首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of gamma-glutamylcysteine synthetase-heavy subunit (gamma-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis.  相似文献   

2.
The fully executed epidermal growth factor receptor (EGFR)/Ras/MEK/ERK pathway serves a pro-survival role in renal epithelia under moderate oxidative stress. We and others have demonstrated that during severe oxidative stress, however, the activated EGFR is disconnected from ERK activation in cultured renal proximal tubule cells and also in renal proximal tubules after ischemia/reperfusion injury, resulting in necrotic death. Studies have shown that the tyrosine-phosphorylated p46/52 isoforms of the ShcA family of adaptor proteins connect the activated EGFR to activation of Ras and ERK, whereas the p66(shc) isoform can inhibit this p46/52(shc) function. Here, we determined that severe oxidative stress (after a brief period of activation) terminates activation of the Ras/MEK/ERK pathway, which coincides with ERK/JNK-dependent Ser(36) phosphorylation of p66(shc). Isoform-specific knockdown of p66(shc) or mutation of Ser(36) to Ala, but not to Asp, attenuated severe oxidative stress-mediated ERK inhibition and cell death in vitro. Also, severe oxidative stress (unlike ligand stimulation and moderate oxidative stress, both of which support survival) increased binding of p66(shc) to the activated EGFR and Grb2. This binding dissociated the SOS1 adaptor protein from the EGFR-recruited signaling complex, leading to termination of Ras/MEK/ERK activation. Notably, Ser(36) phosphorylation of p66(shc) and its increased binding to the EGFR also occurred in the kidney after ischemia/reperfusion injury in vivo. At the same time, SOS1 binding to the EGFR declined, similar to the in vitro findings. Thus, the mechanism we propose in vitro offers a means to ameliorate oxidative stress-induced cell injury by either inhibiting Ser(36) phosphorylation of p66(shc) or knocking down p66(shc) expression in vivo.  相似文献   

3.
Vascular endothelial cells are highly sensitive to oxidative stress, and this is one of the mechanisms by which widespread endothelial dysfunction is induced in most cardiovascular diseases and disorders. However, how these cells can survive in oxidative stress environments remains unclear. Salidroside, a traditional Chinese medicine, has been shown to confer vascular protective effects. We aimed to understand the role of autophagy and its regulatory mechanisms by treating human umbilical vein endothelial cells (HUVECs) with salidroside under oxidative stress. HUVECs were treated with salidroside and exposed to hydrogen peroxide (H2O2). The results indicated that salidroside exerted cytoprotective effects in an H2O2-induced HUVEC injury model and suppressed H2O2-induced apoptosis of HUVECs. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased oxidative stress-induced HUVEC apoptosis, while the autophagy activator rapamycin induced anti-apoptosis effects in HUVECs. Salidroside increased autophagy and decreased apoptosis of HUVECs in a dose-dependent manner under oxidative stress. Moreover, 3-MA attenuated salidroside-induced HUVEC autophagy and promoted apoptosis, whereas rapamycin had no additional effects compared with salidroside alone. Salidroside upregulated AMPK phosphorylation but downregulated mTOR phosphorylation under oxidative stress; however, administration of compound C, an AMPK inhibitor, abrogated AMPK phosphorylation and increased mTOR phosphorylation and apoptosis compared with salidroside alone. These results suggest that autophagy is a protective mechanism in HUVECs under oxidative stress and that salidroside might promote autophagy through activation of the AMPK pathway and downregulation of mTOR pathway.  相似文献   

4.
Stroke involves numerous pathophysiological processes and oxidative stress is considered as a main cellular event in its pathogenesis. The nuclear factor erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway plays a key role in inducing phase II detoxifying enzymes and antioxidant proteins and is now considered as a interesting therapeutic target for the treatment of stroke. The objective of this study is to investigate the protective effect of Gualou Guizhi granule (GLGZG) against oxidative stress and explore the protective mechanism of the Nrf2/ARE pathway. In vivo, administration of GLGZG in a rat model of focal cerebral ischemia significantly suppressed oxidative injury by increasing the activity of superoxide dismutase and glutathione level and decreasing reactive oxygen species and malondialdehyde levels. Western blot analysis showed that GLGZG induced nuclear translocation of Nrf2, and combined with real-time PCR results, which indicated that GLGZG up-regulated the Nrf2/ARE pathway. In addition, in cultured PC12 cells, GLGZG protected against H2O2 induced oxidative injury and activated the Nrf2/ARE pathway. All the results demonstrated that GLGZG in the management of cerebral ischemia and H2O2 induced oxidative injury may be associated with activation of Nrf2/ARE signaling pathway.  相似文献   

