induces relocation of the kinase from the nucleus to the actin filament system, followed by extensive myosin light chain (MLC) phosphorylation and induction of apoptosis. Our analyses show that the synergistic proapoptotic effect of Dlk/Par-4 complexes is abrogated when either Dlk/Par-4 interaction or Dlk kinase activity is impaired. In vitro phosphorylation assays employing Dlk and Par-4 phosphorylation mutants carrying alanine substitutions for residues S154, T155, S220, or S249, respectively, identified T155 as the major Par-4 phosphorylation site of Dlk. Coexpression experiments in REF52.2 cells revealed that phosphorylation of Par-4 at T155 by Dlk was essential for apoptosis induction in vivo. In the presence of the Par-4 T155A mutant Dlk was partially recruited to actin filaments but resided mainly in the nucleus. Consequently, apoptosis was not induced in Dlk/Par-4 T155A–expressing cells. In vivo phosphorylation of Par-4 at T155 was demonstrated with a phospho-specific Par-4 antibody. Our results demonstrate that Dlk-mediated phosphorylation of Par-4 at T155 is a crucial event in Dlk/Par-4-induced apoptosis.  相似文献   

4.
Par-4 inducible apoptosis in prostate cancer cells   总被引:4,自引:0,他引:4  
Prostate cancer is associated with the inability of prostatic epithelial cells to undergo apoptosis rather than with increased cell proliferation. Prostate apoptosis response-4 (Par-4) is a unique pro-apoptotic molecule that is capable of selectively inducing apoptosis in cancer cells when over-expressed, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. This review discusses the salient functions of Par-4 that can be harnessed to prostate cancer therapy.  相似文献   

5.
Par-4 is a novel protein identified in cells undergoing apoptosis. The ability of Par-4 to promote apoptotic cell death is dependent on the binding and inactivation of the atypical protein kinases C (PKCs). This subfamily of kinases has been reported to control nuclear factor kappaB (NF-kappaB) through the regulation of the IkappaB kinase activity. NF-kappaB activation by tumor necrosis factor alpha (TNFalpha) provides a survival signal that impairs the TNFalpha-induced apoptotic response. We show here that expression of Par-4 inhibits the TNFalpha-induced nuclear translocation of p65 as well as the kappaB-dependent promoter activity. Interestingly, Par-4 expression blocks inhibitory kappaB protein (IkappaB) kinase activity, which leads to the inhibition of IkappaB phosphorylation and degradation, in a manner that is dependent on its ability to inhibit lambda/iotaPKC. Of potential functional relevance, the expression of Par-4 allows TNFalpha to induce apoptosis in NIH-3T3 cells. In addition, the down-regulation of Par-4 levels by oncogenic Ras sensitizes cells to TNFalpha-induced NF-kappaB activation.  相似文献   

6.
张娴文  白洁 《生命科学》2013,(11):1100-1104
前列腺凋亡反应基因-4(prostate apoptosis responsegene.4,par-4)是从凋亡的前列腺癌细胞中分离出来的一种基因,该基因编码的产物是前列腺凋亡反应蛋白4(Par-4)。Par-4可通过细胞内、外途径调节各种分子表达,诱导癌细胞凋亡,选择性抑制肿瘤细胞生长,因此,Par-4的表达与肿瘤的发生、发展及预后有密切的联系。Par-4在治疗恶性肿瘤中表现出良好的肿瘤细胞靶向杀伤效应,对正常组织细胞无明显影响,故具有极其重要的应用价值。就Par-4特异性诱导肿瘤细胞凋亡及其潜在抗肿瘤作用的进展进行综述。  相似文献   

7.

Background

Prostate apoptosis response-4 (Par-4) is a tumor-suppressor protein that selectively activates and induces apoptosis in cancer cells, but not in normal cells. The cancer specific pro-apoptotic function of Par-4 is encoded in its centrally located SAC (Selective for Apoptosis induction in Cancer cells) domain (amino acids 137–195). The SAC domain itself is capable of nuclear entry, caspase activation, inhibition of NF-κB activity, and induction of apoptosis in cancer cells. However, the precise mechanism(s) of how the SAC domain is released from Par-4, in response to apoptotic stimulation, is not well explored.

