首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The gene coding for isocitrate dehydrogenase of an extreme thermophile, Thermus thermophilus HB8, was cloned and sequenced. This gene consists of a single open reading frame of 1,485 bp preceded by a Shine-Dalgarno ribosome binding site. Promoter- and terminatorlike sequences were detected upstream and downstream of the open reading frame, respectively. The G + C content of the coding region was 65.6%, and that of the third nucleotide of the codons was 90.3%. On the basis of the deduced amino acid sequence, the Mr of the monomeric enzyme was calculated as 54,189, an Mr which is similar to that of the purified protein determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A comparison of the amino acid sequence of the T. thermophilus enzyme with that of the Escherichia coli enzyme showed (i) a 37% overall similarity; (ii) the conservation of the Ser residue, which is known to be phosphorylated in the E. coli enzyme, and of the surrounding sequence; and (iii) the presence of 141 extra residues at the C terminus of the T. thermophilus enzyme. T. thermophilus isocitrate dehydrogenase showed a high sequence homology (33% of the amino acid sequence is identical) to isopropylmalate dehydrogenase from the same organism and was suggested to have evolved from a common ancestral enzyme.  相似文献   

2.
A gene (leuB) coding for 3-isopropylmalate dehydrogenase [EC 1.1.1.85] from an extreme thermophile, Thermus aquaticus YT-1 was cloned in Escherichia coli and the nucleotide sequence was determined. It contains an open reading frame of 1,035 bp encoding 344 amino acid residues. The homology with that from T. thermophilus HB8 is 87.0% in nucleotide and 91.3% in amino acid sequences. No overlapped gene was found in the present leuB gene, in contrast to the previous prediction that Thermus leuD gene is overlapped with leuB [Croft et al. (1987) Mol. Gen. Genet. 210, 490-497]. Substitutions in the primary structure which are unique for the thermophile sequences are discussed in relation to the unusual stability of the thermophile dehydrogenase based on amino acid sequence comparison of 9 microorganisms including thermophiles and mesophiles.  相似文献   

3.
K Miyazaki 《Applied microbiology》1996,62(12):4627-4631
Isocitrate dehydrogenase from an extremely thermophilic bacterium, Thermus aquaticus YT1, was purified to homogeneity, and the gene was cloned by using a degenerate oligonucleotide probe based on the N-terminal sequence. The gene consisted of a single open reading frame of 1,278 bp preceded by a Shine-Dalgarno ribosome binding site, and a terminator-like sequence was detected downstream of the open reading frame. The G+C content of the coding region was 65%, and that of the third nucleotide of the codons was 93%. The amino acid sequence of the enzyme showed a relatively low level of similarity to the counterpart from T. thermophilus (35% identity) but showed higher levels of similarity (54 to 69% identity) to the other bacterial counterparts so far reported, including those from Escherichia coli, Bacillus subtilis, Vibrio sp., and Anabaena sp. The cloned gene was highly expressed in E. coli and easily purified to homogeneity by heat treatment (70 degrees C, 30 min) and DEAE column chromatography to yield approximately 10 mg of protein from 1 g of wet cells. The recombinant enzyme showed high thermostability and almost the same heat denaturation profile as the intact enzyme purified from the thermophile cells, implying that the recombinant protein has the same structure as the intact one.  相似文献   

4.
The gene for the Glu-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8, was isolated using a synthetic oligonucleotide probe coding for the N-terminal amino acid sequence of Glu-tRNA synthetase. Nucleotide-sequence analysis revealed an open reading frame coding for a protein composed of 468 amino acid residues (Mr 53,901). Codon usage in the T. thermophilus Glu-tRNA synthetase gene was in fact similar to the characteristic usages in the genes for proteins from bacteria of genus Thermus: the G + C content in the third position of the codons was as high as 94%. In contrast, the amino acid sequence of T. thermophilus Glu-tRNA synthetase showed high similarity with bacterial Glu-tRNA synthetases (35-45% identity); the sequences of the binding sites for ATP and for the 3' terminus of tRNA(Glu) are highly conserved. The Glu-tRNA synthetase gene was efficiently expressed in Escherichia coli under the control of the tac promoter. The recombinant T. thermophilus Glu-tRNA synthetase was extremely thermostable and was purified to homogeneity by heat treatment and three-step column chromatography. Single crystals of T. thermophilus Glu-tRNA synthetase were obtained from poly(ethylene glycol) 6000 solution by a vapor-diffusion technique. The crystals diffract X-rays beyond 0.35 nm. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters of a = 8.64 nm, b = 8.86 nm and c = 8.49 nm.  相似文献   