5.
We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H2O2-induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H2O2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells.  相似文献   

6.
7.
There is growing interest in the potential beneficial effects of flavonoids in the aging and diseased brain. We have investigated the potential of the flavanone hesperetin and two of its metabolites, hesperetin-7- O -β- d -glucuronide and 5-nitro-hesperetin, to inhibit oxidative stress-induced neuronal apoptosis. Exposure of cortical neurons to hydrogen peroxide led to the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser963, the phosphorylation of c-jun N-terminal kinase and c-Jun (Ser73) and the activation of caspase 3 and caspase 9. Whilst hesperetin glucuronide failed to exert protection, both hesperetin and 5-nitro-hesperetin were effective at preventing neuronal apoptosis via a mechanism involving the activation/phosphorylation of both Akt/protein kinase B and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Protection against oxidative injury and the activation of Akt and ERK1/2 followed a bell-shaped response and was most apparent at 100 nmol/L concentrations. The activation of ERK1/2 and Akt by flavanones led to the inhibition of the pro-apoptotic proteins, apoptosis signal-regulating kinase 1, by phosphorylation at Ser83 and Bad, by phosphorylation at both Ser136 and Ser112 and to the inhibition of peroxide-induced caspase 9 and caspase 3 activation. Thus, flavanones may protect neurons against oxidative insults via the modulation of neuronal apoptotic machinery.  相似文献   

8.
9.
In response to inflammatory stimuli (e.g., endotoxin, proinflammatory cytokines) or oxidative stress, macrophages actively release a ubiquitous nuclear protein, high-mobility group box 1 (HMGB1), to sustain an inflammatory response to infection or injury. In this study, we demonstrated mild heat shock (e.g., 42.5 degrees C, 1 h), or enhanced expression of heat shock protein (Hsp) 72 (by gene transfection) similarly rendered macrophages resistant to oxidative stress-induced HMGB1 cytoplasmic translocation and release. In response to oxidative stress, cytoplasmic Hsp72 translocated to the nucleus, where it interacted with nuclear proteins including HMGB1. Genetic deletion of the nuclear localization sequence (NLS) or the peptide binding domain (PBD) from Hsp72 abolished oxidative stress-induced nuclear translocation of Hsp72-DeltaNLS (but not Hsp72-DeltaPBD), and prevented oxidative stress-induced Hsp72-DeltaPBD-HMGB1 interaction in the nucleus. Furthermore, impairment of Hsp72-DeltaNLS nuclear translocation, or Hsp72-DeltaPBD-HMGB1 interaction in the nucleus, abrogated Hsp72-mediated suppression of HMGB1 cytoplasmic translocation and release. Taken together, these experimental data support a novel role for nuclear Hsp72 as a negative regulator of oxidative stress-induced HMGB1 cytoplasmic translocation and release.  相似文献   

10.
Histone deacetylase (HDAC) 9, a member of class II HDACs, regulates a wide variety of normal and abnormal physiological functions, which is usually expressed at high levels in the brain and skeletal muscle. Although studies have highlighted the importance of HDAC‐mediated epigenetic processes in the development of ischaemic stroke and very recent genome‐wide association studies have identified a variant in HDAC9 associated with large‐vessel ischemic stroke, the molecular events by which HDAC9 induces cerebral injury keep unclear. In this study, we found that HDAC9 was up‐regulated in the ischaemic cerebral hemisphere after cerebral ischaemia/reperfusion (I/R) injury in rats and in vivo gene silencing of HDAC9 by recombinated lentivirus infection in the brain reduced cerebral injury in experimental stroke. We further demonstrated that HDAC9 contributed to oxygen‐glucose deprivation‐induced brain microvessel endothelial cell dysfunction as demonstrated by the increased inflammatory responses, cellular apoptosis and endothelial cell permeability dysfunction accompanied by reduced expression of tight‐junction proteins. We further found that HDAC9 suppressed autophagy, which was associated with endothelial dysfunction. This study for the first time provides direct evidence that HDAC9 contributes to endothelial cell injury and demonstrates that HDAC9 is one of critical components of a signal transduction pathway that links cerebral injury to epigenetic modification in the brain.  相似文献   

