首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Between 2006 and 2008, 20 populations of Planococcus ficus (Signoret), from Coachella and San Joaquin Valleys of California were measured in the laboratory for susceptibility to buprofezin, chlorpyrifos, dimethoate, methomyl, and imidacloprid. Toxicity was assessed using a petri dish bioassay technique for contact insecticides and by a systemic uptake technique for imidacloprid. Mixed life stages were tested for susceptibility to all insecticides except for buprofezin, which was measured against early and late instars (first, second, and third). Dose-response regression lines from the mortality data established LC50 and LC99 values by both techniques. Responses of populations from the two geographical locations to all five insecticides varied, in some cases significantly. Variations in susceptibility to each insecticide among sample sites showed a sevenfold difference for buprofezin, 11-fold to chlorpyrifos, ninefold to dimethoate, 24-fold to methomyl, and 8.5-fold to imidacloprid. In spite of susceptibility differences between populations, baseline toxicity data revealed that all five insecticides were quite effective based on low LC50s. Chlorpyrifos was the most toxic compound to Planococcus ficus populations as shown by lowest LC50s. Buprofezin was toxic to all immature stages but was more potent to first instars. The highest LC99 estimated by probit analysis of the bioassay data of all 20 populations for each compound was selected as a candidate discriminating dose for use in future resistance monitoring efforts. Establishment of baseline data and development of resistance monitoring tools such as bioassay methods and discriminating doses are essential elements of a sustainable management program for Planococcus ficus.  相似文献   

2.
Ten insecticides representing seven chemical groups were applied at various concentrations topically by using a Potter Spray Tower to evaluate their relative toxicities on the European wireworm Agriotes obscurus L. (Coleoptera: Elateridae). Wireworms were stored at 15 degrees C after exposure to organophosphate (OP) (chlorpyrifos, diazinon), pyrethroid (tefluthrin), thianicotinoid (thiamethoxam, clothianidin), chloronicotinoid (imidacloprid, acetamiprid), phenyl pyrazole (fipronil), organochlorine (lindane), and spinosyn (spinosad) insecticides, and their postapplication health was evaluated weekly for up to 301 d. LC50, LC90, LT50, and LT90 values were calculated for each chemical except acetamiprid, and compared with those of lindane, clothianidin, and chlorpyrifos. Wireworms exposed to OPs died or recovered more quickly (LT50 < 20 d, LT90 < 50 d), than those exposed to all other insecticides tested except tefluthrin (LT50 = 25.5 d, LT90 = 66.5 d). Wireworms exposed to sublethal concentrations of all neonicotinoids quickly became moribund after application but made a full recovery. Wireworms exposed to fipronil at concentrations near the LC90 value showed no intoxication symptoms for up to 35 d, and they did not recover after symptoms developed. For each chemical, increasing the concentration increased the time required for wireworms to recover but decreased the time required to kill wireworms. Fipronil was highly toxic to wireworms (LC50 = 0.0001%), but acetamiprid (LC50 = 1.82%), imidacloprid (LC50 = 0.83%), tefluthrin (LC50 = 0.23%), diazinon (LC50 = 0.54%), and spinosad (LC50 = 0.51%) were not. The toxicity of both clothianidin (LC50 = 0.07%) and thiamethoxam (LC50 = 0.17%) were similar to those oflindane (LC50 = 0.06%) and chlorpyrifos (LC50 = 0.10%).  相似文献   

