首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wang Q  Li H  Liu S  Wang G  Wang Y 《Animal biotechnology》2005,16(2):191-201
Fatty acid-binding proteins (FABPs) are members of a superfamily of lipid-binding proteins, occurring intracellularly in invertebrates and vertebrates. This study was designed to clone and characterize the genes of heart fatty acid-binding protein and intestine fatty acid-binding protein in the chicken. PCR primers were designed according to the chicken EST sequences to amplify cDNA of H-FABP and I-FABP genes from chicken heart and intestinal tissues. Analysis of sequence showed that the cDNA of the chicken H-FABP gene is 75 to 77% homologues to human, mouse, and pig H-FABP genes, and the chicken I-FABP gene is 71 to 72% homologues to human, mouse, and pig I-FABP genes. In addition, Northern blot analysis indicated that of the two genes, similar to the copartner of the mammal, H-FABP gene was expressed in a wide variety of tissues, and I-FABP gene was expressed only in intestinal tissues. The expression levels of the chicken H-FABP mRNA in heart and I-FABP mRNA in intestine had significant differences between the broilers from fat line and Bai'er layers at six weeks of age. The results of this study provided basic molecular information for studying the role of two FABPs in the regulation of fatty acid metabolism in avian species.  相似文献   

2.
猪I-FABP基因的分子克隆与组织特异性表达分析   总被引:6,自引:1,他引:5  
姜延志  李学伟 《遗传学报》2006,33(2):125-132
小肠型脂肪酸结合蛋白对长链脂肪酸具有高度的亲和力,参与脂肪酸的吸收和细胞内转运。利用cDNA末端快速扩增(RACE)技术并结合同源克隆策略,克隆到了编码猪小肠型脂肪酸结合蛋白基因(I-FABP)的全长cDNA序列(GenBank接受号:AY960624),并对系统发育关系等进行了生物信息学分析。猪I-FABP基因的cDNA序列全长614 bp,其中包括399bp的开放式读码框(ORF),43bp的5’末端非编码区(5’URT)和172bp的3’末端非编码区(3’URT),编码132个氨基酸残基蛋白,在氨基酸水半上与其他物种的I-FABP具有高度的同源性。以邻接法(Neigbor-Joining,NJ)所构建的系统发育关系表明,猪I-FABP与其他物种的,I-FABP属于同一类群,且与人的遗传距离最近。Northern杂交和半定量RT—PCR分析发现,猪I-FABP在猪体组织中出现约620bp大小的转录本,且在猪体组织中广泛存在,但在小肠组织中表达量最为丰富。  相似文献   

3.
4.
Heterologous cDNA clones were used as hybridization probes to define the temporal expression of intestinal functions during fetal and postnatal development in the pig. Northern hybridization analysis revealed the presence of the mRNAs for the cellular retinol binding protein CRBP II, for the digestive enzyme aminopeptidase N, and for the microvillar proteins villin and ezrin in the small intestine of both weaned and 40-day fetal pigs. The presence of these mRNAs suggests that at the end of the first third of gestation the pig fetal intestine is already exhibiting some characteristics of a differentiated epithelium. The mRNAs for the two fatty acid-binding proteins I-FABP and L-FAPB, both involved in the metabolism of long chain fatty acids, were detected only in the intestinal mRNA extracted from weaned animals, while that for the cellular retinol-binding protein CRBP I was expressed only in the fetal tissue. The temporal limits of expression of intestinal genes in the pig epithelium seem therefore more easily defined than in other experimental animals with shorter times of fetal development. To isolate pig genes expressed at different developmental stages during intestinal epithelial cell differentiation, a cDNA library was constructed from poly(A) + RNA extracted from mature pig intestine. This library was employed in the isolation of clones encoding CRBP II and L-FABP. The nucleotide sequence of the two pig cDNA clones was determined, and the sequences of the deduced proteins compared with their homologues from other species. The results of this analysis showed that the two pig clones share a high level of homology with human and rat homologues both at the DNA and at the protein level.  相似文献   

