首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phyto-oxylipins are a group of biologically active molecules that play an important role in plant defence. Their production begins with the oxygenation of polyunsaturated fatty acids by lipoxygenases (LOX) to form 9- or 13-hydroperoxides that are substrates for several enzymes involved in the synthesis of final oxylipins, which can act as signal molecules and/or direct antimicrobials. In the present work, the response of the 9-LOX pathway in the almond/Aspergillus carbonarius (producer of ochratoxin A) interaction was studied. Both LOX gene expression and activity are up-regulated over the course of fungal infection in immature and mature almonds. The biochemical characterization of major LOX and hydroperoxide lyase (HPL) isoforms indicated that 9-LOX metabolism is specifically induced by A. carbonarius. Lipid peroxidation profiling showed that, in infected immature almonds, enzymatically produced 9-hydro(peroxy) fatty acids (HFAs) were the main HFAs and are further metabolized by HPL into C9-aldehydes. Both HPL gene expression and C9-aldehydes increased over the course of fungal infection. In mature almonds infected with A. carbonarius, levels of LOX expression and activity were lower than those found in immature seeds, and 9-HFA represented the minority of total HFA, which consisted of mostly 13- and non-enzymatically produced HFA. In these experimental conditions, no volatile aldehydes were recorded from these samples, even though HPL was up-regulated in infected mature almonds. The effects on the growth of A. carbonarius of the aldehydes produced by these enzymes were also tested in vitro. Results reported here led to the proposal that, in almond seed, the association of 9-LOX and HPL has an important role in seed defence mechanism against pathogen infection.  相似文献   

3.
G Began  E Sudharshan  A G Appu Rao 《Biochemistry》1999,38(42):13920-13927
Linoleic and arachidonic acids were inserted into phosphatidylcholine deoxycholate mixed micelles (PDM-micelles) with their tail groups buried inside and carboxylic groups exposed outside. The fatty acid hydrophobic tail had a high affinity for the hydrophobic region of phosphatidylcholine micelles. The fatty acids inserted into phosphatidylcholine micelles were better substrates for soybean lipoxygenase 1 (LOX1) with two distinct pH optima at 7.0 and 10.0. With Tween 20-solubilized linoleic acid, the enzyme had a pH optimum at 9.0, exclusively forming 13-hydroperoxides. However, with linoleic and arachidonic acids inserted into PDM-micelles, LOX1 synthesized exclusively 9- and 5-hydroperoxides, respectively. The enzyme brought about the transformation of the substrate either at pH 7.4 or at 10.0, less efficiently at pH 10.0. However, the regioselectivity of the enzyme was not altered by increasing the pH from 7.4 to 10.0. Thus, LOX1 could utilize fatty acids bound to membranes as physiological substrates. The enzyme utilized the carboxylic group of linoleic and arachidonic acids inserted into the PDM-micelles as a recognition site to convert the compounds into 9- and 5-hydroperoxides, respectively. This was confirmed by activity measurements using methyl linoleate as the substrate. Circular dichroism measurement of LOX1 with PDM-micelles suggested that while there was a small change in the tertiary structure of LOX1, the secondary structure was unaffected. Soybean LOX1, which is arachidonate 15-LOX, acted as "5-LOX", thus making it possible to change the regiospecificity of the LOX1-catalyzed reaction by altering the physical state of the substrate.  相似文献   

4.
Lipoxygenases (LOX) form a heterogeneous family of lipid peroxidizing enzymes, which catalyze specific dioxygenation of polyunsaturated fatty acids. According to their positional specificity of linoleic acid oxygenation plant LOX have been classified into linoleate 9- and linoleate 13-LOX and recent reports identified a critical valine at the active site of 9-LOX. In contrast, more bulky phenylalanine or histidine residues were found at this position in 13-LOX. We have recently cloned a LOX-isoform from Momordica charantia and multiple amino acid alignments indicated the existence of a glutamine (Gln599) at the position were 13-LOX usually carry histidine or phenylalanine residues. Analyzing the pH-dependence of the positional specificity of linoleic acid oxygenation we observed that at pH-values higher than 7.5 this enzyme constitutes a linoleate 13-LOX whereas at lower pH, 9-H(P)ODE was the major reaction product. Site-directed mutagenesis of glutamine 599 to histidine (Gln599His) converted the enzyme to a pure 13-LOX. These data confirm previous observation suggesting that reaction specificity of certain LOX-isoforms is not an absolute enzyme property but may be impacted by reaction conditions such as pH of the reaction mixture. We extended this concept by identifying glutamine 599 as sequence determinant for such pH-dependence of the reaction specificity. Although the biological relevance for this alteration switch remains to be investigated it is of particular interest that it occurs at near physiological conditions in the pH-range between 7 and 8.  相似文献   