Results

In this study, we demonstrate for the first time that sphingosine (SPH), a member of the sphingolipid family, induces caspase-dependant cleavage of Par-4, leading to the release of SAC domain containing fragment from it. Par-4 is cleaved at the EEPD131G site on incubation with caspase-3 in vitro, and by treating cells with several anti-cancer agents. The caspase-3 mediated cleavage of Par-4 is blocked by addition of the pan-caspase inhibitor z-VAD-fmk, caspase-3 specific inhibitor Ac-DEVD-CHO, and by introduction of alanine substitution for D131 residue. Moreover, suppression of SPH-induced Akt dephosphorylation also abrogated the caspase dependant cleavage of Par-4.

Conclusion

Evidence provided here shows that Par-4 is cleaved by caspase-3 during SPH-induced apoptosis. Cleavage of Par-4 leads to the generation of SAC domain containing fragment which may possibly be essential and sufficient to induce or augment apoptosis in cancer cells.
  相似文献   

8.
The par-4 gene, directs the expression of a protein in the rat ventral prostate after apoptotic stimuli but not growth stimulatory, growth arresting or necrotic signals. Since Par-4 expression appears to be ubiquitous we investigated the possibility of Par-4 having a role in the rat ovary granulosa cells apoptotic death. Par-4 mRNA was detected by RT-PCR with oligonucleotides designed to prime Par-4 leucine zipper in the ovaries of 12 day old rats and reached the higher levels in 24 days old rats. In situ hybridization analysis revealed that Par-4 expression is restricted to granulosa cells. PMSG priming of 24 day old rats for 2 days greatly reduced Par-4 expression in granulosa cells as determined by in situ hybridization, RT-PCR of mRNA and protein immunodetection with Western blot. Granulosa cells placed in serum-fee culture, exhibited increased levels of Par-4 mRNA and protein, in good correlation with the degree of apoptosis. The culture-induced increases in Par-4 are significantly prevented by FSH. Transient transfection of granulosa cells with Par-4 leucine zipper domain that functions as a dominant-negative regulator of Par-4 activity resulted in lower rates of apoptosis while overexpression of the full length Par-4 counteracted FSH effects on apoptosis. Par-4 association with PKCzeta which is supposed to inhibit this kinase mediated antiapoptotic way is also prevented by FSH and, FSH antiapoptotic effects are counteracted by a PKCzeta specific inhibitor. These findings indicate that FSH by suppressing Par-4 expression in the ovary activates PKCzeta-dependent antiapoptotic pathway and suggest that Par-4 is part of the mechanism underlying granulosa cells apoptotic demise.  相似文献   

9.
The serine/threonine kinase Mst1, a mammalian homolog of the budding yeast Ste20 kinase, is cleaved by caspase-mediated proteolysis in response to apoptotic stimuli such as ligation of CD95/Fas or treatment with staurosporine. Furthermore, overexpression of Mst1 induces morphological changes characteristic of apoptosis in human B lymphoma cells. Mst1 may therefore represent an important target for caspases during cell death which serves to amplify the apoptotic response. Here we report that Mst1 has two caspase cleavage sites, and we present evidence indicating that cleavage may occur in an ordered fashion and be mediated by distinct caspases. We also show that caspase-mediated cleavage alone is insufficient to activate Mst1, suggesting that full activation of Mst1 during apoptosis requires both phosphorylation and proteolysis. Another role of phosphorylation may be to influence the susceptibility of Mst1 to proteolysis. Autophosphorylation of Mst1 on a serine residue close to one of the caspase sites inhibited caspase-mediated cleavage in vitro. Finally, Mst1 appears to function upstream of the protein kinase MEKK1 in the SAPK pathway. In conclusion, Mst1 activity is regulated by both phosphorylation and proteolysis, suggesting that protein kinase and caspase pathways work in concert to regulate cell death.  相似文献   