5.
6.
7.
The rat contains at least three homologous cytosolic proteins that bind long chain fatty acids, termed liver (L-), intestinal (I-), and heart (H-) fatty acid binding protein (FABP). I-FABP mRNA is confined to the gastrointestinal tract while L-FABP mRNA is abundantly represented in hepatocytes as well as enterocytes. We have isolated a rat heart FABP cDNA clone and determined the pattern of H-FABP mRNA accumulation in a wide variety of tissues harvested from late fetal, suckling, weaning, and adult rats. RNA blot hybridizations and primer extension analysis disclosed that the distribution of H-FABP mRNA in adult rat tissues is different from that of I- or L-FABP mRNA. H-FABP mRNA is most abundant in adult heart. This mRNA was also present in an adult slow twitch (type I) skeletal muscle (soleus, 63% of the concentration in heart), testes (28%), a fast twitch skeletal muscle (psoas, 17%), brain (10%), kidney (5%), and adrenal gland (5%). H-FABP mRNA was not detected in adult small intestine, colon, spleen, lung, or liver RNA. Distinct patterns of developmental change in H-FABP mRNA accumulation were documented in heart, placenta, brain, kidney, and testes. Myocardial H-FABP mRNA levels rise rapidly during the 48 h prior to and after birth, reaching peak levels by the early weaning period. The postnatal increase in myocardial H-FABP mRNA concentration and its relative distribution in adult fast and slow twitch skeletal muscle are consistent with its previously proposed function in facilitating mitochondrial beta-oxidation of fatty acids. However, the presence of H-FABP mRNA in brain, a tissue which does not normally significantly oxidize fatty acids in late postnatal life, suggests that H-FABP may play a wider role in fatty acid metabolism than previously realized. Mouse-hamster somatic cell hybrids were utilized to map H-FABP. Using stringencies which did not produce cross-hybridization between L-, I-, and H-FABP DNA sequences, we found at least three loci in the mouse genome, each located on different chromosomes, which reacted with our cloned H-FABP cDNA. None of these H-FABP-related loci were linked to the gene which specifies a highly homologous adipocyte-specific protein termed aP2 or to genes encoding two other members of this protein family, cellular retinol binding protein and cellular retinol binding protein II.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Fatty acid-binding proteins (FABP) belong to a superfamily of lipid binding proteins that exhibit a high affinity for long chain fatty acids and appear to function in metabolism and intracellular transportation of lipids. The current study was designed to investigate the effects of heart (H)-FABP gene on chicken growth and body composition traits. The Northeast Agricultural University divergent broiler lines for abdominal fat and a broiler X silkie F2 population were used in this study. Body weight and body composition traits were measured in the populations. Primers were designed according to the chicken H-FABP gene sequence. Polymorphisms between parental lines were detected by DNA sequencing. PCR-RFLP and PCR-fragment length polymorphism methods were developed to genotype the populations. The results showed that the H-FABP gene polymorphisms in the two populations were associated with abdominal fat percentage. It implied that H-FABP gene can be a candidate locus or linked to a major gene(s) that affects abdominal fat content in the chicken.  相似文献   

9.
The intracellular fatty acid-binding proteins (FABPs) are abundantly expressed in almost all tissues. They exhibit high affinity binding of a single long-chain fatty acid, with the exception of liver FABP, which binds two fatty acids or other hydrophobic molecules. FABPs have highly similar tertiary structures consisting of a 10-stranded antiparallel β-barrel and an N-terminal helix-turn-helix motif. Research emerging in the last decade has suggested that FABPs have tissue-specific functions that reflect tissue-specific aspects of lipid and fatty acid metabolism. Proposed roles for FABPs include assimilation of dietary lipids in the intestine, targeting of liver lipids to catabolic and anabolic pathways, regulation of lipid storage and lipid-mediated gene expression in adipose tissue and macrophages, fatty acid targeting to β-oxidation pathways in muscle, and maintenance of phospholipid membranes in neural tissues. The regulation of these diverse processes is accompanied by the expression of different and sometimes multiple FABPs in these tissues and may be driven by protein-protein and protein-membrane interactions.  相似文献   