5.
6.
Using oligonucleotide probes derived from amino acid sequencing information, the structural gene for phosphoglycerate kinase from the extreme thermophile, Thermus thermophilus, was cloned in Escherichia coli and its complete nucleotide sequence determined. The gene consists of an open reading frame corresponding to a protein of 390 amino acid residues (calculated Mr 41,791) with an extreme bias for G or C (93.1%) in the codon third base position. Comparison of the deduced amino acid sequence with that of the corresponding mesophilic yeast enzyme indicated a number of significant differences. These are discussed in terms of the unusual codon bias and their possible role in enhanced protein thermal stability.  相似文献   

7.
The gene coding for N-acyl-D-mannosamine dehydrogenase (NAM-DH) from Flavobacterium sp. strain 141-8 was cloned and expressed under the control of a lac promoter in Escherichia coli JM109. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide composed of 272 amino acid residues (Mr, 27,473) was identified. The E. coli transformants which showed over 200-fold higher NAM-DH activity than did the Flavobacterium strain produced the enzyme as a protein fused with beta-galactosidase. Despite being a fusion, NAM-DH produced by E. coli transformants appeared unchanged in pH optimum, Km, and substrate specificity from Flavobacterium sp. strain 141-8. This newly recombinant enzyme may be applicable to the quantitative determination of sialic acid in serum.  相似文献   

8.
The gene coding for N-acyl-D-mannosamine dehydrogenase (NAM-DH) from Flavobacterium sp. strain 141-8 was cloned and expressed under the control of a lac promoter in Escherichia coli JM109. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide composed of 272 amino acid residues (Mr, 27,473) was identified. The E. coli transformants which showed over 200-fold higher NAM-DH activity than did the Flavobacterium strain produced the enzyme as a protein fused with beta-galactosidase. Despite being a fusion, NAM-DH produced by E. coli transformants appeared unchanged in pH optimum, Km, and substrate specificity from Flavobacterium sp. strain 141-8. This newly recombinant enzyme may be applicable to the quantitative determination of sialic acid in serum.  相似文献   

9.
T Hoshino  R Fujii    T Nakahara 《Applied microbiology》1993,59(9):3150-3153
We have cloned and sequenced a 1.5-kb chromosomal fragment of Thermus thermophilus which promoted the overproduction of carotenoids in T. thermophilus. An open reading frame (ORF-A) coding for a polypeptide with 289 amino acids was responsible for carotenoid overproduction. The putative ORF-A protein showed significant homology with the amino acid sequences of crtB gene products (phytoene syntheses) of other microorganisms. The clone containing the ORF-A on a multicopy plasmid produced about three times as much carotenoid as that produced by the host strain, suggesting that the crtB gene product is a rate-limiting enzyme for carotenoid biosynthesis in T. thermophilus.  相似文献   

10.
A subfamily I aminotransferase gene homologue containing an open reading frame encoding 381 amino acid residues (Mr=42,271) has been identified in the process of the genome project of an extremely thermophilic bacterium, Thermus thermophilus HB8. Alignment of the predicted amino acid sequence using FASTA shows that this protein is a member of aminotransferase subfamily Igamma. The protein shows around 40% identity with both T. thermophilus aspartate aminotransferase [EC 2.6.1.1] and mammalian glutamine:phenylpyruvate aminotransferase [EC 2.6.1.64]. The recombinant protein expressed in Escherichia coli is a homodimer with a subunit molecular weight of 42,000, has one pyridoxal 5'-phosphate per subunit, and is highly active toward glutamine, methionine, aromatic amino acids, and corresponding keto acids, but has no preference for alanine and dicarboxylic amino acids. These substrate specificities are similar to those described for mammalian glutamine: phenylpyruvate aminotransferase. This is the first enzyme reported so far that has the glutamine aminotransferase activity in non-eukaryotic cells. As the presence of aromatic amino acid:2-oxoglutarate aminotransferase [EC 2.6.1.57] has not been reported in T. thermophilus, this enzyme is expected to catalyze the last transamination step of phenylalanine and tyrosine biosynthesis. It may also be involved in the methionine regeneration pathway associated with polyamine biosynthesis. The enzyme shows a strikingly high pKa value (9.3) of the coenzyme Schiff base in comparison with other subfamily I aminotransferases. The origin of this unique pKa value and the substrate specificity is discussed based on the previous crystallographic data of T. thermophilus and E. coli aspartate aminotransferases.  相似文献   