11.
Oxidative stress induced by cell treatments with H(2)O(2) activates protein kinase D (PKD) via a protein kinase C (PKC)-dependent signal transduction pathway (Waldron, R. T., and Rozengurt, E. (2000) J. Biol. Chem. 275, 17114-17121). Here we show that oxidative stress induces PKC-dependent activation loop Ser(744) and Ser(748) phosphorylation to mediate dose- and time-dependent activation of PKD, both endogenously expressed in Swiss 3T3 cells and stably overexpressed in Swiss 3T3-GFP.PKD cells. Although oxidative stress induced PKD activation loop phosphorylation and activation with identical kinetics, both were dose-dependently blocked by preincubation of cells with selective inhibitors of PKC (GF109203X and G?6983) or c-Src (PP2). Inhibition of Src tyrosine kinase activity eliminated oxidative stress-induced direct PKD tyrosine phosphorylation, but only partially attenuated activation loop phosphorylation and activation. Mutation of a putative tyrosine phosphorylation site on PKD, Tyr(469) to phenylalanine, had no effect on its activation by oxidative stress in transfected COS-7 cells. Similarly, a mutant with Tyr(469) replaced by aspartic acid had increased basal activity but was also further activated by oxidative stress. Thus, PKD tyrosine phosphorylation at this site neither produced full activation by itself nor was required for oxidative stress-induced activation mediated by activation loop phosphorylation. In addition to PKD activation, activation loop phosphorylation in response to oxidative stress also redistributed activated PKD to cell nuclei, as revealed by PKD indirect immunofluorescence, imaging of a PKD-green fluorescent protein fusion construct (GFP-PKD), and analysis of nuclear pellets. Cell preincubation with G?6983 strongly diminished H(2)O(2)-induced nuclear relocalization of GFP-PKD. Taken together, these results indicate that PKC-mediated PKD Ser(744) and Ser(748) phosphorylation induced by oxidative stress integrates PKD activation with redistribution to the nucleus.  相似文献   

12.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its vasculoprotective effects are not completely understood. Because oxidative stress and endothelial cell injury play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits oxidative stress-induced endothelial apoptosis. We found that oxidized LDL and TNF-alpha elicited significant increases in caspase-3/7 activity in endothelial cells and cultured rat aortas, which were prevented by resveratrol pretreatment (10(-6)-10(-4) mol/l). The protective effect of resveratrol was attenuated by inhibition of glutathione peroxidase and heme oxygenase-1, suggesting a role for antioxidant systems in the antiapoptotic action of resveratrol. Indeed, resveratrol treatment protected cultured aortic segments and/or endothelial cells against increases in intracellular H(2)O(2) levels and H(2)O(2)-mediated apoptotic cell death induced by oxidative stressors (exogenous H(2)O(2), paraquat, and UV light). Resveratrol treatment also attenuated UV-induced DNA damage (comet assay). Resveratrol treatment upregulated the expression of glutathione peroxidase, catalase, and heme oxygenase-1 in cultured arteries, whereas it had no significant effect on the expression of SOD isoforms. Resveratrol also effectively scavenged H(2)O(2) in vitro. Thus resveratrol seems to increase vascular oxidative stress resistance by scavenging H(2)O(2) and preventing oxidative stress-induced endothelial cell death. We propose that the antioxidant and antiapoptotic effects of resveratrol, together with its previously described anti-inflammatory actions, are responsible, at least in part, for its cardioprotective effects.  相似文献   

13.
Vaseva AV  Marchenko ND  Ji K  Tsirka SE  Holzmann S  Moll UM 《Cell》2012,149(7):1536-1548
Ischemia-associated oxidative damage leading to necrosis is a major cause of catastrophic tissue loss, and elucidating its signaling mechanism is therefore of paramount importance. p53 is a central stress sensor responding to multiple insults, including oxidative stress to orchestrate apoptotic and autophagic cell death. Whether p53 can also activate oxidative stress-induced necrosis is, however, unknown. Here, we uncover a role for p53 in activating necrosis. In response to oxidative stress, p53 accumulates in the mitochondrial matrix and triggers mitochondrial permeability transition pore (PTP) opening and necrosis by physical interaction with the PTP regulator cyclophilin D (CypD). Intriguingly, a robust p53-CypD complex forms during brain ischemia/reperfusion injury. In contrast, reduction of p53 levels or cyclosporine A pretreatment of mice prevents this complex and is associated with effective stroke protection. Our study identifies the mitochondrial p53-CypD axis as an important contributor to oxidative stress-induced necrosis and implicates this axis in stroke pathology.  相似文献   