10.
11.
We have cloned a cDNA from zebrafish (Danio rerio) that contains an open-reading frame of 132 amino acids coding for a fatty acid binding protein (FABP) of approximately 15 kDa. Multiple sequence alignment revealed extensive amino acid identity between this zebrafish FABP and intestinal-like FABPs (I-FABP) from other species. The zebrafish I-FABP cDNA hybridized to single restriction fragments of total zebrafish genomic DNA digested with the restriction endonucleases PstI Bg/II or EcoRI suggesting that a single copy of the I-FABP gene is present in the zebrafish genome. An oligonucleotide probe complementary to the zebrafish I-FABP mRNA hybridized to an mRNA of approximately 800 bases in Northern blot analysis. In situ hybridization revealed that the I-FABP mRNA was expressed exclusively in the intestine of the adult zebrafish.  相似文献   

12.
Cellular fatty acid-binding proteins (FABP) are a highly conserved family of proteins consisting of several subtypes, among them the mammary-derived growth inhibitor (MDGI) which is quite homologous to or even identical with the heart-type FABP (H-FABP). The FABPs and MDGI have been suggested to be involved in intracellular fatty acid metabolism and trafficking. Recently, evidence for growth and differentiation regulating properties of MDGI and H-FABP was provided. Using four affinity-purified polyclonal antibodies against bovine and human antigen preparations, the cellular localization of MDGI/H-FABP in human and mouse tissues and organs was studied. The antibodies were weakly cross-reactive with adipose tissue extracts known to lack H-FABP, but failed to react by Western blot analysis with liver-type FABP (L-FABP) and intestinal-type FABP (I-FABP). MDGI/H-FABP protein was mainly detected in myocardium, skeletal and smooth muscle fibres, lipid and/or steroid synthesising cells (adrenals, Leydig cells, sebaceous glands, lactating mammary gland) and terminally differentiated epithelia of the respiratory, intestinal and urogenital tracts. The results provide evidence that expression of H-FABP is associated with an irreversibly postmitotic and terminally differentiated status of cells. Since all the antisera employed showed spatially identical and qualitatively equal immunostaining, it is suggested that human, bovine and mouse MDGI/H-FABP proteins share highly homologous epitopes.  相似文献   

13.
We have determined the nucleotide sequence of a zebrafish cDNA clone that codes for a cellular retinol-binding protein type II (CRBPII). Radiation hybrid mapping revealed that the zebrafish and human CRBPII genes are located in syntenic groups. In situ hybridization and emulsion autoradiography localized the CRBPII mRNA to the intestine and the liver of adult zebrafish. CRBPII and intestinal fatty acid binding protein (I-FABP) mRNA was colocalized to the same regions along the anterior-posterior gradient of the zebrafish intestine. Similarly, CRBPII and I-FABP mRNA are colocalized in mammalian and chicken intestine. CRBPII mRNA, but not I-FABP mRNA, was detected in adult zebrafish liver which is in contrast to mammals where liver CRBPII mRNA levels are high during development but rapidly decrease to very low or undetectable levels following birth. CRBPII and I-FABP gene expression appears therefore to be co-ordinately regulated in the zebrafish intestine as has been suggested for mammals and chicken, but CRBPII gene expression is markedly different in the liver of adult zebrafish compared to the livers of mammals. As such, retinol metabolism in zebrafish may differ from that of mammals and require continued production of CRBPII in adult liver. The primary sequence of the coding regions of fish and mammalian CRBPII genes, their relative chromosomal location in syntenic groups and possibly portions of the control regions involved in regulation of CRBPII gene expression in the intestine appear therefore to have been conserved for more than 400 million years.  相似文献   