11.
A gene encoding NADP-dependent Ds-threo-isocitrate dehydrogenase was isolated from Haloferax volcanii genomic DNA by using a combination of polymerase chain reaction and screening of a lambda EMBL3 library. Analysis of the nucleotide sequence revealed an open reading frame of 1260 bp encoding a protein of 419 amino acids with 45837 Da molecular mass. This sequence is highly similar to previously sequenced isocitrate dehydrogenases. In the alignment of the amino acid sequences with those from several archaeal and mesophilic NADP-dependent isocitrate dehydrogenases, the residues involved in dinucleotide binding and isocitrate binding are well conserved. We have developed methods for the expression in Escherichia coli and purification of the enzyme from H. volcanii. This expression was carried out in E. coli as inclusion bodies using the cytoplasmic expression vector pET3a. The enzyme was refolded by solubilisation in 8 M urea followed by dilution into a buffer containing EDTA, MgCl(2) and 3 M NaCl. Maximal activity was obtained after several hours incubation at room temperature.  相似文献   

12.
NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae is composed of two nonidentical subunits, designated IDH1 (Mr approximately 40,000) and IDH2 (Mr approximately 39,000). We have isolated and characterized a yeast genomic clone containing the IDH2 gene. The amino acid sequence deduced from the gene indicates that IDH2 is synthesized as a precursor of 369 amino acids (Mr 39,694) and is processed upon mitochondrial import to yield a mature protein of 354 amino acids (Mr 37,755). Amino acid sequence comparison between S. cerevisiae IDH2 and S. cerevisiae NADP(+)-dependent isocitrate dehydrogenase shows no significant sequence identity, whereas comparison of IDH2 and Escherichia coli NADP(+)-dependent isocitrate dehydrogenase reveals a 33% sequence identity. To confirm the identity of the IDH2 gene and examine the relationship between IDH1 and IDH2, the IDH2 gene was disrupted by genomic replacement in a haploid yeast strain. The disruption strain expressed no detectable IDH2, as determined by Western blot analysis, and was found to lack NAD(+)-dependent isocitrate dehydrogenase activity, indicating that IDH2 is essential for a functional enzyme. Overexpression of IDH2, however, did not result in increased NAD(+)-dependent isocitrate dehydrogenase activity, suggesting that both IDH1 and IDH2 subunits are required for catalytic activity. The disruption strain was unable to utilize acetate as a carbon source and exhibited a 2-fold slower growth rate than wild type strains on glycerol or lactate. This growth phenotype is consistent with NAD(+)-dependent isocitrate dehydrogenase performing an essential role in the oxidative function of the citric acid cycle.  相似文献   

13.
The gene coding aspartate racemase (EC 5.1.1.13) was cloned from the lactic acid bacteria Streptococcus thermophilus IAM10064 and expressed efficiently in Escherichia coli. The 2.1 kilobase pairs long full length clone had an open reading frame of 729 nucleotides coding for 243 amino acids. The calculated molecular weight of 27,945 agreed well with the apparent molecular weight of 28,000 found in sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis of the aspartate racemase purified from S. thermophilus. The N-terminal amino acid sequence from the purified protein exactly matches the derived sequence. In addition, the amino acid composition compiled from the derived sequence is very similar to that obtained from the purified recombinant protein. No significantly homologous proteins were found in a protein sequence data bank. Even the homology scores with alanine racemases of Salmonella typhimurium and Bacillus stearothermophilus were low. Aspartate racemase was overproduced in Escherichia coli NM522 with plasmid pAG6-2-7, which was constructed from two copies of the gene linked with a tac promoter and plasmid vector pUC18. The amount of aspartate racemase increases with the growth of E. coli and almost no degradation of the enzyme was observed. The maximum amount of the produced enzyme reached approx. 20% of the total protein of E. coli.  相似文献   

