首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GTP cyclohydrolase II catalyzes the first committed step in the biosynthesis of riboflavin. The gene coding for this enzyme in Escherichia coli has been cloned by marker rescue. Sequencing indicated an open reading frame of 588 bp coding for a 21.8-kDa peptide of 196 amino acids. The gene was mapped to a position at 28.2 min on the E. coli chromosome and is identical with ribA. GTP cyclohydrolase II was overexpressed in a recombinant strain carrying a plasmid with the cloned gene. The enzyme was purified to homogeneity from the recombinant strain. The N-terminal sequence determined by Edman degradation was identical to the predicted sequence. The sequence is homologous to the 3' part of the central open reading frame in the riboflavin operon of Bacillus subtilis.  相似文献   

2.
The gene encoding a novel L-ribose isomerase (L-RI) from Acinetobacter sp. was cloned into Escherichia coli and nucleotide sequence was determined. The gene corresponded to an open reading frame of 747 bp that codes for a deduced protein of 249 amino acids, which showed no amino acid sequence similarity with any other sugar isomerases. After expression of the gene in E. coli using pUC118 the recombinant L-RI was purified to homogeneity using different chromatographic methods. The overall enzymatic properties of the purified recombinant L-RI were the same as those of the authentic L-RI. To our knowledge, this is the first time report concerning the L-RI gene.  相似文献   

3.
The gene, designated hep, coding for a heparinase that degrades both heparin and heparan sulfate, was cloned from Bacillus circulans HpT298. Nucleotide sequence analysis showed that the open reading frame of the hep gene consists of 3,150 bp, encoding a precursor protein of 1,050 amino acids with a molecular mass of 116.5 kDa. A homology search found that the deduced amino acid sequence has partial similarity with enzymes belonging to the family of acidic polysaccharide lyases that degrade chondroitin sulfate and hyaluronic acid. Recombinant mature heparinase (111.2 kDa) was produced by the addition of IPTG from Escherichia coli harboring pETHEP with an open reading frame of the mature hep gene and was purified to homogeneity by SDS-polyacrylamide gel electrophoresis. Analyses of substrate specificity and degraded disaccharides indicated that the recombinant enzyme acts on both heparin and HS, as does heparinase purified from the wild-type strain.  相似文献   

4.
A mutanase (alpha-1,3-glucanase)-producing microorganism was isolated from a soil sample and was identified as a relative of Paenibacillus sp. The mutanase was purified to homogeneity from culture, and its molecular mass was around 57 kDa. The gene for the mutanase was cloned by PCR using primers based on the N-terminal amino acid sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of 3651-bp open reading frame that encoded a predicted 1217-amino acid polypeptide including a 43-amino acid signal peptide. The mature enzyme showed similarity to mutanases RM1 of Bacillus sp. strain RM1 and KA-304 of Bacillus circulans with 65.6% and 62.7% identity, respectively. The predicted molecular mass of the mutanase was 123 kDa. Thus, the enzyme purified from the isolate appears to be truncated by proteolysis. The genes for the full-length and truncated mutanases were expressed in Bacillus subtilis cells, and the corresponding recombinant enzymes were purified to homogeneity. The molecular masses of the two enzymes were 116 and 57 kDa, respectively. The specific activity was 10-fold higher for the full-length enzyme than for the truncated enzyme. The optimal pH and temperature for both recombinant enzymes was pH 6.4 in citrate buffer and 45 degrees C to 50 degrees C. Amongst several tested polysaccharides, the recombinant full-length enzyme specifically hydrolyzed mutan.  相似文献   

5.
The gene encoding (6R)-2,2,6-trimethyl-1,4-cyclohexanedione (levodione) reductase was cloned from the genomic DNA of the soil isolate bacterium Corynebacterium aquaticum M-13. The gene contained an open reading frame consisting of 801 nucleotides corresponding to 267 amino acid residues. The deduced amino acid sequence showed approximately 35% identity with other short chain alcohol dehydrogenase/reductase (SDR) superfamily enzymes. The probable NADH-binding site and three catalytic residues (Ser-Tyr-Lys) were conserved. The enzyme was sufficiently produced in recombinant Escherichia coli cells using an expression vector pKK223-3, and purified to homogeneity by two-column chromatography steps. The enzyme purified from E. coli catalyzed stereo- and regio-selective reduction of levodione, and was strongly activated by monovalent cations, such as K+, Na+, and NH4+, as was the case of that from C. aquaticum M-13. To our knowledge, this is the first sequencing report of a monovalent cation-activated SDR enzyme.  相似文献   