5.
6.
We have characterized an almond (Prunus dulcis) lipoxygenase (LOX) that is expressed early in seed development. The presence of an active lipoxygenase was confirmed by western blot analysis and by measuring the enzymatic activity in microsomal and soluble protein samples purified from almond seeds at this stage of development. The almond lipoxygenase, which had a pH optimum around 6, was identified as a 9-LOX on the basis of the isomers of linoleic acid hydroperoxides produced in the enzymatic reaction. A genomic clone containing a complete lipoxygenase gene was isolated from an almond DNA library. The 6776-bp sequence reported includes an open reading frame of 4667 bp encoding a putative polypeptide of 862 amino acids with a calculated molecular mass of 98.0 kDa and a predicted pI of 5.61. Almond seed lipoxygenase shows 71% identity with an Arabidopsis LOX1 gene and is closely related to tomato fruit and potato tuber lipoxygenases. The sequence of the active site was consistent with the isolated gene encoding a 9-LOX.  相似文献   

7.
In Aspergilli, mycotoxin production and sporulation are governed, in part, by endogenous oxylipins (oxygenated, polyunsaturated fatty acids and metabolites derived therefrom). In Aspergillus nidulans , oxylipins are synthesized by the dioxygenase enzymes PpoA, PpoB and PpoC. Structurally similar oxylipins are synthesized in seeds via the action of lipoxygenase (LOX) enzymes. Previous reports have shown that exogenous application of seed oxylipins to Aspergillus cultures alters sporulation and mycotoxin production. Herein, we explored whether a plant oxylipin biosynthetic gene ( ZmLOX3 ) could substitute functionally for A. nidulans ppo genes. We engineered ZmLOX3 into wild-type A. nidulans , and into a Δ ppoAC strain that was reduced in production of oxylipins, conidia and the mycotoxin sterigmatocystin. ZmLOX3 expression increased production of conidia and sterigmatocystin in both backgrounds. We additionally explored whether A. nidulans oxylipins affect seed LOX gene expression during Aspergillus colonization. We observed that peanut seed pnlox2–3 expression was decreased when infected by A. nidulans Δ ppo mutants compared with infection by wild type. This result provides genetic evidence that fungal oxylipins are involved in plant LOX gene expression changes, leading to possible alterations in the fungal/host interaction. This report provides the first genetic evidence for reciprocal oxylipin cross-talk in the Aspergillus –seed pathosystem.  相似文献   

8.
Plant lipoxygenases (LOXs) are a class of widespread dioxygenases catalysing the hydroperoxidation of polyunsaturated fatty acids. Although multiple isoforms of LOX have been detected in a wide range of plants, their physiological roles remain to be clarified. With the aim to clarify the occurrence of LOXs in olives and their contribution to the elaboration of the olive oil aroma, we cloned and characterized the first cDNA of the LOX isoform which is expressed during olive development. The open reading frame encodes a polypeptide of 864 amino acids. This olive LOX is a type-1 LOX which shows a high degree of identity at the peptide level towards hazelnut (77.3%), tobacco (76.3%) and almond (75.5%) LOXs. The recombinant enzyme shows a dual positional specificity, as it forms both 9- and 13-hydroperoxide of linoleic acid in a 2:1 ratio, and would be defined as 9/13-LOX. Although a LOX activity was detected throughout the olive development, the 9/13-LOX is mainly expressed at late developmental stages. Our data suggest that there are at least two Lox genes expressed in black olives, and that the 9/13-LOX is associated with the ripening and senescence processes. However, due to its dual positional specificity and its expression pattern, its contribution to the elaboration of the olive oil aroma might be considered.  相似文献   