14.
15.
Stroke is one of the leading causes of death in the world, but its underlying mechanisms remain unclear. Both conventional protein kinase C (cPKC)γ and ubiquitin C‐terminal hydrolase L1 (UCHL1) are neuron‐specific proteins. In the models of 1‐hr middle cerebral artery occlusion (MCAO)/24‐hr reperfusion in mice and 1‐hr oxygen–glucose deprivation (OGD)/24‐hr reoxygenation in cortical neurons, we found that cPKCγ gene knockout remarkably aggravated ischaemic injuries and simultaneously increased the levels of cleaved (Cl)‐caspase‐3 and LC3‐I proteolysis product LC3‐II, and the ratio of TUNEL‐positive cells to total neurons. Moreover, cPKCγ gene knockout could increase UCHL1 protein expression via elevating its mRNA level regulated by the nuclear factor κB inhibitor alpha (IκB‐α)/nuclear factor κB (NF‐κB) pathway in cortical neurons. Both inhibitor and shRNA of UCHL1 significantly reduced the ratio of LC3‐II/total LC3, which contributed to neuronal survival after ischaemic stroke, but did not alter the level of Cl‐caspase‐3. In addition, UCHL1 shRNA reversed the effect of cPKCγ on the phosphorylation levels of mTOR and ERK rather than that of AMPK and GSK‐3β. In conclusion, our results suggest that cPKCγ activation alleviates ischaemic injuries of mice and cortical neurons through inhibiting UCHL1 expression, which may negatively regulate autophagy through ERK‐mTOR pathway.  相似文献   

16.
17beta-Estradiol (E(2)) reduces oxidative stress-induced depolarization of mitochondrial membrane potential (MMP) in cultured human lens epithelial cells (HLE-B3). The mechanism by which the nongenomic effects of E(2) contributed to the protection against mitochondrial membrane depolarization was investigated. Mitochondrial membrane integrity is regulated by phosphorylation of BAD, and it is known that phosphorylation of Ser(112) inactivates BAD and prevents its participation in the mitochondrial death pathway. We found that E(2) rapidly increased both the phosphorylation of ERK2 and Ser(112) in BAD. Ser(112) is phosphorylated by p90 ribosomal S6 kinase (RSK), a Ser/Thr kinase, which is a downstream effector of ERK1/2. Inhibition of RSK by the RSK-specific inhibitor SL0101 did not reduce the level of E(2)-induced phosphorylation of Ser(112). Silencing BAD using small interfering RNA did not alter mitochondrial membrane depolarization elicited by peroxide insult. However, under the same conditions, silencing ERK2 dramatically increased membrane depolarization compared with the control small interfering RNA. Therefore, ERK2, functioning through a BAD-independent mechanism regulates MMP in humans lens epithelial cells. We propose that estrogen-induced activation of ERK2 acts to protect cells from acute oxidative stress. Moreover, despite the fact that ERK2 plays a regulatory role in mitochondrial membrane potential, estrogen was found to block mitochondrial membrane depolarization via an ERK-independent mechanism.  相似文献   

17.
Cardiac remodelling refers to a series of changes in the size, shape, wall thickness and tissue structure of the ventricle because of myocardial injury or increased pressure load. Studies have shown that cardiac remodelling plays a significant role in the development of heart failure. Zingerone, a monomer component extracted from ginger, has been proven to possess various properties including antioxidant, anti‐inflammatory, anticancer and antidiabetic properties. As oxidative stress and inflammation contribute to acute and chronic myocardial injury, we explored the role of zingerone in cardiac remodelling. Mice were subjected to aortic banding (AB) or sham surgery and then received intragastric administration of zingerone or saline for 25 days. In vitro, neonatal rat cardiomyocytes (NRCMs) were treated with zingerone (50 and 250 μmol/L) when challenged with phenylephrine (PE). We observed that zingerone effectively suppressed cardiac hypertrophy, fibrosis, oxidative stress and inflammation. Mechanistically, Zingerone enhanced the nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2)/antioxidant response element (ARE) activation via increasing the phosphorylation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Additionally, we used Nrf2‐knockout (KO) and eNOS‐KO mice and found that Nrf2 or eNOS deficiency counteracts these cardioprotective effects of zingerone in vivo. Together, we concluded that zingerone may be a potent treatment for cardiac remodelling that suppresses oxidative stress via the eNOS/Nrf2 pathway.  相似文献   

