首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of population extinction due to inbreeding depression with constant demographic disturbances every generation is analysed using a population genetic and demographic model. The demographic disturbances introduced into the model represent loss of population size that is induced by any kind of human activities, e.g. through hunting and destruction of habitats. The genetic heterozygosity among recessive deleterious genes and the population size are assumed to be in equilibrium before the demographic disturbances start. The effects of deleterious mutations are represented by decreases in the growth rate and carrying capacity of a population. Numerical simulations indicate rapid extinction due to synergistic interaction between inbreeding depression and declining population size for realistic ranges of per-locus mutation rate, equilibrium population size, intrinsic rate of population growth, and strength of demographic disturbances. Large populations at equilibrium are more liable to extinction when disturbed due to inbreeding depression than small populations. This is a consequence of the fact that large populations maintain more recessive deleterious mutations than small populations. The rapid extinction predicted in the present study indicates the importance of the demographic history of a population in relation to extinction due to inbreeding depression.  相似文献   

2.
Habitat fragmentation is a ubiquitous by-product of human activities that can alter the genetic structure of natural populations, with potentially deleterious effects on population persistence and evolutionary potential. When habitat fragmentation results in the subdivision of a population, random genetic drift then leads to the erosion of genetic diversity from within the resulting subpopulation, random genetic drift then leads to the erosion of genetic diversity from within the resulting subpopulations and greater genetic divergence among them. Theoretical and simulation analyses predict that these two main genetic effects of fragmentation, greater differentiation among resulting subpopulation and reduced genetic diversity within them, will proceed at very different rates. Despite important implications for the interpretation of genetics data from fragmented populations, empirical evidence for this phenomenon has been lacking. In this analysis, we carry out an empirical study in population of an alpine meadow-dwelling butterfly, which have become fragmented increasing forest cover over five decades. We show that genetic differentiation among subpopulations (G(ST)) is most highly correlated with contemporary forest cover, while genetics diversity within subpopulation (expected heterozygosity) is better correlated with the spatial pattern of forest cover 40 years in the past. Thus, where habitat fragmentation has occurred in recent decades, genetic differentiation among subpopulation can be near equilibrium while contemporary measures of within subpopulation diversity may substantially overestimate the equilibrium values that will eventually be attained.  相似文献   

3.
Zayed A  Packer L 《Heredity》2007,99(4):397-405
Strong evidence exists for global declines in pollinator populations. Data on the population genetics of solitary bees, especially diet specialists, are generally lacking. We studied the population genetics of the oligolectic bee Lasioglossum oenotherae, a specialist on the pollen of evening primrose (Onagraceae), by genotyping 455 females from 15 populations across the bee's North American range at six hyper-variable microsatellite loci. We found significant levels of genetic differentiation between populations, even at small geographic scales, as well as significant patterns of isolation by distance. However, using multilocus genotype assignment tests, we detected 11 first-generation migrants indicating that L. oenotherae's sub-populations are experiencing ongoing gene flow. Southern populations of L. oenotherae were significantly more likely to deviate from Hardy-Weinberg equilibrium and from genotypic equilibrium, suggesting regional differences in gene flow and/or drift and inbreeding. Short-term N(e) estimated using temporal changes in allele frequencies in several populations ranged from approximately 223 to 960. We discuss our findings in terms of the conservation genetics of specialist pollinators, a group of considerable ecological importance.  相似文献   

4.
Pleistocene climatic changes shaped the patterns of biodiversity in Europe and around the Mediterranean. Describing the phylogeographic structure of animal populations and inferring past population dynamics is essential to develop a framework for conservation biology in Europe. Direct persecution, habitat loss, population fragmentation and hybridization with domesticated conspecifics, are the main threats to the survival of large mammalian species. In this paper I will summarize the available information on phylogeography and population genetics of brown bear, wolf, wildcat and otters in Italy and in Europe.  相似文献   