9.
In Aspergilli, mycotoxin production and sporulation are governed, in part, by endogenous oxylipins (oxygenated, polyunsaturated fatty acids and metabolites derived therefrom). In Aspergillus nidulans, oxylipins are synthesized by the dioxygenase enzymes PpoA, PpoB and PpoC. Structurally similar oxylipins are synthesized in seeds via the action of lipoxygenase (LOX) enzymes. Previous reports have shown that exogenous application of seed oxylipins to Aspergillus cultures alters sporulation and mycotoxin production. Herein, we explored whether a plant oxylipin biosynthetic gene (ZmLOX3) could substitute functionally for A. nidulans ppo genes. We engineered ZmLOX3 into wild-type A. nidulans, and into a DeltappoAC strain that was reduced in production of oxylipins, conidia and the mycotoxin sterigmatocystin. ZmLOX3 expression increased production of conidia and sterigmatocystin in both backgrounds. We additionally explored whether A. nidulans oxylipins affect seed LOX gene expression during Aspergillus colonization. We observed that peanut seed pnlox2-3 expression was decreased when infected by A. nidulansDeltappo mutants compared with infection by wild type. This result provides genetic evidence that fungal oxylipins are involved in plant LOX gene expression changes, leading to possible alterations in the fungal/host interaction. This report provides the first genetic evidence for reciprocal oxylipin cross-talk in the Aspergillus-seed pathosystem.  相似文献   

10.
Manganese lipoxygenase was isolated from the take-all fungus, Gaeumannomyces graminis, and the oxygenation mechanism was investigated. A kinetic isotope effect, k(H)/k(D) = 21-24, was observed with [U-(2)H]linoleic acid as a substrate. The relative biosynthesis of (11S)-hydroperoxylinoleate (11S-HPODE) and (13R)-hydroperoxylinoleate (13R-HPODE) was pH-dependent and changed by [U-(2)H]linoleic acid. Stopped-flow kinetic traces of linoleic and alpha-linolenic acids indicated catalytic lag times of approximately 45 ms, which were followed by bursts of enzyme activity for approximately 60 ms and then by steady state (k(cat) approximately 26 and approximately 47 s(-1), respectively). 11S-HPODE was isomerized by manganese lipoxygenase to 13R-HPODE and formed from linoleic acid at the same rates (k(cat) 7-9 s(-1)). Catalysis was accompanied by collisional quenching of the long wavelength fluorescence (640-685 nm) by fatty acid substrates and 13R-HPODE. Electron paramagnetic resonance (EPR) of native manganese lipoxygenase showed weak 6-fold hyperfine splitting superimposed on a broad resonance indicating two populations of Mn(II) bound to protein. The addition of linoleic acid decreased both components, and denaturation of the lipoxygenase liberated approximately 0.8 Mn(2+) atoms/lipoxygenase molecule. These observations are consistent with a mononuclear Mn(II) center in the native state, which is converted during catalysis to an EPR silent Mn(III) state. We propose that manganese lipoxygenase has kinetic and redox properties similar to iron lipoxygenases.  相似文献   

11.
Park S  Han SU  Lee KM  Park KH  Cho SW  Hahm KB 《Helicobacter》2007,12(1):49-58
BACKGROUND: Arachidonic acid metabolites have been considered as pivotal mediators in Helicobacter pylori-induced inflammatory response, which are mainly metabolized by two distinct enzymes: cyclooxygenase (COX) and lipoxygenase (LOX). While COX has become well known to play a key role in either carcinogenesis or inflammation related to H. pylori infection, little is known regarding the implication of LOX in H. pylori infection. In this study, we evaluated the roles of 5-LOX and its metabolites in H. pylori-induced host responses and further a potential beneficial action of specific LOX inhibitors against H. pylori infection. MATERIALS AND METHODS: Expressions of cytosolic phospholipase A(2) (cPLA(2)), COX-2, and 5-LOX after H. pylori infection were evaluated by immunofluorescence staining and Western blotting. Synthesis of LOX metabolites was measured with reversed-phase high-performance liquid chromatography. For analyzing the influence of 5-LOX inhibitors, nordihydroguaiaretic acid (NDGA) and geraniin, on H. pylori-induced inflammatory responses, RNase protection assay and RT-PCR were performed. RESULTS: H. pylori stimulated the translocation of cPLA(2) from cytoplasm to nucleus and increased the biosynthesis of hydroxyeicosatetraenoic acids (HETEs) as a predominant form of 5S-HETE in gastric epithelium. NDGA exerted a strong suppression activity of H. pylori-induced 5-LOX signaling. The administration of LOX inhibitors was related with down-expression of proinflammatory mediators such as interleukin-8 and tumor necrosis factor-alpha in both H. pylori-infected gastric epithelial cells and macrophage cells. CONCLUSION: LOX modulation with its specific inhibitors could impose significant anti-inflammatory responses after H. pylori infection, based on the fact that H. pylori infection provoked gastric inflammation through metabolizing arachidonic acid by the 5-LOX pathway.  相似文献   