10.
Par-4 (prostate apoptosis response 4) is a pro-apoptotic protein and tumour suppressor that was originally identified as a gene product up-regulated during apoptosis in prostate cancer cells. Here, we show, for the first time, that Par-4 is expressed and co-localizes with the actin filament bundles in vascular smooth muscle. Furthermore, we demonstrate that targeting of ZIPK to the actin filaments, as observed upon PGF-2α stimulation, is inhibited by the presence of a cell permeant Par-4 decoy peptide. The same decoy peptide also significantly inhibits PGF-2α induced contractions of smooth muscle tissue. Moreover, knockdown of Par-4 using antisense morpholino nucleotides results in significantly reduced contractility, and myosin light chain and myosin phosphatase target subunit phosphorylation. These results indicate that Par-4 facilitates contraction by targeting ZIPK to the vicinity of its substrates, myosin light chain and MYPT, which are located on the actin filaments. These results identify Par-4 as a novel regulator of myosin light chain phosphorylation in differentiated, contractile vascular smooth muscle.  相似文献   

11.
The overexpression of the pro-apoptotic protein Prostate Apoptosis Response Protein-4 in colon cancer has been shown to increase response to the chemotherapeutic agent 5-fluorouracil (5-FU). Although colon cancer cells endogenously express Par-4, the presence or overexpression of Par-4 alone does not cause apoptosis. We hypothesize that Par-4 is inactivated in colon cancer. In colon cancer, the levels and the kinase activity of the nonreceptor tyrosine kinase c-Src increase with tumor progression. One of the downstream effectors of c-Src is Akt1. Akt1 has been shown to inhibit the pro-apoptotic activity of Par-4 in prostate cancer cells. We therefore investigated the potential of activating Par-4 by inhibiting c-Src. Colon carcinoma cell lines were treated with the Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2) in combination with the chemotherapeutic agent 5-FU. Treating cells with PP2 and 5-FU resulted in reduced interaction of Par-4 with Akt1 and with the scaffolding protein 14-3-3σ, and mobilization of Par-4 to the nucleus. Par-4 was shown to interact not only with Akt1 and 14-3-3σ, but also with c-Src. Overexpression of c-Src induced the phosphorylation of Par-4 at tyrosine site/s. Thus, in this study, we have shown that Par-4 can be activated by inhibiting Src with a pharmacological inhibitor and adding a chemotherapeutic agent. The activation of the pro-apoptotic protein Par-4 as reported in this study is a novel mechanism by which apoptosis occurs with a Src kinase inhibitor and 5-FU. In addition, we have demonstrated that the pro-apoptotic activity of endogenously expressed Par-4 can be increased in colon cancer cells.  相似文献   

12.
Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm and is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis.  相似文献   

13.
In Drosophila S2 cells, the apical caspase DRONC undergoes a low level of spontaneous autoprocessing. Unintended apoptosis is prevented by the inhibitor of apoptosis DIAP1, which targets the processed form of DRONC for degradation through its E3 ubiquitin protein ligase activity. Recent reports have demonstrated that shortly after the initiation of apoptosis in S2 cells, DIAP1 is cleaved following aspartate residue Asp-20 by the effector caspase DrICE. Here we report a novel caspase-mediated cleavage of DIAP1 in S2 cells. In both living and dying S2 cells, DIAP1 is cleaved by DRONC after glutamate residue Glu-205, located between the first and second BIR domains. The mutation of Glu-205 prevented the interaction of DIAP1 and processed DRONC but had no effect on the interaction with full-length DRONC. The mutation of Glu-205 also had a negative effect on the ability of overexpressed DIAP1 to prevent apoptosis stimulated by the proapoptotic protein Reaper or by UV light. These results expand our knowledge of the events that occur in the Drosophila apoptosome prior to and after receiving an apoptotic signal.  相似文献   