6.
A mutanase (α-1,3-glucanase)-producing microorganism was isolated from a soil sample and was identified as a relative of Paenibacillus sp. The mutanase was purified to homogeneity from culture, and its molecular mass was around 57 kDa. The gene for the mutanase was cloned by PCR using primers based on the N-terminal amino acid sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of 3651-bp open reading frame that encoded a predicted 1217-amino acid polypeptide including a 43-amino acid signal peptide. The mature enzyme showed similarity to mutanases RM1 of Bacillus sp. strain RM1 and KA-304 of Bacillus circulans with 65.6% and 62.7% identity, respectively. The predicted molecular mass of the mutanase was 123 kDa. Thus, the enzyme purified from the isolate appears to be truncated by proteolysis. The genes for the full-length and truncated mutanases were expressed in Bacillus subtilis cells, and the corresponding recombinant enzymes were purified to homogeneity. The molecular masses of the two enzymes were 116 and 57 kDa, respectively. The specific activity was 10-fold higher for the full-length enzyme than for the truncated enzyme. The optimal pH and temperature for both recombinant enzymes was pH 6.4 in citrate buffer and 45 °C to 50 °C. Amongst several tested polysaccharides, the recombinant full-length enzyme specifically hydrolyzed mutan.  相似文献   

7.
The gene encoding alpha-L-arabinofuranosidase (STX-IV), located upstream of the previously reported stxI gene, was cloned and sequenced. The gene is divergently transcribed from the stxI gene, and the two genes are separated by 661 nucleotides. The stxIV gene consists of a 1,092-bp open reading frame encoding 363 amino acids. The deduced amino acid sequence of the gene showed that STX-IV was an enzyme consisting of only a catalytic domain, and that the enzyme had significant similarity with alpha-L-arabinofuranosidases belonging to family 62 of glycosyl hydrolases. The stxIV gene was expressed in Escherichia coli, and the recombinant protein was purified to homogeneity. Arabinoxylan and oat spelt xylan were good substrates for STX-IV, however, the enzyme showed a low activity with p-nitrophenyl alpha-L-arabinofuranoside. The optimum pH and temperature were 5.0 and 60 degrees C, respectively.  相似文献   

8.
芽孢杆菌α-淀粉酶基因的克隆、表达和酶学性质分析   总被引:1,自引:0,他引:1  
在仔猪结肠内容物中分离出一株能利用淀粉的芽孢杆菌Bacillussp.WS06,构建了全基因组DNA文库,从中筛选出α_淀粉酶基因amyF,分析测定了其核苷酸序列并进行了表达;其中amyF编码的蛋白有526个氨基酸、分子量为58.6kD;它与已报道的Bacillusmegaterium的α_淀粉酶序列有93%的同源性。经过氨基酸序列比较分析还发现,AmyF含有淀粉酶家族中4个高度保守的酶催化活性区。经多步纯化,重组酶的比活共提高了22.2倍,获得凝胶电泳均一的蛋白样品;经SDS_PAGE检测,AmyF酶分子量为57kD。该酶的最适反应温度为55℃~60℃,酶的最适反应pH为7.0,在温度不超过55℃时,酶活较稳定;AmyF能迅速降解淀粉生成麦芽寡糖,属于内切糖苷酶。  相似文献   