12.
Saturated and unsaturated N-acylethanolamines (NAEs) occur in desiccated seeds primarily as 16C and 18C species with N-palmitoylethanolamine and N-linoleoylethanolamine (NAE 18:2) being most abundant. Here, we examined the metabolic fate of NAEs in vitro and in vivo in imbibed cotton (Gossypium hirsutum) seeds. When synthetic [1-(14)C]N-palmitoylethanolamine was used as a substrate, free fatty acids (FFA) were produced by extracts of imbibed cottonseeds. When synthetic [1-(14)C]NAE 18:2 was used as a substrate, FFA and an additional lipid product(s) were formed. On the basis of polarity, we presumed that the unidentified lipid was a product of the lipoxygenase (LOX) pathway and that inclusion of the characteristic LOX inhibitors nordihydroguaiaretic acid and eicosatetraynoic acid reduced its formation in vitro and in vivo. The conversion of NAE 18:2 in imbibed cottonseed extracts to 12-oxo-13-hydroxy-N-(9Z)-octadecanoylethanolamine was confirmed by gas chromatography-mass spectrometry, indicating the presence of 13-LOX and 13-allene oxide synthase, which metabolized NAE 18:2. Cell fractionation studies showed that the NAE amidohydrolase, responsible for FFA production, was associated mostly with microsomes, whereas LOX, responsible for NAE 18:2-oxylipin production, was distributed in cytosol-enriched fractions and microsomes. The highest activity toward NAE by amidohydrolase was observed 4 to 8 h after imbibition and by LOX 8 h after imbibition. Our results collectively indicate that two pathways exist for NAE metabolism during seed imbibition: one to hydrolyze NAEs in a manner similar to the inactivation of endocannabinoid mediators in animal systems and the other to form novel NAE-derived oxylipins. The rapid depletion of NAEs by these pathways continues to point to a role for NAE metabolites in seed germination.  相似文献   

13.
14.
The activity of lipoxygenase (LOX) in aged potato tuber discs increased by almost 2-fold following treatment of the discs with the fungal elicitor arachidonic acid (AA). Enzyme activity increased above that in untreated discs within 30 min after AA treatment, peaked at 1 to 3 h, and returned to near control levels by 6 h. The majority of the activity was detected in a soluble fraction (105,000g supernatant), but a minor portion was also associated with a particulate fraction enriched in microsomal membranes (105,000g pellet); both activities were similarly induced. 5-Hydroperoxyeicosatetraenoic acid was the principal product following incubation of these extracts with AA. Antibodies to soybean LOX strongly reacted with a protein with a molecular mass of approximately 95-kD present in both soluble and particulate fractions whose abundance generally corresponded with LOX activity in extracts. LOX activity was not enhanced by treatment of the discs with nonelicitor fatty acids or by branched β-glucans from the mycelium of Phytophthora infestans. Prior treatment of the discs with abscisic acid, salicylhydroxamic acid, or n-propyl gallate, all of which have been shown to suppress AA induction of the hypersensitive response, inhibited the AA-induced increment in LOX activity. Cycloheximide pretreatment, which abolishes AA elicitor activity for other responses such as phytoalexin induction, did not inhibit LOX activity in water- or elicitor-treated discs but enhanced activity similar to that observed by AA treatment. The elicitor-induced increase in 5-LOX activity preceded or temporally paralleled the induction of other studied responses to AA, including the accumulation of mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase and phenylalanine ammonia lyase reported here. The results are discussed in relation to the proposed role of the 5-LOX in signal-response coupling of arachidonate elicitation of the hypersensitive response.  相似文献   