14.
Rat intestinal fatty acid-binding protein (I-FABP) is an abundant, 15,124-Da polypeptide found in the cytosol of small intestinal epithelial cells (enterocytes). It is homologous to rat liver fatty acid-binding protein (L-FABP), a 14,273-Da cytosolic protein which is found in enterocytes as well as hepatocytes. It is unclear why the small intestinal epithelium contains two abundant fatty acid-binding proteins. A systematic comparative analysis of the ligand binding characteristics of the two FABPs has not been reported. To undertake such a study we expressed the coding region of a full length I-FABP cDNA in Escherichia coli and purified large quantities of the protein. We also purified rat L-FABP from a similar, previously described expression system (Lowe, J. B., Strauss, A. W., and Gordon, J. I. (1984) J. Biol. Chem. 259, 12696-12704). Analysis of fatty acids associated with each of the homogeneous E. coli-derived FABPs suggested that the two proteins differed in their ligand binding specificity and capacity. All of the fatty acids associated with I-FABP were saturated while 30% of the E. coli fatty acids bound to L-FABP were unsaturated (16:1, 18:1, 18:2). We directly analyzed the ability of I- and L-FABP to bind fatty acids of different chain length and degree of saturation using a hydroxyalkoxypropyl dextran-based assay. Scatchard analysis revealed that each mole of L-FABP can bind up to 2 mol of long chain fatty acid while each mole of I-FABP can bind only 1 mole of fatty acid. L-FABP exhibited a relatively higher affinity for unsaturated fatty acids (oleate, arachidonate) than for saturated fatty acid (palmitate). By contrast, we were not able to detect a significant difference in the affinity of I-FABP for palmitate, oleate, and arachidonate. Neither protein exhibited any appreciable affinity for fatty acids whose chain length was less than C16. The observed differences in ligand affinities and capacities suggest that these proteins may have distinct roles in metabolism and/or compartmentalization of fatty acids within enterocytes.  相似文献   

15.
16.
Wang Q  Li H  Li N  Gu Z  Wang Y 《Animal biotechnology》2004,15(2):121-132
Fatty acid binding proteins (FABPs) are members of a superfamily of lipid-binding proteins and occur intracellularly in vertebrates and invertebrates. This study was designed to clone and characterize the adipocyte fatty acid binding protein (A-FABP) gene in the chicken. PCR primers were designed according to mammalian A-FABP gene sequence to amplify partial cDNA of A-FABP gene from chicken adipose tissues, and the full length of the gene was cloned by 5'RACE and 3'RACE. Analysis of sequence showed that the cDNA of the chicken A-FABP gene was 74 and 73% homologous with porcine and human A-FABP gene, respectively. The similarity was 77, 28, and 23% at the predicted amino acid level with human A-FABP, human L-FABP, and human I-FABP, respectively. RT-PCR and Northern blot analysis indicated that the chicken A-FABP gene, similar to that of the mammal, is only expressed in fat tissues. This is the first report to identify and characterize A-FABP gene in the chicken.  相似文献   

17.
Fatty acid-binding proteins--insights from genetic manipulations   总被引:16,自引:0,他引:16  
Fatty acid-binding proteins (FABPs) belong to the conserved multigene family of the intracellular lipid-binding proteins (iLBPs). These proteins are ubiquitously expressed in vertebrate tissues, with distinct expression patterns for the individual FABPs. Various functions have been proposed for these proteins, including the promotion of cellular uptake and transport of fatty acids, the targeting of fatty acids to specific metabolic pathways, and the participation in the regulation of gene expression and cell growth. Novel genetic tools that have become available in recent years, such as transgenic cell lines, animals, and knock-out mice, have provided the opportunity to test these concepts in physiological settings. Such studies have helped to define essential cellular functions of individual FABP-types or of combinations of several different FABPs. The deletion of particular FABP genes, however, has not led to gross phenotypical changes, most likely because of compensatory overexpression of other members of the iLBP gene family, or even of unrelated fatty acid transport proteins. This review summarizes the properties of the various FABPs expressed in mammalian tissues, and discusses the transgenic and ablation studies carried out to date in a functional context.  相似文献   