9.
The intracellular beta-xylosidase was induced when Streptomyces thermoviolaceus OPC-520 was grown at 50 degrees C in a minimal medium containing xylan or xylooligosaccharides. The 82-kDa protein with beta-xylosidase activity was partially purified and its N-terminal amino acid sequence was analyzed. The gene encoding the enzyme was cloned, sequenced, and expressed in Escherichia coli. The bxlA gene consists of a 2,100-bp open reading frame encoding 770 amino acids. The deduced amino acid sequence of the bxlA gene product had significant similarity with beta-xylosidases classified into family 3 of glycosyl hydrolases. The bxlA gene was expressed in E. coli, and the recombinant protein was purified to homogeneity. The enzyme was a monomer with a molecular mass of 82 kDa. The purified enzyme showed hydrolytic activity towards only p-nitrophenyl-beta-D-xylopyranoside among the synthetic glycosides tested. Thin-layer chromatography analysis showed that the enzyme is an exo-type enzyme that hydrolyze xylooligosaccharides, but had no activity toward xylan. High activity against pNPX occurred in the pH range 6.0-7.0 and temperature range 40-50 degrees C.  相似文献   

10.
Thiobacillus sp. strain KNK65MA, which produced an NAD-dependent formate dehydrogenase (FDH) highly resistant to alpha-haloketones, was newly isolated, i.e., the enzyme showed no loss of activity after a 5-h incubation with alpha-haloketones, such as ethyl 4-chloro-3-oxobutanoate. The enzyme was also resistant to SH reagents. The enzyme, purified to homogeneity, was a dimer composed of identical subunits. The specific activity was 7.6 u/mg, and the apparent Km values for formate and NAD+ were 1.6 and 0.048 mM, respectively. The cloned gene of FDH contained one open reading frame (ORF) of 1206 base pairs, predicted to encode a polypeptide of 401 amino acids, with a calculated molecular weight of 44,021; this gene was highly expressed in E. coli cells. The deduced amino acid sequence of this FDH had high identity to other bacterial FDHs.  相似文献   

11.
In the present study, the xylA gene encoding a thermostable xylose (glucose) isomerase was cloned from Streptomyces chibaensis J-59. The open reading frame of xylA (1167 bp) encoded a protein of 388 amino acids with a calculated molecular mass of about 43 kDa. The XylA showed high sequence homology (92% identity) with that of S. olivochromogenes. The xylose (glucose) isomerase was expressed in Escherichia coli and purified. The purified recombinant XylA had an apparent molecular mass of 45 kDa, which corresponds to the molecular mass calculated from the deduced amino acid and that of the purified wild-type enzyme. The N-terminal sequences (14 amino acid residues) of the purified protein revealed that the sequences were identical to that deduced from the DNA sequence of the xylA gene. The optimum temperature of the purified enzyme was 85 degrees C and the enzyme exhibited a high level of heat stability.  相似文献   

12.
The alginate lyase-encoding gene (algL) of Azotobacter chroococcum was localized to a 3.1-kb EcoRI DNA fragment that revealed an open reading frame of 1,116 bp. This open reading frame encodes a protein of 42.98 kDa, in agreement with the value previously reported by us for this protein. The deduced protein has a potential N-terminal signal peptide that is consistent with its proposed periplasmic location. The analysis of the deduced amino acid sequence indicated that the gene sequence has a high homology (90% identity) to the Azotobacter vinelandii gene sequence, which has very recently been deposited in the GenBank database, and that it has 64% identity to the Pseudomonas aeruginosa gene sequence but that it has rather low homology (15 to 22% identity) to the gene sequences encoding alginate lyase in other bacteria. The A. chroococcum AlgL protein was overproduced in Escherichia coli and purified to electrophoretic homogeneity in a two-step chromatography procedure on hydroxyapatite and phenyl-Sepharose. The kinetic and molecular parameters of the recombinant alginate lyase are similar to those found for the native enzyme.  相似文献   