5.
Among those few hypotheses of Amazonian diversification amenable to falsification by phylogenetic and population genetics methods, three can be singled out because of their general application to vertebrates: the riverine barrier, the refuge, and the Miocene marine incursion hypotheses. I used phylogenetic and population genetics methods to reconstruct the diversification history of the upland (terra-firme) forest superspecies Xiphorhynchus spixii/elegans (Aves: Dendrocolaptidae) in Amazonia, and to evaluate predictions of the riverine barrier, refuge, and Miocene marine incursion hypotheses. Phylogeographic and population genetics analyses of the X. spixiilelegans superspecies indicated that the main prediction of the riverine barrier hypothesis (that sister lineages occur across major rivers) hold only for populations separated by "clear-water" rivers located on the Brazilian shield, in central and eastern Amazonia; in contrast, "white-water" rivers located in western Amazonia did not represent areas of primary divergence for populations of this superspecies. The main prediction derived from the refuge hypothesis (that populations of the X. spixii/elegans superspecies would show signs of past population bottlenecks and recent demographic expansions) was supported only for populations found in western Amazonia, where paleoecological data have failed to support past rainforest fragmentation and expansion of open vegetation types; conversely, populations from the eastern and central parts of Amazonia, where paleoecological data are consistent with an historical interplay between rainforest and open vegetation types, did not show population genetics attributes expected under the refuge hypothesis. Phylogeographic and population genetics data were consistent with the prediction made by the Miocene marine incursion hypothesis that populations of the X. spixii/elegans superspecies found on the Brazilian shield were older than populations from other parts of Amazonia. In contrast, the phylogeny obtained for lineages of this superspecies falsified the predicted monophyly of Brazilian shield populations, as postulated by the Miocene marine incursion hypothesis. In general, important predictions of both riverine barrier and Miocene marine incursion hypotheses were supported, indicating that they are not mutually exclusive; in fact, the data presented herein suggest that an interaction among geology, sea level changes, and hydrography created opportunities for cladogenesis in the X. spixii/elegans superspecies at different temporal and geographical scales.  相似文献   

6.
Evolutionary Dynamics of Sporophytic Self-Incompatibility Alleles in Plants   总被引:3,自引:2,他引:1  
The stationary frequency distribution and allelic dynamics in finite populations are analyzed through stochastic simulations in three models of single-locus, multi-allelic sporophytic self-incompatibility. The models differ in the dominance relationships among alleles. In one model, alleles act codominantly in both pollen and style (SSIcod), in the second, alleles form a dominance hierarchy in pollen and style (SSIdom). In the third model, alleles interact codominantly in the style and form a dominance hierarchy in the pollen (SSIdomcod). The SSIcod model behaves similarly to the model of gametophytic self-incompatibility, but the selection intensity is stronger. With dominance, dominant alleles invade the population more easily than recessive alleles and have a lower frequency at equilibrium. In the SSIdom model, recessive alleles have both a higher allele frequency and higher expected life span. In the SSIdomcod model, however, loss due to drift occurs more easily for pollen-recessive than for pollen-dominant alleles, and therefore, dominant alleles have a higher expected life span than the more recessive alleles. The process of allelic turnover in the SSIdomcod and SSIdom models is closely approximated by a random walk on a dominance ladder. Implications of the results for experimental studies of sporophytic self-incompatibility in natural populations are discussed.  相似文献   