3.
5种杀虫剂对滇东白背飞虱种群的毒性及其田间药效   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】为持续有效防控白背飞虱,研究云南东部白背飞虱种群对常用5种杀虫剂的敏感性及药剂的田间防治效果。【方法】采用室内稻茎浸渍法测定白背飞虱种群对5种杀虫剂的敏感性,同期通过田间小区试验评价5种杀虫剂对白背飞虱种群的防治效果。【结果】与敏感种群比较,噻虫嗪、噻嗪酮、吡虫啉、吡蚜酮和毒死蜱对滇东白背飞虱种群的LC_(50)分别为0.208、0.459、0.608、3.108、1.256 mg·L~(-1),抗性倍数分别为2.2、10.4、5.6、6.5、5.3倍;白背飞虱对噻虫嗪无抗性,对吡虫啉、吡蚜酮和毒死蜱为低水平抗性,对噻嗪酮为中等水平抗性;5种杀虫剂药后1、5和10 d对白背飞虱种群的田间防控效果均有显著差异。除了吡蚜酮外,其他药剂的防效均在80%以上,其中以吡虫啉和噻嗪酮的持续期较长,药后10 d仍在90%以上;噻虫嗪和吡虫啉药后1和5 d的防效达90%以上;吡蚜酮药效在供试药剂中防效最低,在64.88%~77.82%之间。【结论】滇东师宗白背飞虱种群对噻嗪酮为中等水平抗性,对吡虫啉、吡蚜酮和毒死蜱均为低水平抗性,对噻虫嗪无抗性,田间防控效果以吡虫啉和噻嗪酮为最好。建议滇东稻区可以使用吡虫啉和噻嗪酮药剂防控白背飞虱,注意控制吡蚜酮的使用次数与用量。  相似文献   

4.
Homalodisca coagulata Say, adults from three locations in California were subjected to insecticide bioassays to establish baseline toxicity. Initially, two bioassay techniques, petri dish and leaf dip, were compared to determine the most useful method to establish baseline susceptibility data under laboratory and greenhouse conditions. Comparative dose-response data were determined by both techniques to endosulfan, dimethoate, cyfluthrin, and acetamiprid. Toxic values were similar to some insecticides with both techniques but not for all insecticides, revealing susceptibility differences among the three populations of H. coagulata. In subsequent tests, the petri dish technique was selected to establish baseline susceptibility data to various contact insecticides. A systemic uptake bioassay was adapted to estimate dose-mortality responses to a systemic insecticide, imidacloprid. A 2-yr comparison of toxicological responses showed all three populations of H. coagulata to be highly susceptible to 10 insecticides, including chlorpyrifos, dimethoate, endosulfan, bifenthrin, cyfluthrin, esfenvalerate, fenpropathrin, acetamiprid, imidacloprid, and thiamethoxam. In general, two pyrethroids, bifenthrin and esfenvalerate, were the most toxic compounds, followed by two neonicotinoids, acetamiprid and imidacloprid. The LC50 values for all insecticides tested were lower than concentrations used as recommended field rates. Baseline data varied for the three geographically distinct H. coagulata populations with the petri dish technique. Adult H. coagulata collected from San Bernardino County were significantly more susceptible to select pyrethroids compared with adults from Riverside or Kern counties. Adults from San Bernardino County also were more sensitive to two neonicotinoids, acetamiprid and imidacloprid. The highest LC50 values were to endosulfan, which nonetheless proved highly toxic to H. coagulata from all three regions. In the majority of the tests, mortality increased over time resulting in increased susceptibility at 48 h compared with 24 h. These results indicate a wide selection of highly effective insecticides that could aid in managing H. coagulata populations in California.  相似文献   

5.
采用试管药膜法,测定了不同类型杀虫剂对日本刀角瓢虫Serangium japonicum Chapin的毒力。结果表明,灭多威和敌敌畏对日本刀角瓢虫具有极强的毒力,其25%推荐剂量即可导致日本刀角瓢虫全部死亡;氯虫苯甲酰胺、吡虫啉和噻虫嗪对日本刀角瓢虫也具有很强的毒力,其田间推荐剂量可导致日本刀角瓢虫全部死亡,其50%推荐剂量对日本刀角瓢虫的致死率也高达73.33%~100.00%;乐果、烯啶虫胺、丁醚脲田间推荐剂量对日本刀角瓢虫的致死率分别为40.00%、56.67%、50.00%,预示着上述这些杀虫剂的田间应用对刀角瓢虫具有很高的直接杀伤风险。高效氯氰菊酯、联苯菊酯、毒死蜱、甲氰菊酯、高效氯氟氰菊酯、虫螨腈、阿维菌素、吡蚜酮、噻嗪酮、定虫隆和氟虫脲对日本刀角瓢虫的毒力较低甚至没有直接致死作用。研究结果将为合理使用杀虫剂,协调利用化学防治与生物防治对烟粉虱进行综合防治提供依据。  相似文献   