13.
We purified to homogeneity an enzyme from Citrobacter sp. strain KCTC 18061P capable of decolorizing triphenylmethane dyes. The native form of the enzyme was identified as a homodimer with a subunit molecular mass of about 31 kDa. It catalyzes the NADH-dependent reduction of triphenylmethane dyes, with remarkable substrate specificity related to dye structure. Maximal enzyme activity occurred at pH 9.0 and 60 degrees C. The enzymatic reaction product of the triphenylmethane dye crystal violet was identified as its leuco form by UV-visible spectral changes and thin-layer chromatography. A gene encoding this enzyme was isolated based on its N-terminal and internal amino acid sequences. The nucleotide sequence of the gene has a single open reading frame encoding 287 amino acids with a predicted molecular mass of 30,954 Da. Although the deduced amino acid sequence displays 99% identity to the hypothetical protein from Listeria monocytogenes strain 4b H7858, it shows no overall functional similarity to any known protein in the public databases. At the N terminus, the amino acid sequence has high homology to sequences of NAD(P)H-dependent enzymes containing the dinucleotide-binding motif GXXGXXG. The enzyme was heterologously expressed in Escherichia coli, and the purified recombinant enzyme showed characteristics similar to those of the native enzyme. This is the first report of a triphenylmethane reductase characterized from any organism.  相似文献   

14.
Azo dyes are regarded as pollutants because they are not readily reduced under aerobic conditions. Bacillus sp. OY1-2 transforms azo dyes into colorless compounds, and this reduction is mediated by a reductase activity for the azo group in the presence of NADPH. A 1.2-kbp EcoRI fragment containing the gene that encodes azoreductase was cloned by screening the genomic library of Bacillus sp. OY1-2 with digoxigenin-labeled probe designed from the N-terminal amino acid sequence of the purified enzyme. An open reading frame encoding the azoreductase, consisting of 178 amino acids, was predicted from the nucleotide sequence. In addition, because only a Bacillus subtillis hypothetical protein was discovered in the public databases (with an amino acid identity of 52.8%), the gene encoding the azoreductase cloned in this study was predicted to be a member of a novel family of reductases. Southern blot analysis revealed that the azoreductase gene exists as a single copy gene on a chromosome. Escherichia coli-expressing recombinant azoreductase gave a ten times greater reducing activity toward azo dyes than the original Bacillus sp. OY1-2. In addition, the expressed azoreductase purified from the recombinant E. coli lysate by Red-Sepharose affinity chromatography showed a similar activity and specificity as the native enzyme. This is the first report describing the sequencing and characterization of a gene encoding the azo dye-reducing enzyme, azoreductase, from aerobic bacteria and its expression in E. coli.  相似文献   

15.
The fructose-1,6-bisphosphate aldolase gene from the thermophilic bacterium, Anoxybacillus gonensis G2, was cloned and sequenced. Nucleotide sequence analysis revealed an open reading frame coding for a 30.9 kDa protein of 286 amino acids. The amino acid sequence shared approximately 80-90% similarity to the Bacillus sp. class II aldolases. The motifs that are responsible for the binding of a divalent metal ion and catalytic activity completely conserved. The gene encoding aldolase was overexpressed under T7 promoter control in Escherichia coli and the recombinant protein purified by nickel affinity chromatography. Kinetic characterization of the enzyme was performed at 60 degrees C, and K(m) and V(max) were found to be 576 microM and 2.4 microM min(-1) mg protein(-1), respectively. Enzyme exhibits maximal activity at pH 8.5. The activity of enzyme was completely inhibited by EDTA.  相似文献   

16.
The gene encoding (6R)-2,2,6-trimethyl-1,4-cyclohexanedione (levodione) reductase was cloned from the genomic DNA of the soil isolate bacterium Corynebacterium aquaticum M-13. The gene contained an open reading frame consisting of 801 nucleotides corresponding to 267 amino acid residues. The deduced amino acid sequence showed approximately 35% identity with other short chain alcohol dehydrogenase/reductase (SDR) superfamily enzymes. The probable NADH-binding site and three catalytic residues (Ser-Tyr-Lys) were conserved. The enzyme was sufficiently produced in recombinant Escherichia coli cells using an expression vector pKK223-3, and purified to homogeneity by two-column chromatography steps. The enzyme purified from E. coli catalyzed stereo- and regio-selective reduction of levodione, and was strongly activated by monovalent cations, such as K+, Na+, and NH4 +, as was the case of that from C. aquaticum M-13. To our knowledge, this is the first sequencing report of a monovalent cation-activated SDR enzyme.  相似文献   