7.
Mating systems and the efficacy of selection at the molecular level   总被引:1,自引:1,他引:0  
Glémin S 《Genetics》2007,177(2):905-916
Mating systems are thought to play a key role in molecular evolution through their effects on effective population size (N(e)) and effective recombination rate. Because of reduced N(e), selection in self-fertilizing species is supposed to be less efficient, allowing fixation of weakly deleterious alleles or lowering adaptation, which may jeopardize their long-term evolution. Relaxed selection pressures in selfers should be detectable at the molecular level through the analyses of the ratio of nonsynonymous and synonymous divergence, D(n)/D(s), or the ratio of nonsynonymous and synonymous polymorphism, pi(n)/pi(s). On the other hand, selfing reveals recessive alleles to selection (homozygosity effect), which may counterbalance the reduction in N(e). Through population genetics models, this study investigates which process may prevail in natural populations and which conditions are necessary to detect evidence for relaxed selection signature at the molecular level in selfers. Under a wide range of plausible population and mutation parameters, relaxed selection against deleterious mutations should be detectable, but the differences between the two mating systems can be weak. At equilibrium, differences between outcrossers and selfers should be more pronounced using divergence measures (D(n)/D(s) ratio) than using polymorphism data (pi(n)/pi(s) ratio). The difference in adaptive substitution rates between outcrossers and selfers is much less predictable because it critically depends on the dominance levels of new advantageous mutations, which are poorly known. Different ways of testing these predictions are suggested, and implications of these results for the evolution of self-fertilizing species are also discussed.  相似文献   

8.
王波  王跃招 《四川动物》2007,26(2):477-480
全球两栖动物正以远超过自然灭绝的高速率灭绝,这与生境丧失和景观破碎化有着直接关系。生境丧失导致两栖动物的生存空间减少,使局部种群消失,而景观破碎化则导致两栖动物种群之间的隔离度增加,不利于动物的繁殖和扩散。但两者往往是同时出现,相互作用。复合种群、景观连接度、景观遗传学及景观模型模拟等理论和方法的发展,为在生境丧失与破碎化景观下两栖动物的种群结构、组成和动态变化研究提供了理论基础和技术方法。同时景观生态学中特别重视研究的尺度,生境破碎化是发生在景观尺度下的生境变化过程,因此对生境破碎化的影响应该从现有的主要集中在斑块尺度和斑块-景观尺度转变到景观尺度上来。  相似文献   

9.
Yu L  Lu J 《PloS one》2011,6(8):e22903
The Thousand-Island Lake region in Zhejiang Province, China is a highly fragmented landscape with a clear point-in-time of fragmentation as a result of flooding to form the reservoir. Islands in the artificial lake were surveyed to examine how population sex ratio of a dioecious plant specie Pistacia chinensis B. was affected by landscape fragmentation. A natural population on the mainland near the lake was also surveyed for comparison. Population size, sex ratio and diameter at breast height (DBH) of individuals were measured over 2 years. More than 1,500 individuals, distributed in 31 populations, were studied. Soil nitrogen in the different populations was measured to identify the relationship between sex ratio and micro-environmental conditions. In accordance with the results of many other reports on biased sex ratio in relation to environmental gradient, we found that poor soil nitrogen areas fostered male-biased populations. In addition, the degree of sex ratio bias increased with decreasing population size and population connectivity. The biased sex ratios were only found in younger individuals (less than 50 years old) in small populations, while a stable 1∶1 sex ratio was found in the large population on the mainland. We concluded that the effects of landscape fragmentation on the dioecious population sex ratio were mainly achieved in relation to changing soil nitrogen conditions in patches and pollen limitation within and among populations. Large populations could maintain a more suitable environment in terms of nutrient conditions and pollen flow, subsequently maintaining a stable sex ratio in dioecious plant populations. Both micro-environmental factors and spatial structure should be considered in fragmented landscape for the conservation of dioecious plant species.  相似文献   

10.
The genetic structure of red deer populations is under strong influence of human activities such as game management and habitat fragmentation. Using multilocus genotypes from 193 geo-referenced individuals, we evaluated the population genetic structure of three red deer populations in Croatia. The effect of habitat fragmentation on genetic structure was tested using Bayesian non-spatial and spatial clustering methods. Our results indicate levels of genetic diversity similar to the ones previously reported by other authors for stable and appropriately managed populations within all populations analyzed. The spatial clustering model was able to detect the effect of habitat fragmentation on population differentiation, supporting the use of spatially explicit methods in landscape genetics, and giving important guidelines for future road planning.  相似文献   