6.
郭天娥  张正群  周超  刘峰  慕卫 《昆虫学报》2010,53(9):993-1000
利用闪烁管药膜法测定了2009年山东省德州、滨州、梁山、曲阜和聊城5个棉花产区绿盲蝽Lygus lucorum Meyer-Dür对硫丹、马拉硫磷、毒死蜱、灭多威、丁硫克百威、吡虫啉、联苯菊酯和氟虫腈8种杀虫剂的敏感性,筛选出适合各地区的高效防治药剂。结果表明:5个地区绿盲蝽种群对马拉硫磷、毒死蜱、丁硫克百威、联苯菊酯和吡虫啉处于敏感性阶段。不同种群之间对灭多威、硫丹和氟虫腈的敏感性差异较大,其中聊城种群为最敏感种群,滨州种群对灭多威、 硫丹和氟虫腈的LC50值分别为聊城种群的5.12,6.04和39.80倍;曲阜种群对灭多威、硫丹和氟虫腈的LC50值分别为聊城种群的22.12,5.48和22.80倍。两种群对此3种药剂的敏感性下降,而其余种群仍处于较敏感阶段。8种药剂对绿盲蝽成虫的毒力按大小依次排序为:氟虫腈>灭多威、联苯菊酯、硫丹>马拉硫磷、毒死蜱>丁硫克百威>吡虫啉。2009年7-10月间德州夏津绿盲蝽种群对8种杀虫剂的敏感性变化极微。  相似文献   

7.
惠州地区褐飞虱对几种药剂的抗药性监测   总被引:3,自引:0,他引:3  
2009年采用稻茎浸渍法测定广东省惠州地区褐飞虱Nilaparvata lugens(Stl)种群对吡虫啉、噻嗪酮、异丙威、丁烯氟虫腈、烯定虫胺和毒死蜱等杀虫剂的敏感性,测定结果表明:当地褐飞虱种群对吡虫啉产生了极高水平抗性(抗性倍数为422.2倍),对噻嗪酮、异丙威产生了中等水平抗性(抗性倍数分别为11.0和14.0倍),对丁烯氟虫腈仍处于敏感性降低(抗性倍数为3.7倍),对烯定虫胺和毒死蜱敏感(抗性倍数<3倍)。基于褐飞虱对这6种药剂抗性的明显差异,对田间治理褐飞虱合理使用药剂进行了讨论。  相似文献   

8.
本研究了复方生物农药宁虫素对蔬菜、水稻害虫的毒力及药效特性,结果表明,该药集速效性、特效性于一体,对蚜虫、褐飞虱的毒力分别为:0.63ppm和2.00ppm。田间试验表明,宁虫素可有效地控制蔬菜蚜虫、小菜蛾、菜青虫、稻飞虱等的危害,防效显。田间使用宁虫素后,平均蛛虱比明显优于噻嗪酮和吡虫啉,生态安全性好。  相似文献   