14.
Myosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility. Here, we test the hypothesis that Par-4 regulates MP activity directly. We show, by proximity ligation assays, surface plasmon resonance and coimmunoprecipitation, that Par-4 interacts with the targeting subunit of MP, MYPT1. Binding is mediated by the leucine zippers of MYPT1 and Par-4 and reduced by Par-4 phosphorylation. Overexpression of Par-4 leads to increased phosphatase activity of immunoprecipitated MP, whereas small interfering RNA knockdown of endogenous Par-4 significantly decreases MP activity and increases MYPT1 phosphorylation. LC20 phosphorylation assays demonstrate that overexpression of Par-4 reduces LC20 phosphorylation. In contrast, a phosphorylation site mutant, but not wild-type Par-4, interferes with zipper-interacting protein kinase (ZIPK)-mediated MP inhibition. We conclude from our results Par-4 operates through a “padlock” model in which binding of Par-4 to MYPT1 activates MP by blocking access to the inhibitory phosphorylation sites, and inhibitory phosphorylation of MYPT1 by ZIPK requires “unlocking” of Par-4 by phosphorylation and displacement of Par-4 from the MP complex.  相似文献   

15.
16.
Apoptosis Mediated by a Novel Leucine Zipper Protein Par-4   总被引:4,自引:0,他引:4  
The prostate apoptosis response-4 (par-4) gene was isolated in a differential screen for immediate-early genes that are up-regulated during apoptosis of prostate cancer cells. Unlike most other immediate-early genes, par-4 is exclusively induced during apoptosis. The expression or induction of par-4 is not restricted to prostatic cells. The par-4 gene is widely expressed in diverse normal tissues and cell types and conserved during evolution. Par-4 protein contains a leucine zipper domain that is essential for sensitization of cells to apoptosis. Functional studies indicate that par-4 expression is necessary to induce apoptosis. Par-4 protein may induce apoptosis by a p53-independent pathway that involves cytoplasmic inactivation of atypical protein kinase C isoforms resulting in down-regulation of MAP kinase activity and an up-regulation of p38 kinase activity. However, Par-4 is detected in the cytoplasm and in the nucleus, suggesting both cytoplasmic and nuclear roles for the pro-apoptotic protein. Interestingly, Par-4 is predicted to contain a death domain homologous to that of Fas or TRADD, and may therefore trigger a death cascade analogous to that of the death domain proteins. Par-4-dependent apoptosis is abrogated by Bcl-2 and by caspase inhibitors. Identification of the components of the p53-independent apoptosis pathway induced by Par-4 may help to further elucidate the mechanism of Par-4 action. Moreover, in view of the pro-apoptotic function of Par-4, its role in diseases, such as cancer and neurogenerative disorders, whose pathophysiology involves apoptotic cell death needs further investigation.  相似文献   

17.
We previously demonstrated caspase-mediated cleavage of p130cas during apoptosis and identified two caspase-3 cleavage sites [1]. In this study, we investigated the phosphorylation-dependent cleavage of p130cas in apoptotic Rat-1 fibroblast cells. Lysophosphatidic acid and fibronectin induced p130cas phosphorylation, which in turn resulted in resistance to caspase-mediated cleavage. Alternatively, dephosphorylation by calf intestinal alkaline phosphatase, PP1, and LAR stimulated cleavage of p130cas by caspase-3, generating a 31-kDa fragment. During apoptosis, p130cas dephosphorylation seems to precede its cleavage. The phosphorylation of tyrosine and serine residues immediately adjacent to the two cleavage sites (DVPD(416) and DSPD(748)) strongly affected p130cas cleavage by caspase-3, both in vitro and in vivo. Furthermore, the generation of the 31-kDa cleavage fragment was strongly regulated by phosphorylation of a tyrosine residue at position 751 (DSPD(748) and GQY(751)). Our results collectively suggest that degradation of p130cas during apoptosis is modulated in a phosphorylation-dependent manner.  相似文献   

