首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Mitchell HJ  Ayliffe MA  Rashid KY  Pryor AJ 《Planta》2006,223(2):213-222
A gene fis1 from flax (Linum usitatissimum), which is induced in mesophyll cells at the site of rust (Melampsora lini) infection, is also expressed in vascular tissue, particularly in floral structures of healthy plants. This paper reports that the promoter controlling this expression is contained within 282 bp 5′ to the coding region and that fis1 gene induction is specifically by the rust pathogen and not by other fungal pathogens or by wounding. The fis1 gene has 73% homology with an Arabidopsis gene which encodes delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) which is a part of the proline degradation pathway. Transgenic flax plants that either over-express fis1 or show reduced fis1 expression due to RNA-mediated gene silencing have an unaltered morphology. However, plants with reduced fis1 expression have markedly increased sensitivity to exogenous proline and show alteration in epidermal cell morphology, callose deposition and the production of hydrogen peroxide during proline-induced death. These lines, which show a biologically significant level of fis1 suppression, have an unaltered reaction to either virulent or avirulent rust infections, as do fis1 over-expression lines. These data indicate that the fis1 gene plays a role in proline metabolism and most likely encodes for a P5CDH enzyme. However, the precise role of fis1 and P5C catabolism in the development of rust disease remains unclear.  相似文献   

4.
Many characterized plant disease resistance genes encode proteins which have conserved motifs such as the nucleotide binding site. Conservation extends across different species, therefore resistance genes from one species can be used to isolate homologous regions from another by employing DNA sequences encoding conserved protein motifs as probes. Here we report the isolation and characterization of a barley (Hordeum vulgare L.) resistance gene analog family consisting of nine members homologous to the maize rust resistance gene Rp1-D. Five barley Rp1-D homologues are clustered within approximately 400 kb on chromosome 1(7H), near, but not co-segregating with, the barley stem rust resistance gene Rpg1; while others are localized on chromosomes 3(3H), 5(1H), 6(6H) and 7(5H). Analyses of predicted amino-acid sequences of the barley Rp1-D homologues and comparison with known plant disease resistance genes are presented.  相似文献   

5.
In a susceptible infection of flax ( Linum usitatissimum ), the obligate rust pathogen ( Melampsora lini ) can grow in the leaf without triggering the hypersensitive resistance response. The rust establishes specialized structures (haustoria) in plant mesophyll cells and induces changes in plant subcellular organization. Subtraction hybridization methods were used to isolate cDNA clones of mRNAs that have altered expression in infected leaves. Most of the cDNAs recovered were of fungal origin, but one clone, pFIS1 ( f lax i nducible s equence No. 1), recovered from several independent experiments, was a plant-specified mRNA that showed a 10-fold increase in steady-state levels during susceptible growth. The increase in fis1 mRNA levels was not seen in the resistant reaction (hypersensitive reaction) and the predicted protein sequence (551 amino acids with a predicted molecular weight of 61 kDa) has no similarity to known pathogenesis-related proteins. Searches of sequence data bases showed that fis1 encodes a protein which contains amino acid sequence motifs that are conserved in all previously characterized aldehyde dehydrogenases.  相似文献   

6.
Seventeen accessions of Arabidopsis thaliana inoculated with the cowpea rust fungus Uromyces vignae exhibited a variety of expressions of nonhost resistance, although infection hypha growth typically ceased before the formation of the first haustorium, except in Ws-0. Compared with wild-type plants, there was no increased fungal growth in ndr1 or eds1 mutants defective in two of the signal cascades regulated by the major class of Arabidopsis host resistance genes. However, in the Col-0 background, infection hyphae of U. vignae and two other rust fungi were longer in sid2 mutants defective in an enzyme that synthesizes salicylic acid (SA), in npr1 mutants deficient in a regulator of the expression of SA-dependent pathogenesis related (PR) genes, and in NahG plants containing a bacterial salicylate hydroxylase. Infection hyphae of U. vignae and U. appendiculatus but not of Puccinia helianthi were also longer in jar1 mutants, which are defective in the jasmonic acid defense signaling pathway. Nevertheless, haustorium formation increased only for the Uromyces spp. and only in sid2 mutants or NahG plants. Rather than the hypersensitive cell death that usually accompanies haustorium formation in nonhost plants, Arabidopsis typically encased haustoria in calloselike material. Growing fungal colonies of both Uromyces spp., indicative of a successful biotrophic relationship between plant and fungus, formed in NahG plants, but only U. vignae formed growing colonies in the sid2 mutants and cycloheximide-treated wild-type plants. Growing colonies did not develop in NahG tobacco or tomato plants. These data suggest that nonhost resistance of Arabidopsis to rust fungi primarily involves the restriction of infection hypha growth as a result of defense gene expression. However, there is a subsequent involvement of SA but not SA-dependent PR genes in preventing the Uromyces spp. from forming the first haustorium and establishing a sufficient biotrophic relationship to support further fungal growth. The U. vignae-Arabidopsis combination could allow the application of the powerful genetic capabilities of this model plant to the study of compatibility as well as nonhost resistance to rust fungi.  相似文献   