14.
15.
A thermostable homodimeric isocitrate dehydrogenase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus was purified and characterized. The mol. mass of the isocitrate dehydrogenase subunit was 42 kDa as determined by SDS-PAGE. Following separation by SDS-PAGE, A. fulgidus isocitrate dehydrogenase could be renatured and detected in situ by activity staining. The enzyme showed dual coenzyme specificity with a high preference for NADP+. Optimal temperature for activity was 90° C or above, and a half-life of 22 min was found for the enzyme when incubated at 90° C in a 50 mM Tricine-KOH buffer (pH 8.0). Based on the N-terminal amino acid sequence, the gene encoding the isocitrate dehydrogenase was cloned. DNA sequencing identified the icd gene as an open reading frame encoding a protein of 412 amino acids with a molecular mass corresponding to that determined for the purified enzyme. The deduced amino acid sequence closely resembled that of the isocitrate dehydrogenase from the archaeon Caldococcus noboribetus (59% identity) and bacterial isocitrate dehydrogenases, with 57% identity with isocitrate dehydrogenase from Escherichia coli. All the amino acid residues directly contacting substrate and coenzyme (except Ile-320) in E. coli isocitrate dehydrogenase are conserved in the enzyme from A. fulgidus. The primary structure of A. fulgidus isocitrate dehydrogenase confirmes the presence of Bacteria-type isocitrate dehydrogenases among Archaea. Multiple alignment of all the available amino acid sequences of di- and multimeric isocitrate dehydrogenases from the three domains of life shows that they can be divided into three distinct phylogenetic groups. Received: 6 February 1997 / Accepted: 12 June 1997  相似文献   

16.
A Butyrivibrio fibrisolvens H17c glgB gene, was isolated by direct selection for colonies that produced clearing on starch azure plates. The gene was expressed in Escherichia coli from its own promoter. The glgB gene consisted of an open reading frame of 1,920 bp encoding a protein of 639 amino acids (calculated Mr, 73,875) with 46 to 50% sequence homology with other branching enzymes. A limited region of 12 amino acids showed sequence similarity to amylases and glucanotransferases. The B. fibrisolvens branching enzyme was not able to hydrolyze starch but stimulated phosphorylase alpha-mediated incorporation of glucose into alpha-1,4-glucan polymer 13.4-fold. The branching enzyme was purified to homogeneity by a simple two-step procedure; N-terminal sequence and amino acid composition determinations confirmed the deduced translational start and amino acid sequence of the open reading frame. The enzymatic properties of the purified enzyme were investigated. The enzyme transferred chains of 5 to 10 (optimum, 7) glucose units, using amylose and amylopetin as substrates, to produce a highly branched polymer.  相似文献   

17.
A cDNA clone encoding the glyoxysomal enzyme isocitrate lyase (ICL) (EC 4.1.3.1) was isolated from a library prepared from cotton (Gossypium hirsutum L.) cotyledon poly(A)+ RNA. The clone is 1893 basepairs (bp) in length and contains a 1728 bp open reading frame encoding a polypeptide of 576 residues (Mr = 64,741). The deduced amino acid sequence of cotton ICL is 85.2%, 90.3% and 41.1% identical to ICL from rapeseed, castor bean and E. coli, respectively. Cotton ICL has a C-terminal tripeptide of A-R-M which is a putative trafficking signal for peroxisome (glyoxysome) proteins.  相似文献   

18.
19.
The gene gyrA of Escherichia coli, which encodes the A subunit of DNA gyrase (topoisomerase II), has been cloned and a region of approximately 3300 base-pairs sequenced. An open reading frame of 2625 nucleotides coding for a protein of 97,000 Mr is located. The peptide weight of the subunit predicted from this open reading frame is in close agreement with previously published estimates of that of the A subunit. There is a "TATAAT" promoter motif located 44 bases upstream from the first "ATG" of the open reading frame. The amino acid sequence derived from the nucleotide sequence is about 50% homologous with that derived from the Bacillus subtilis gyrA gene sequence, with several regions showing greater than 90% homology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号