17.
The gene for the NAD-dependent formate dehydrogenase (FDH) of Paracoccus sp. 12-A, a formate-assimilating bacterium, was cloned through screening of the genomic library with activity staining. The FDH gene included an open reading frame of 1,200 base pairs, and encoded a protein of 43,757 Da, which had high amino acid sequence identity with known FDHs, in particular, with bacterial enzymes such as those of Moraxella sp. (86.5%) and Pseudomonas sp. 101 (83.5%). The gene was highly expressed in Escherichia coli cells using an expression plasmid with the pUC ori and tac promoter. The recombinant enzyme was somewhat inactive in the stage of the cell-free extract, but its activity markedly increased with purification, in particular, with the step of heat-treatment at 50 degrees C. The purified enzyme showed essentially the same properties as the enzyme from the original Paracoccus cells.  相似文献   

18.
The cDNA encoding fumarase, an enzyme catalyzing reversible hydration of fumarate to L-malate, from the parasitic roundworm Ascaris suum, has been cloned, sequenced, over-expressed in Escherichia coli, and purified. The single open reading frame translates into a protein of 50,502Da containing 467 amino acids. It shows 82, 77, and 58% identity with Caenorhabditis elegans, human, and E. coli fumC fumarases, respectively. The A. suum fumarase shows the signature sequence motif (GSSIMPGKVNPTQCE), which defines not only the class II fumarase family but also a much broader superfamily of proteins containing GSSxMPxKxNPxxxE motif. The coding region was cloned into pET101D-directional TOPO expression vector and transformed into E. coli BL21 Star (DE3). The protein after induction was expressed at high levels, almost 10% of the soluble protein, purified to near homogeneity, and appears identical to the enzyme purified from Ascaris suum.  相似文献   

19.
A pectate lyase (Pel; pectate transeliminase: EC4.2.2.2.), designated Pel-15H, was found in an alkaline culture of Bacillus sp. strain KSM-P15 and purified to homogeneity by sequential column chromatographies. The molecular weight of the enzyme determined by SDS-polyacrylamide gel electrophoresis was approximately 70,000 and the pI was around pH 4.6. Pel-15H randomly trans-eliminated polygalacturonate in the presence of Ca2+ ions, and the maximum activity was observed at pH 11.5 and at 55 degrees C in glycine-NaOH buffer. The gene for Pel-15H was cloned and sequenced, and the structural gene contained a 2,031-bp open reading frame that encoded 677 amino acids including a possible 28-amino-acid signal sequence. The mature enzyme (649 amino acids, molecular weight 69,550) showed very low similarity to Pels from Bacillus with 12.7-18.2% identity. Interestingly, part of the amino acid sequence of Pel-15H had fairly high similarity only to an N-terminal half of PelL and a C-terminal half of PeIX from Erwinia chrysanthemi 3937, and a C-terminal half of PeIX from E. chrysanthemi EC16 (approximately 35% identity for all).  相似文献   

20.
We have determined the nucleotide sequence of the gene encoding thermostable L-2-halo acid dehalogenase (L-DEX) from the 2-chloroacrylate-utilizable bacterium Pseudomonas sp. strain YL. The open reading frame consists of 696 nucleotides corresponding to 232 amino acid residues. The protein molecular weight was estimated to be 26,179, which was in good agreement with the subunit molecular weight of the enzyme. The gene was efficiently expressed in the recombinant Escherichia coli cells: the amount of L-DEX corresponds to about 49% of the total soluble proteins. The predicted amino acid sequence showed a high level of similarity to those of L-DEXs from other bacterial strains and haloacetate dehalogenase H-2 from Moraxella sp. strain B (38 to 57% identity) but a very low level of similarity to those of haloacetate dehalogenase H-1 from Moraxella sp. strain B (10%) and haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (12%). By searching the protein amino acid sequence database, we found two E. coli hypothetical proteins similar to the Pseudomonas sp. strain YL L-DEX (21 to 22%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号