7.
A number of agronomically important grasses (sorghum, wheat, panicum, sugar cane, oats, rice and barley) are shown to contain sequences homologous to rp1, a maize gene that confers race-specific resistance to the rust fungus Puccinia sorghi. Mapping of rp1-related sequences in barley identified three unlinked loci on chromosomes 1HL, 3HL and 7HS. The locus located on chromosome 7HS comprises a small gene family of at least four members, two of which were isolated and are predicted to encode nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins that are respectively 58% and 60% identical to the maize rp1 protein. Evidence of positive selection for sequence diversification acting upon these two barley genes was observed; however, diversifying selection was restricted to the carboxy terminal half of the LRR domain. One of these rp1 homologous genes cosegregated with the barley Rpg1 stem rust resistance gene amongst 148 members of the Steptoe × Morex double haploid mapping family. Three other unrelated resistance gene-like sequences, potentially encoding NBS-LRR proteins, are also shown to be linked to the Rpg1 locus but not cosegregating with the gene. Received: 2 August 1999 / Accepted: 28 September 1999  相似文献   

8.
9.
10.
11.
The Linum usitatissimum (flax) L gene alleles, which encode nucleotide binding site-Leu rich repeat class intracellular receptor proteins, confer resistance against the Melampsora lini (flax rust) fungus. At least 11 different L resistance specificities are known, and the corresponding avirulence genes in M. lini map to eight independent loci, some of which are complex and encode multiple specificities. We identified an M. lini cDNA marker that cosegregates in an F2 rust family with a complex locus determining avirulence on the L5, L6, and L7 resistance genes. Two related avirulence gene candidates, designated AvrL567-A and AvrL567-B, were identified in a genomic DNA contig from the avirulence allele, whereas the corresponding virulence allele contained a single copy of a related gene, AvrL567-C. Agrobacterium tumefaciens-mediated transient expression of the mature AvrL567-A or AvrL567-B (but not AvrL567-C) proteins as intracellular products in L. usitatissimum and Nicotiana tabacum (tobacco) induced a hypersensitive response-like necrosis that was dependent on coexpression of the L5, L6, or L7 resistance gene. An F1 seedling lethal or stunted growth phenotype also was observed when transgenic L. usitatissimum plants expressing AvrL567-A or AvrL567-B (but not AvrL567-C) were crossed to resistant lines containing L5, L6, or L7. The AvrL567 genes are expressed in rust haustoria and encode 127 amino acid secreted proteins. Intracellular recognition of these rust avirulence proteins implies that they are delivered into host cells across the plant membrane. Differences in the three AvrL567 protein sequences result from diversifying selection, which is consistent with a coevolutionary arms race.  相似文献   

12.
L6 is a nucleotide binding site-leucine rich repeat (NBS-LRR) gene that confers race-specific resistance in flax (Linum usitatissimum) to strains of flax rust (Melampsora lini) that carry avirulence alleles of the AvrL567 gene but not to rust strains that carry only the virulence allele. Several mutant and recombinant forms of L6 were made that altered either the methionine-histidine-aspartate (MHD) motif conserved in the NBS domain of resistance proteins or exchanged the short domain C-terminal to the LRR region that is highly variable among L allele products. In transgenic flax some of these alleles are autoactive; they cause a gene dosage-dependent dwarf phenotype and constitutive expression of genes that are markers for the plant defense response. Their effects and penetrance ranged from extreme to mild in their degree of plant stunting, survival, and reproduction. Dwarf plants were also resistant to flax rust strains virulent to wild-type L6 plants, and this nonspecific resistance was associated with a hypersensitive response (HR) at the site of rust infection. The strongest autoactive allele, expressed in Arabidopsis from an ethanol-inducible promoter, gave rise to plant death dependent on the enhanced disease susceptibility 1 (EDS1) gene, which indicates that the mutant flax (Linaceae) L6 gene can signal cell death through a defined disease-resistance pathway in a different plant family (Brassicaceae).  相似文献   

13.
Three rust resistance specificities, N, N1 and N2, map to the complex N locus of flax. We used a degenerate PCR approach, with primers directed to the nucleotide binding site (NBS) domain characteristic of many plant resistance genes, to isolate resistance gene analogs (RGAs) from flax. One RGA clone detected RFLPs co-segregating with alleles of the N locus. With this probe we isolated four related genes that occur within a 30kbp region and encode proteins with NBS and leucine-rich repeat (LRR) domains and N-terminal Toll/Interleukin-1 Receptor homology (TIR) domains. One of these four genes was identified as the N resistance gene by sequence analysis of three mutant alleles and by transgenic expression. We isolated homologous genes from two flax lines containing the N1 or N2 specificities and from flax lines carrying no N locus resistance specificities. Analysis of shared polymorphisms among this set of 18 N locus sequences revealed three groups of genes with independent lineages. Sequence exchanges have only occurred between genes within each group, but not between groups. Two of the groups contain only one sequence from each haplotype and probably represent orthologous genes. However, the third group contains two genes from each haplotype. We suggest that the re-assortment of variation by recombination/gene conversion at this locus is limited by the degree of sequence identity between genes.  相似文献   