15.
Fatty acid oxidation and signaling in apoptosis   总被引:7,自引:0,他引:7  
Tang DG  La E  Kern J  Kehrer JP 《Biological chemistry》2002,383(3-4):425-442
It is well established that fatty acid metabolites of cyclooxygenase, lipoxygenase (LOX), and cytochrome P450 are implicated in essential aspects of cellular signaling including the induction of programmed cell death. Here we review the roles of enzymatic and non-enzymatic products of polyunsaturated fatty acids in controlling cell growth and apoptosis. Also, the spontaneous oxidation of polyunsaturated fatty acids yields reactive aldehydes and other products of lipid peroxidation that are potentially toxic to cells and may also signal apoptosis. Significant conflicting data in terms of the role of LOX enzymes are highlighted, prompting a re-evaluation of the relationship between LOX and prostate cancer cell survival. We include new data showing that LNCaP, PC3, and Du145 cells express much lower levels of 5-LOX mRNA and protein compared with normal prostate epithelial cells (NHP2) and primary prostate carcinoma cells (TP1). Although the 5-LOX activating protein inhibitor MK886 killed these cells, another 5-LOX inhibitor AA861 hardly showed any effect. These observations suggest that 5-LOX is unlikely to be a prostate cancer cell survival factor, implying that the mechanisms by which LOX inhibitors induce apoptosis are more complex than expected. This review also suggests several mechanisms involving peroxisome proliferator activated receptor activation, BCL proteins, thiol regulation, and mitochondrial and kinase signaling by which cell death may be produced in response to changes in non-esterified and non-protein bound fatty acid levels. Overall, this review provides a context within which the effects of fatty acids and fatty acid oxidation products on signal transduction pathways, particularly those involved in apoptosis, can be considered in terms of their overall importance relative to the much better studied protein or peptide signaling factors.  相似文献   

16.
Mammalian lipoxygenases (LOXs) have been implicated in cellular defense response and are important for physiological homeostasis. Since their discovery, LOXs have been believed to function as monomeric enzymes that exhibit allosteric properties. In aqueous solutions, the rabbit 12/15-LOX is mainly present as hydrated monomer but changes in the local physiochemical environment suggested a monomer-dimer equilibrium. Because the allosteric character of the enzyme can hardly be explained using a single ligand binding-site model, we proposed that the binding of allosteric effectors may shift the monomer-dimer equilibrium toward dimer formation. To test this hypothesis, we explored the impact of an allosteric effector [13(S)-hydroxyoctadeca-9(Z),11(E)-dienoic acid] on the structural properties of rabbit 12/15-LOX by small-angle X-ray scattering. Our data indicate that the enzyme undergoes ligand-induced dimerization in aqueous solution, and molecular dynamics simulations suggested that LOX dimers may be stable in the presence of substrate fatty acids. These data provide direct structural evidence for the existence of LOX dimers, where two noncovalently linked enzyme molecules might work in unison and, therefore, such mode of association might be related to the allosteric character of 12/15-LOX. Introduction of negatively charged residues (W181E + H585E and L183E + L192E) at the intermonomer interface disturbs the hydrophobic dimer interaction of the wild-type LOX, and this structural alteration may lead to functional distortion of mutant enzymes.  相似文献   

17.
Lipoxygenases (LOXs) are a class of non-heme iron-containing dioxygenases that catalyse oxidation of polyunsaturated fatty acids to produce hydroperoxidation that are in turn converted to oxylipins. Although multiple isoforms of LOXs have been detected in several plants, LOXs in oriental melon have not attracted much attention. Two full-length LOX cDNA clones, CmLOX10 and CmLOX13 which have been isolated from oriental melon (Cucumis melo var. makuwa Makino) cultivar “Yumeiren”, encode 902 and 906 amino acids, respectively. Bioinformatics analysis showed that CmLOX10 and CmLOX13 included all of the typical LOX domains and shared 58.11% identity at the amino acid level with each other. The phylogenetic analysis revealed that CmLOX10 and CmLOX13 were members of the type 2 13-LOX subgroup which are known to be involved in biotic and abiotic stress. Heterologous expression of the full-length CmLOX10 and truncated CmLOX13 in Escherichia coli revealed that the encoded exogenous proteins were identical to the predicted molecular weights and possessed the lipoxygenase activities. The purified CmLOX10 and CmLOX13 recombinant enzymes exhibited maximum activity at different temperature and pH and both had higher affinity for linoleic acid than linolenic acid. Chromatogram analysis of reaction products from the CmLOX10 and CmLOX13 enzyme reaction revealed that both enzymes produced 13S-hydroperoxides when linoleic acid was used as substrate. Furthermore, the subcellular localization analysis by transient expression of the two LOX fusion proteins in tobacco leaves showed that CmLOX10 and CmLOX13 proteins were located in plasma membrane and chloroplasts respectively. We propose that the two lipoxygenases may play different functions in oriental melon during plant growth and development.  相似文献   