9.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) is one of the most serious nonnative invasive forest insects discovered in North America in recent years. A. glabripennis is regulated by federal quarantines in the United States and Canada and is the subject of eradication programs that involve locating, cutting, and chipping all infested trees. Other control methods are needed to aid in eradication and to form an integrated management program in the event eradication fails. We conducted laboratory bioassays to determine the toxicity of two systemic insecticides, azadirachtin and imidacloprid, for potential control of A. glabripennis and the cottonwood borer, Plectrodera scalator (F.) (Coleoptera: Cerambycidae), a closely related native cerambycid. Larvae of both cerambycid species were fed artificial diet with dilutions of azadirachtin or imidacloprid for 14 wk. Both insecticides exhibited strong antifeedant effects and some toxicity against A. glabripennis and P. scalator larvae. For A. glabripennis, the highest larval mortality at the end of the bioassay was 60% for larvae fed artificial diet treated with azadirachtin (50 ppm) or imidacloprid (1.6 ppm). For P. scalator, the highest larval mortality at the end of the bioassay was 100% for larvae fed artificial diet treated with azadirachtin (50 ppm) or imidacloprid (160 ppm). At 14 wk, the LC50 values for P. scalator were 1.58 and 1.78 ppm for azadirachtin and imidacloprid, respectively. Larvae of both species gained weight when fed diet treated with formulation blanks (inert ingredients) or the water control but lost weight when fed diet treated with increasing concentrations of either azadirachtin or imidacloprid. In a separate experiment, A. glabripennis adults were fed maple twigs treated with high and low concentrations of imidacloprid. A. glabripennis adult mortality reached 100% after 13 d on twigs treated with 150 ppm imidacloprid and after 20 d on twigs treated with 15 ppm imidacloprid. There was no visible feeding by A. glabripennis adults on twigs treated at the higher imidacloprid rate, and feeding was significantly reduced for adults placed on twigs treated at the low imidacloprid rate compared with adults on untreated twigs. In summary, imidacloprid and azadirachtin had both antifeedant and toxic effects against A. glabripennis and P. scalator and have potential for use in management programs. Based on our results, the delivery of high and sustained insecticide concentrations will be needed to overcome the antifeedant effects and lengthy lethal time for both larvae and adults exposed to these insecticides.  相似文献   

10.
The susceptibility of Stethorus punctum picipes (Casey) and Harmonia axyridis Pallas larvae to pesticides used or with potential for use in Washington hops, was examined in laboratory bioassays. All pesticides tested except the miticide, hexythiazox, the insecticides, chlorpyrifos and pirimicarb, and the fungicide, mycobutanil, produced 100% mortality in S. punctum picipes at concentrations equivalent to field rates. The insecticides, pirimicarb, endosulfan, and thiamethoxam were least toxic to H. axyridis. Bifenthrin, diazinon, dimethoate, methomyl, carbaryl, malathion, phosmet, imidacloprid, and chlorpyrifos were highly toxic. The miticides, abamectin and fenpyroximate were highly toxic, milbemectin was moderately toxic but all other miticides tested were non-toxic. All fungicides had low toxicity. Selection and use of pesticides compatible with natural enemies and conservation biological control in Washington hop production is discussed.  相似文献   

11.
Susceptibility of immatures of the glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae), to 10 insecticides that included chlorpyrifos, dimethoate, endosulfan, bifenthrin, cyfluthrin, esfenvalerate, fenpropathrin, acetamiprid, imidacloprid, and thiamethoxam was evaluated in the laboratory. All five instars were exposed to different doses of each foliar insecticide by the petri dish technique, whereas a systemic uptake method was used to assess the toxicity to imidacloprid and thiamethoxam. All test insecticides exhibited high toxicity to all immature stages of H. coagulata at concentrations below the field recommended rates of each insecticide. Although all five instars were susceptible to test insecticides, mortality was significantly higher in first instars than in the older immatures based on low LC50 values (ranging from 0.017 to 5.75 ng(AI)/ml) with susceptibility decreasing with each successive stage. Fifth instars were generally the least sensitive (LC50 values ranging from 0.325 to 216.63 ng (AI)/ml). These results show that mortality was directly related to age of the insect and suggest that chemical treatment at early stages is more effective than at late stages. Acetamiprid (neonicotinoid) and bifenthrin (pyrethroid) were the most toxic to all five instars, inducing most mortality within 24 h and showing lower LC50 values ranging from 0.017 to 0.686 ng/ml compared with other insecticides (LC50 values ranging from 0.191 to 216.63 ng(AI)/ml). Our data suggest that a diverse group of very effective insecticides are available to growers for controlling all stages of H. coagulata. Knowledge on toxicity of select insecticides to H. coagulata immatures may contribute to our understanding of resistance management in future for this pest by targeting specific life stages instead of the adult stage alone.  相似文献   