14.
15.
Cultivated barley, Hordeum vulgare L., is considered to be a nonhost or intermediate host species for the wheat leaf rust fungus Puccinia triticina. Here, we have investigated, at the microscopic and molecular levels, the reaction of barley cultivars to wheat leaf rust infection. In the nonhost resistant cultivar Cebada Capa, abortion of fungal growth occurred at both pre- and posthaustorial stages, suggesting that defense genes are expressed throughout the development of the inappropriate fungus during the nonhost resistance reaction. In the two barley lines L94 and Bowman, a low level of prehaustorial resistance to P. triticina was observed and susceptibility was comparable to that of wheat control plants. Suppression subtractive hybridization was used to identify genes that are differentially expressed during the nonhost resistance reaction in Cebada Capa as well as during the successful establishment of the inappropriate wheat leaf rust fungus in L94. Northern analysis indicated that two candidate genes, including a barley ortholog of the rice resistance gene Xa21, are putatively involved in nonhost and non-race-specific resistance reactions. In addition, a new gene that is specifically induced during the successful development of the inappropriate fungus P. triticina in barley has been identified.  相似文献   

16.
Fungal effector proteins: past, present and future   总被引:1,自引:0,他引:1  
The pioneering research of Harold Flor on flax and the flax rust fungus culminated in his gene-for-gene hypothesis. It took nearly 50 years before the first fungal avirulence ( Avr ) gene in support of his hypothesis was cloned. Initially, fungal Avr genes were identified by reverse genetics and map-based cloning from model organisms, but, currently, the availability of many sequenced fungal genomes allows their cloning from additional fungi by a combination of comparative and functional genomics. It is believed that most Avr genes encode effectors that facilitate virulence by suppressing pathogen-associated molecular pattern-triggered immunity and induce effector-triggered immunity in plants containing cognate resistance proteins. In resistant plants, effectors are directly or indirectly recognized by cognate resistance proteins that reside either on the plasma membrane or inside the plant cell. Indirect recognition of an effector (also known as the guard model) implies that the virulence target of an effector in the host (the guardee) is guarded by the resistance protein (the guard) that senses manipulation of the guardee, leading to activation of effector-triggered immunity. In this article, we review the literature on fungal effectors and some pathogen-associated molecular patterns, including those of some fungi for which no gene-for-gene relationship has been established.  相似文献   

17.
ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize (Zea mays) gene, ZmPROPEP1. ZmPROPEP1 was identified by sequence similarity as an ortholog of the Arabidopsis (Arabidopsis thaliana) AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1 and AtPEPR2, AtPep1 functions to activate and amplify innate immune responses in Arabidopsis and enhances resistance to both Pythium irregulare and Pseudomonas syringae. Candidate orthologs to the AtPROPEP1 gene have been identified from a variety of crop species; however, prior to this study, activities of the respective peptides encoded by these orthologs were unknown. Expression of the ZmPROPEP1 gene is induced by fungal infection and treatment with jasmonic acid or ZmPep1. ZmPep1 activates de novo synthesis of the hormones jasmonic acid and ethylene and induces the expression of genes encoding the defense proteins endochitinase A, PR-4, PRms, and SerPIN. ZmPep1 also stimulates the expression of Benzoxazineless1, a gene required for the biosynthesis of benzoxazinoid defenses, and the accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside in leaves. To ascertain whether ZmPep1-induced defenses affect resistance, maize plants were pretreated with the peptide prior to infection with fungal pathogens. Based on cell death and lesion severity, ZmPep1 pretreatment was found to enhance resistance to both southern leaf blight and anthracnose stalk rot caused by Cochliobolis heterostrophus and Colletotrichum graminicola, respectively. We present evidence that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops.  相似文献   

18.
19.
20.
A plant virus vector for systemic expression of foreign genes in cereals   总被引:4,自引:0,他引:4  
Inserts bearing the coding sequences of NPT II and beta-glucuronidase (GUS) were placed between the nuclear inclusion b (NIb) and coat protein (CP) domains of the wheat streak mosaic virus (WSMV) polyprotein ORF. The WSMV NIb-CP junction containing the nuclear inclusion a (NIa) protease cleavage site was duplicated, permitting excision of foreign protein domains from the viral polyprotein. Wheat, barley, oat and maize seedlings supported systemic infection of WSMV bearing NPT II. The NPT II insert was stable for at least 18-30 days post-inoculation and had little effect on WSMV CP accumulation. Histochemical assays indicated the presence of functional GUS protein in systemically infected wheat and barley plants inoculated with WSMV bearing GUS. The GUS constructs had greatly reduced virulence on both oat and maize. RT-PCR indicated that the GUS insert was subject to deletion, particularly when expressed as a GUS-NIb protein fusion. Both reporter genes were expressed in wheat roots at levels comparable to those observed in leaves. These results clearly demonstrate the utility of WSMV as a transient gene expression vector for grass species, including two important grain crops, wheat and maize. The results further indicate that both host species and the nature of inserted sequences affect the stability and expression of foreign genes delivered by engineered virus genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号