18.
Most plant oxylipins, a large class of diverse oxygenated polyunsaturated fatty acids and their derivatives, are produced through the lipoxygenase (LOX) pathway. Recent progress in dicots has highlighted the biological roles of oxylipins in plant defence responses to pathogens and pests. By contrast, the physiological function of LOXs and their metabolites in monocots is poorly understood. Two maize LOXs, ZmLOX10 and ZmLOX11 that share >90% amino acid sequence identity but are localized on different chromosomes, were cloned and characterized. Phylogenetic analysis revealed that ZmLOX10 and ZmLOX11 cluster together with well-characterized plastidic type 2 linoleate 13-LOXs from diverse plant species. Regio-specificity analysis of recombinant ZmLOX10 protein overexpressed in Escherichia coli proved it to be a linoleate 13-LOX with a pH optimum at approximately pH 8.0. Both predicted proteins contain putative transit peptides for chloroplast import. ZmLOX10 was preferentially expressed in leaves and was induced in response to wounding, cold stress, defence-related hormones jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA), and inoculation with an avirulent strain of Cochliobolus carbonum. These data suggested a role for this gene in maize adaptation to abiotic stresses and defence responses against pathogens and pests. ZmLOX11 was preferentially expressed in silks and was induced in leaves only by ABA, indicating its possible involvement in responses to osmotic stress. In leaves, mRNA accumulation of ZmLOX10 is strictly regulated by a circadian rhythm, with maximal expression coinciding temporally with the highest photosynthetic activity. This study reveals the evolutionary divergence of physiological roles for relatively recently duplicated genes. Possible physiological functions of these 13-LOXs are suggested.  相似文献   

19.

Background  

Hydroperoxide lyase (HPL) is a key enzyme in plant oxylipin metabolism that catalyses the cleavage of polyunsaturated fatty acid hydroperoxides produced by the action of lipoxygenase (LOX) to volatile aldehydes and oxo acids. The synthesis of these volatile aldehydes is rapidly induced in plant tissues upon mechanical wounding and insect or pathogen attack. Together with their direct defence role towards different pathogens, these compounds are believed to play an important role in signalling within and between plants, and in the molecular cross-talk between plants and other organisms surrounding them. We have recently described the targeting of a seed 9-HPL to microsomes and putative lipid bodies and were interested to compare the localisation patterns of both a 13-HPL and a 9/13-HPL from Medicago truncatula, which were known to be expressed in leaves and roots, respectively.  相似文献   

20.
脂氧合酶(LOX)是一类广泛存在于动植物中的非血红素铁蛋白,催化底物生成各种类花生酸物质,与人体的肿瘤、哮喘、炎症、动脉硬化等疾病密切相关。12/15脂氧酶(12/15-LOX)是一种脂质过氧化物酶,可以催化亚油酸,花生四烯酸等多不饱和脂肪酸生成具有生物活性的代谢产物,通过信号转导在许多病理生理过程中发挥着重要的作用,有研究表明,12/15-LOX通路可以刺激炎症因子的产生,参与多种炎性反应,而在脑卒中的发生发展以及病理过程中始终伴随的炎性反应,炎症及细胞因子等对脑卒中有一定的影响,在脑卒中炎症反应继发性脑组织损伤病理发展过程中起着重要的作用。因此,研究12/15-LOX与脑卒中炎症的关系,可以为临床治疗脑卒中提供新的靶点。本文就12/15-LOX在脑卒中后炎症反应中的作用做简要介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号