12.
为了明确温度对杀虫剂毒杀作用的影响,本文研究了5个温度梯度(22℃、25℃、28℃、31℃和34℃)下毒死蜱和噻嗪酮对褐飞虱的毒杀作用。结果表明毒死蜱在不同温度下对褐飞虱的毒力变化与噻嗪酮有所不同。处理时间相同时毒死蜱的LC50随温度升高而逐渐下降。毒死蜱处理24 h、72 h、120 h时,毒死蜱对褐飞虱的LC_(50)在22℃下分别的50.15、16.15和15.33 mg/L,而在34℃下分别降低为6.70、4.16和1.92 mg/L。在实验的5个温度下,噻嗪酮对褐飞虱的LC_(50)没有显著差异。同一温度下,噻嗪酮的LC50随处理时间的增加而降低,但没有显著差异。在全球变暖的大环境下,明确温度对毒死蜱和噻嗪酮的毒力影响状况,对于杀虫剂的合理使用具有一定的指导意义。  相似文献   

13.
The brown Planthopper (BPH), Nilaparvata lugens is a major pest of rice production in tropical Asia. The appearance of insecticide resistance challenges the control of BPH in field. The development of new insecticide is expensive and time-consuming. Thus, the precise and proper use of existing compounds becomes an important issue in resistance management of this pest. In this study, five commercial insecticides of BPH (permethrin, chlorpyrifos, imidacloprid, clothianidin and thiamethoxam) were tested to explore the toxicity of the binary mixture between different kinds of insecticides. In all combinations of mixture, the mixtures of permethrin and chlorpyrifos displays synergistic effect at three different mixture ratios (1:1, 1:10 and 10:1). The strongest synergism observed in permethrin/ chlorpyrifos mixtures at 1:1 ratio (Combination index, CI = 0.39). Addition of enzyme inhibitor followed by detoxification enzyme activity assays suggested that the mechanism of synergistic effect of permethrin/chlorpyrifos mixture may result from inhibition of the cytochrome P450 monooxygenase and esterase activity. This inference can be supported through two lines of evidence. One is decrease of toxicity when permethrin/chlorpyrifos mixture in a 1:1 ratio plus triphenyl phosphate (TPP) or piperonyl butoxide (PBO), but increase of toxicity when permethrin/chlorpyrifos mixture in a 10:1 ratio plus TPP or PBO. Another is exposure of the 3rd instar nymphs to permethrin/chlorpyrifos mixture after 72 h also significantly decreased both cytochrome P450 monooxygenases and esterase activity. Further field trail showed the mixture of 50 ppm permethrin +50 ppm chlorpyrifos increased the field control efficiency significantly rather than permethrin alone or chlorpyrifos alone. Our study indicated that the mixture of permethrin and chlorpyrifos in a 1:1 ratio might be an effective method for the control of BPH in paddy field.  相似文献   

14.
Field experiments were conducted to measure the effects of four commonly used turfgrass insecticides (isofenphos, diazinon, imidacloprid, halofenozide) on white grubs (Coleoptera: Scarabaeidae) and ant predators of white grub eggs. Ant populations were measured over time with canned tuna, whereas predation by the ants was measured with artificially placed Japanese beetle, Popillia japonica Newman, eggs. The effectiveness of each insecticide at controlling Japanese beetle grubs, when applied at different times during the growing season, also was measured. Isofenphos and diazinon significantly reduced both ant numbers and white grub egg predation, whereas imidacloprid and one halofenozide treatment did not significantly impact either measurement. A second halofenozide treatment significantly reduced white grub egg predation. Isofenphos and diazinon were ineffective at controlling Japanese beetle grubs when applied in June but were highly efficacious when applied in August. Evidence of enhanced biodegradation was found in plots that received both June and August applications of diazinon. Both June and August applications of imidacloprid and halofenozide provided good control of white grubs.  相似文献   