18.
心型脂肪酸结合蛋白(heart fatty acid binding protein, H-FABP)的水平与影响肉质性状的肌内脂肪含量有关,鱼类H-FABP的表达水平对其肌内脂肪含量是否相关仍未见报道.本研究获得齐口裂腹鱼和鲤鱼心脏型脂肪酸结合蛋白基因序列,利用半定量RT-PCR分析其表达特性并测定肌内脂肪含量,比较H-FABP基因在不同生活环境的2种鲤科鱼肌内脂肪沉积中的作用.结果显示,齐口裂腹鱼和鲤鱼H-FABP基因的ORF为402 bp,编码133个氨基酸,它们的氨基酸序列相同,与人、猪、小鼠、斑马鱼、大西洋鲑、虹鳟等的同源性为71.3%~ 90%;H-FABP基因在2种鲤科鱼的心、肌肉、脂肪、肝、脑、脾、肾和鳃等组织中均有表达,肝中的表达量显著高于其它组织(P<0.05),H-FABP基因的肌肉表达谱在齐口裂腹鱼和鲤鱼中存在明显差异:齐口裂腹鱼中的表达随生长发育呈上升趋势,在大体重鱼(500 g)中的表达显著高于小体重鱼(P<0.05),其表达与肌内脂肪含量呈显著正相关(R=0.370,P<0.05);H-FABP基因在鲤鱼生长发育中呈下降趋势,而小体重鱼(50~60 g)中的表达显著高于其它大体重鱼(P<0.05),其表达与肌内脂肪含量呈显著负相关(R=-7.083,P<0.01).据此推测,齐口裂腹鱼和鲤鱼肌肉组织H-FABP基因表达与肌内脂肪关联性的差异可能与2种鱼的生活环境不同有关.  相似文献   

19.
西藏小型猪H-FABP基因的PCR-RFLP研究   总被引:2,自引:1,他引:1  
目的研究西藏小型猪心脏脂肪酸结合蛋白(H-FABP)基因5’-上游区和第二内含子内的遗传变异。方法应用PCR-RFLP技术测定30头西藏小型猪H-FABP的基因型。结果(1)在5’-上游区的Hinf I-RFLP位点上,西藏小型猪表现出多态性,等位基因h的频率为0.80;(2)在在第二内含子内的Hae Ⅲ-RFLP位点上,西藏小型猪均为DD纯合子;(3)在第二内含子内的Hinf I*-RFLP位点上,除一头猪表现为bb基因型外,其余猪都表现为BB基因型,等位基因B的频率为0.97;(4)除Hae Ⅲ-RFLP位点外,在其余位点上西藏小型猪均处于Hardy-weinberg不平衡状态。(5)在Hinf I-RFLP中,西藏小型猪表现为中度多态性(0.25〈PIC〈0.5),而在其他位点的RFLP中表现为低度多态(PIC〈0.25)。结论可以利用西藏小型猪H-FABP基因5’-上游区的多态遗传标记来分析其与肌内脂肪的关系。  相似文献   

20.
In avian species, two types of intracellular lipid-binding proteins are abundant in the liver, the liver fatty acid-binding protein (L-FABP) and the liver basic fatty acid-binding protein (Lb-FABP). Both FABPs are capable of forming complexes with free fatty acids and bile acids, but the functional distinction between L-FABP and Lb-FABP in avian liver is not fully understood. To gain insights into the functional distinction between L-FABP and Lb-FABP, we investigated the expression of both genes in relation to the pre- and post-hatching development, diurnal cycle and feeding state in the livers of chicken (Gallus gallus) and Japanese quail (Coturnix japonica). In chickens, the Lb-FABP mRNA was expressed only in the liver, while the L-FABP was expressed in both liver and intestinal tissues. Only small amounts of the L-FABP and Lb-FABP mRNAs were detected in the liver during chicken embryogenesis, but at the onset of hatching a dramatic increase in mRNA expression was observed for both genes, suggesting that the expression of the L-FABP and Lb-FABP genes is synchronized at developmental stages. Remarkably, the diurnal expression pattern differed between the two genes under a 16L:8D condition in sexually mature quail: L-FABP gene expression transiently increased at the end of the light cycle, whereas Lb-FABP gene expression peaked during the early part of the light cycle and gradually decreased as the dark period approached. We attempted to identify the factors regulating the diurnal gene expression pattern, and found that feeding stimulation was a critical factor inducing Lb-FABP gene expression irrespective of light condition. On the other hand, feeding stimulation only slightly stimulated expression of the L-FABP gene, and was not always its primary determinant. These results suggest that L-FABP and Lb-FABP play different roles in metabolic process during the postprandial state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号