18.
Recent studies revealed that folic acid deficiency (FD) increased the likelihood of stroke and aggravated brain injury after focal cerebral ischaemia. The microglia‐mediated inflammatory response plays a crucial role in the complicated pathologies that lead to ischaemic brain injury. However, whether FD is involved in the activation of microglia and the neuroinflammation after experimental stroke and the underlying mechanism is still unclear. The aim of the present study was to assess whether FD modulates the Notch1/nuclear factor kappa B (NF‐κB) pathway and enhances microglial immune response in a rat middle cerebral artery occlusion‐reperfusion (MCAO) model and oxygen‐glucose deprivation (OGD)‐treated BV‐2 cells. Our results exhibited that FD worsened neuronal cell death and exaggerated microglia activation in the hippocampal CA1, CA3 and Dentate gyrus (DG) subregions after cerebral ischaemia/reperfusion. The hippocampal CA1 region was more sensitive to ischaemic injury and FD treatment. The protein expressions of proinflammatory cytokines such as tumour necrosis factor‐α, interleukin‐1β and interleukin‐6 were also augmented by FD treatment in microglial cells of the post‐ischaemic hippocampus and in vitro OGD‐stressed microglia model. Moreover, FD not only dramatically enhanced the protein expression levels of Notch1 and NF‐κB p65 but also promoted the phosphorylation of pIkBα and the nuclear translocation of NF‐κB p65. Blocking of Notch1 with N‐[N‐(3, 5‐difluorophenacetyl)‐l‐alanyl]‐S‐phenylglycine t‐butyl ester partly attenuated the nuclear translocation of NF‐κB p65 and the protein expression of neuroinflammatory cytokines in FD‐treated hypoxic BV‐2 microglia. These results suggested that Notch1/NF‐κB p65 pathway‐mediated microglial immune response may be a molecular mechanism underlying cerebral ischaemia‐reperfusion injury worsened by FD treatment.  相似文献   

19.
Traumatic brain injury (TBI) is a major reason of cerebrovascular and neurological damage. Premorbid conditions such as tobacco smoking (TS) can worsen post-TBI injuries by promoting vascular endothelial impairments. Indeed, TS-induced oxidative stress (OS) and inflammation can hamper the blood-brain barrier (BBB) endothelium. This study evaluated the subsequence of chronic TS exposure on BBB endothelial cells in an established in vitro model of traumatic cell injury. Experiments were conducted on confluent TS-exposed mouse brain microvascular endothelial cells (mBMEC-P5) following scratch injury. The expression of BBB integrity–associated tight junction (TJ) proteins was assessed by immunofluorescence imaging (IF), Western blotting (WB) and quantitative RT-PCR. We evaluated reactive oxygen species (ROS) generation, the nuclear factor 2–related (Nrf2) with its downstream effectors and several inflammatory markers. Thrombomodulin expression was used to assess the endothelial haemostatic response to injury and TS exposure. Our results show that TS significantly decreased Nrf2, thrombomodulin and TJ expression in the BBB endothelium injury models while increased OS and inflammation compared to parallel TS-free cultures. These data suggest that chronic TS exposure exacerbates traumatic endothelial injury and abrogates the protective antioxidative cell responses. The downstream effect was a more significant decline of BBB endothelial viability, which could aggravate subsequent neurological impairments.  相似文献   

20.
This study investigated the effects of the selective peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist WY14643 on ischemia/reperfusion (I/R) injury in the rat hippocampus. Transient cerebral ischemia (30 min), followed by 1-24 h reperfusion, significantly increased the generation of reactive oxygen species, nitric oxide (NO), and lipid peroxidation end-products, as well as markedly reducing levels of the endogenous antioxidant glutathione. Reperfusion for 3-6 h led to increased expression of the proteins heme oxygenase-1 (HO-1), cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1). Pretreatment with WY14643 suppressed oxidative stress and expression of HO-1, iNOS, and ICAM-1, but had no effect on COX-2. These effects are due to suppression of the activation of p38 mitogen-activated protein kinase and nuclear factor-kappaB. The PPAR-alpha antagonist MK886 abolished the beneficial effects of WY14643. The levels of S100B protein, a marker of cerebral injury used in stroke trials to monitor injury, were high in the hippocampus of rats exposed to I/R, but markedly reduced by WY14643. We propose that WY14643 protects the brain against excessive oxidative stress and inflammation and may thus be useful in treating stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号