15.
褐飞虱和白背飞虱对几类杀虫剂的敏感性   总被引:8,自引:0,他引:8  
为了科学用药和抗性治理提供理论基础, 采用稻茎浸渍法测定了2008年7月采自浙江省杭州市和宁波市褐飞虱 Nilaparvata lugens (Stål)种群对7种杀虫剂的抗药性及褐飞虱和白背飞虱Sogatella furcifera (Horváth)种群对16种杀虫剂的敏感性。褐飞虱抗药性测定结果表明, 与相对敏感品系相比, 杭州种群和宁波种群对吡虫啉的抗性倍数分别为479.0倍和366.1倍; 对氯噻啉的抗性倍数分别为81.1倍和50.9倍; 对噻虫嗪的抗性倍数分别为10.3倍和9.4倍; 对噻嗪酮和氟虫腈分别产生了5.0~8.6倍和15.8~17.0倍的抗药性; 对烯啶虫胺和啶虫脒的抗性倍数在3倍以下。两种稻飞虱对杀虫剂的敏感性测定结果表明: 噻虫嗪、噻嗪酮、烯啶虫胺和毒死蜱对褐飞虱和白背飞虱种群都具有较高的室内毒力。当田间褐飞虱和白背飞虱混合发生时, 可选用噻虫嗪、噻嗪酮、烯啶虫胺和毒死蜱进行防治, 不宜使用吡虫啉、氯噻啉和氟虫腈防治。  相似文献   

16.
The effects of sublethal dosages of the chloronicotinyl insecticide imidacloprid on different strains of the tobacco whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae), have been studied after leaf dip and systemic application. All bioassays were performed with the insecticide susceptible strain, SUD-S, and two Spanish biotypes, ALM-2 and LMPA-2, both resistant to conventional insecticides and with a lower susceptibility towards imidacloprid. Honeydew, excreted by all strains feeding on treated and untreated cotton leaf discs was quantified by photometric analysis of its carbohydrate content. EC50-values for the depression of honeydew excretion in female adults after systemic application of imidacloprid were calculated at 0.037 ppm, 0.027 ppm and 0.048 ppm for strains SUD-S, ALM-2 and LMPA-2, respectively, indicating no significant differences between strains in feeding behaviour throughout an 48 h testing period. Depending on the strain these EC50-values were 150- to 850-times lower than LC50-values calculated for mortality in the same bioassay. Starvation tests revealed mean survival times of >48 h for female adults placed on agar without leaf discs, indicating that sublethal dosages of imidacloprid which caused antifeedant responses, were probably not covered in common 48 h systemic bioassays, used to monitor resistance to imidacloprid. Effects of sublethal dosages on honeydew excretion after leaf dip application seem to be minor. In choice situations with systemically treated and untreated leaf discs in a single container, female adults of B. tabaci showed a clear preference for the untreated leaf discs. However, when using leaf discs treated by painting the surface with imidacloprid in the same bioassay, feeding activities on treated and untreated leaf discs were not significantly different. The results of the present study demonstrate the antifeedant properties of imidacloprid on B. tabaci, which might play an essential role after soil application or seed treatment under field conditions.  相似文献   

17.
As part of the ongoing evaluation of different systemic insecticides for prophylactic treatment of trees, responses of the beetle Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) to different doses of four systemic neonicotinyl insecticides were studied. Adult beetles were provided with twigs or leaves of trees treated with different concentrations of imidacloprid to evaluate the toxicity of the insecticide through ingestion or contact or through both. Adult beetles also were provided with twigs of host plant treated with clothianidin, dinotefuran, and thiamethoxam to establish dose response of the beetle to these insecticides. Levels of individual insecticides in twigs and leaves were determined by using the "parent" method with high-performance liquid chromatography, and these levels were compared with the applied concentrations to determine their relationship. The LC50 values for detected level of each insecticide in twigs was 5.1 ppm at 24 h, 2.9 at 48 h, and 1.9 ppm at 72 h for imidacloprid; 1.1 ppm at 72 h for clothianidin; 2.2 ppm at 72 h for dinotefuran; and 1.0 ppm at 72 h for thiamethoxam. Our results indicate that mortality of adult beetles resulted not only from the ingestion and contact toxicity but also possibly from the antifeedant effect of imidacloprid.  相似文献   