18.
It has been demonstrated that vasoactive intestinal polypeptide, epidermal growth factor, and chronic activation of phosphatidylinositol 3-kinase can protect prostate cancer cells from apoptosis; however, the signaling pathways that they use and molecules that they target are unknown. We report that vasoactive intestinal polypeptide, epidermal growth factor, and phosphatidylinositol 3-kinase activate independent signaling pathways that phosphorylate the proapoptotic protein BAD. Vasoactive intestinal polypeptide operated via protein kinase A, epidermal growth factor required Ras activity, and effects of phosphatidylinositol 3-kinase were predominantly mediated by Akt. BAD phosphorylation was critical for the antiapoptotic effects of each signaling pathway. None of these survival signals was able to rescue cells that express BAD with mutations in phosphorylation sites, whereas knockdown of BAD expression with small hairpin RNA rendered cells insensitive to apoptosis. Taken together, these results identify BAD as a convergence point of several antiapoptotic signaling pathways in prostate cells.  相似文献   

19.
Diminished expression of NKX3.1 is associated with prostate cancer progression in humans, and in mice, loss of nkx3.1 leads to epithelial cell proliferation and altered gene expression patterns. The NKX3.1 amino acid sequence includes multiple potential phosphoacceptor sites for protein kinase CK2. To investigate posttranslational regulation of NKX3.1, phosphorylation of NKX3.1 by CK2 was studied. In vitro kinase assays followed by mass spectrometric analyses demonstrated that CK2 phosphorylated recombinant NKX3.1 on Thr89 and Thr93. Blocking CK2 activity in LNCaP cells with apigenin or 5,6-dichlorobenzimidazole riboside led to a rapid decrease in NKX3.1 accumulation that was rescued by proteasome inhibition. Replacing Thr89 and Thr93 with alanines decreased NKX3.1 stability in vivo. Small interfering RNA knockdown of CK2alpha' but not CK2alpha also led to a decrease in NKX3.1 steady-state level. In-gel kinase assays and Western blot analyses using fractionated extracts of LNCaP cells demonstrated that free CK2alpha' could phosphorylate recombinant human and mouse NKX3.1, whereas CK2alpha' liberated from the holoenzyme could not. These data establish CK2 as a regulator of NKX3.1 in prostate tumor cells and provide evidence for functionally distinct pools of CK2alpha' in LNCaP cells.  相似文献   

20.
The prostate apoptosis response-4 (par-4) gene was identified by differential screening for genes that are upregulated when prostate cancer cells are induced to undergo apoptosis. The par-4 gene is induced by apoptotic signals but not by growth-arresting, necrotic, or growth-stimulatory signals. The deduced amino acid sequence of par-4 predicts a protein with a leucine zipper domain at its carboxy terminus. We have recently shown that the Par-4 protein binds, via its leucine zipper domain, to the zinc finger domain of Wilms' tumor protein WT1 (R. W. Johnstone et al., Mol. Cell. Biol. 16:6945-6956, 1996). In experiments aimed at determining the functional role of par-4 in apoptosis, an antisense par-4 oligomer abrogated par-4 expression and activator-driven apoptosis in rat prostate cancer cell line AT-3, suggesting that par-4 is required for apoptosis in these cells. Consistent with a functional role for par-4 in apoptosis, ectopic overexpression of par-4 in prostate cancer cell line PC-3 and melanoma cell line A375-C6 conferred supersensitivity to apoptotic stimuli. Transfection studies with deletion mutants of Par-4 revealed that full-length Par-4, but not mutants that lacked the leucine zipper domain of Par-4, conferred enhanced sensitivity to apoptotic stimuli. Most importantly, ectopic coexpression of the leucine zipper domain of Par-4 inhibited the ability of Par-4 to enhance apoptosis. Finally, ectopic expression of WT1 attenuated apoptosis, and coexpression of Par-4 but not a leucine zipperless mutant of Par-4 rescued the cells from the antiapoptotic effect of WT1. These findings suggest that the leucine zipper domain is required for the Par-4 protein to function in apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号