18.
Laboratory studies were carried out to compare the toxicity of seven foliar insecticides to four species of adult beneficial insects representing two families of Hymenoptera: Aphelinidae (Aphytis melinus Debach, Eretmocerus eremicus Rose & Zolnerowich, and Encarsiaformosa Gahan) and Mymaridae (Gonatocerus ashmeadi Girault) that attack California red scale, Aonidiella aurantii (Maskell); sweetpotato whitefly, Bemisia tabaci (Gennadius) (both E. eremicus and E. formosa); and glassy-winged sharpshooter, Homalodisca vitripennis (Germar), respectively. Insecticides from four pesticide classes were evaluated using a petri dish bioassay technique across a range of concentrations to develop dosage-mortality regressions. Insecticides tested included acetamiprid (neonicotinoid); chlorpyrifos (organophosphate); bifenthrin, cyfluthrin, and fenpropathrin (pyrethroids); and buprofezin and pyriproxyfen (insect growth regulators [IGRs]). Chlorpyrifos was consistently the most toxic pesticide to all four species of beneficial insects tested based on LC50 values recorded 24 h posttreatment compared with 48-h LC50 values with the neonicotinoid and pyrethroids or 96 h with the IGRs. Among the three pyrethroids, fenpropathrin was usually less toxic (except similar toxicity to A. melinus) than was cyfluthrin, and it was normally less toxic (except similar toxicity with E. formosa) than was bifenthrin. Acetamiprid was generally less toxic than bifenthrin (except similar toxicity with G. ashmeadi). The IGRs buprofezin and pyriproxyfen were usually less toxic than the contact pesticides, but we did not test for possible impacts on female fecundity. For all seven pesticides tested, A. melinus was the most susceptible parasitoid of the four test species. The data presented here will provide pest managers with specific information on the compatibility of select insecticides with natural enemies attacking citrus and cotton, Gossypium hirsutum L., pests.  相似文献   

19.
Since the discovery of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in North America in 2000, chemical control has been the most effective method to manage aphid outbreaks. Increased insecticide use in soybean raises the possibility of developing insecticide resistance in soybean aphid, and monitoring insecticide susceptibility is essential to maintain pesticide tools. We developed a simple and reliable aphid-dip bioassay by using a tea strainer that resulted in -90% survival in controls. Using this technique, we tested susceptibility of a greenhouse strain of soybean aphid that has never been exposed to insecticides, and field-collected aphid strains from two counties in Michigan. Aphid susceptibility was tested for five insecticides by dipping groups of five aphids in each insecticide dose for 10 s. After 48 h, aphids were classified as dead or alive, and counted. Aphids from all strains were highly susceptible to chlorpyrifos, lambda-cyhalothrin, esfenvalerate, and dimethoate, with LC50 and LC90 values well below the recommended application rates. However, aphids showed less susceptibility after 48 h to neonicotinoid imidacloprid, with higher LC90s and wider fiducial limits. This illustrated the potential limitation of using a 48-h assay to evaluate insecticides with longer-term, sublethal impacts. Nevertheless, this study made use of a simple aphid-dip method to test and compare insecticide susceptibility of soybean aphid. In the event of a field failure, the aphid populations involved can be tested in comparison to a susceptible greenhouse strain to determine the extent of resistance development.  相似文献   

20.
20 0 2年在安徽省庐江县 4次田间试验结果表明 ,防治 3代和 4代稻飞虱 (Sogatellafurcifera(Horvath)和Nilaparvatalugens(St l) ) ,667m2 用 48%毒死蜱乳油 41 67mL +1 0 %吡虫啉可湿性粉剂 2 0g的处理 7d后防治效果分别为 93 0 3 %和 92 67% ,毒死蜱 5 2 0 8mL +2 5 %噻嗪酮可湿性粉剂 5 0g分别为92 79%和 95 2 2 %。防治 2代和 3代二化螟Chilosuppressalis(Walker) ,667m2 用毒死蜱 41 67mL +吡虫啉2 0g的处理 1 6d后防治效果分别为 73 2 2 %和 80 43 % ,毒死蜱 5 2 0 8mL +噻嗪酮 5 0g分别为 76 81 %和84 80 %。建议交替轮换使用以上混剂及剂量 ,并掌握在稻飞虱低龄若虫高峰期和二化螟卵孵高峰期施药 ,可有效防治稻飞虱和二化螟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号