11.
Free fitness that always increases in evolution   总被引:1,自引:0,他引:1  
I here introduce a free fitness function in population biology, which monotonically increases with time and takes its maximum at the evolutionary equilibrium. By suitably defining an "index" for each state, the free fitness is expressed as the average index plus an entropy term. In many cases, the index has a biologically clear meaning, such as the logarithmic population mean fitness. The technique is applicable to any Markov process model (either continuous or discrete) with a positive steady state. I discuss four examples from various branches of population biology: (1) one-locus-two-allele system of population genetics with mutation, selection, and random genetic drift; (2) evolutionary dynamics of quantitative characters; (3) a molecular evolution model; and (4) an ecological succession model. Introducing free fitness clarifies the balance between systematic forces (e.g. natural selection or successional trend toward the climax) and disturbing processes (e.g. random drift).  相似文献   

12.
The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.  相似文献   

13.
D Charlesworth  V Laporte 《Genetics》1998,150(3):1267-1282
Results are given of genetic studies of male sterility using plants from two natural populations from Sussex, England. Both populations have substantial frequencies of females, approximately 0.25 in population 1 and 0.60 in population 3. As in the few other gynodioecious populations studied in detail, many genetic factors are present. In population 1, there are at least two, and more likely three, different cytoplasmic types, one of which appears to produce male sterility in progeny from any hermaphrodite pollen donor; in other words restorer alleles for this cytoplasm are rare or absent from the population. The other two populations can be carried in hermaphrodites that have the dominant restorers. In population 1, there are also probably three restorer loci with complementary recessive male-sterility alleles, as well as a locus with duplicate action, which cannot produce male sterility unless the plant is also homozygous for the recessive allele at another locus. The results from population 3 are quite similar, though there was no evidence in this population for an unrestored sterility cytoplasm. A similar joint nucleocytoplasmic model with multiple restorers fits data from Thymus vulgaris.  相似文献   

14.
S T Kalinowski 《Heredity》2011,106(4):625-632
One of the primary goals of population genetics is to succinctly describe genetic relationships among populations, and the computer program STRUCTURE is one of the most frequently used tools for doing so. The mathematical model used by STRUCTURE was designed to sort individuals into Hardy–Weinberg populations, but the program is also frequently used to group individuals from a large number of populations into a small number of clusters that are supposed to represent the main genetic divisions within species. In this study, I used computer simulations to examine how well STRUCTURE accomplishes this latter task. Simulations of populations that had a simple hierarchical history of fragmentation showed that when there were relatively long divergence times within evolutionary lineages, the clusters created by STRUCTURE were frequently not consistent with the evolutionary history of the populations. These difficulties can be attributed to forcing STRUCTURE to place individuals into too few clusters. Simulations also showed that the clusters produced by STRUCTURE can be strongly influenced by variation in sample size. In some circumstances, STRUCTURE simply put all of the individuals from the largest sample in the same cluster. A reanalysis of human population structure suggests that the problems I identified with STRUCTURE in simulations may have obscured relationships among human populations—particularly genetic similarity between Europeans and some African populations.  相似文献   

15.
The stability of populations of hosts and micro-parasites is investigated where each consists of n varieties that are equal in every respect except that each strain of parasites can infect only one specific strain of hosts and none of the others. Collectively the host strains are limited by a carrying capacity and through this limitation the host populations interact with each other. Hosts are assumed to reproduce asexually or such that different strains do not mate or are not fertile if they do. When the excess death rate caused by the pathogenic parasites is sufficiently large, then the host population is regulated to an equilibrium below the carrying capacity of the environment. This polymorphic equilibrium is shown to be locally asymptotically stable. When one of the parasite strains is absent, then all the other strains die out asymptotically. However, if host resistance to all infectious strains of parasites is achieved at the cost of a lower birthrate of the resistant host strain, then, if a certain condition for the various parameters is satisfied, stable coexistence between infected and resistant hosts is possible. There are many examples where susceptibility and resistance of hosts depends upon the conformation of specific proteins that are involved in host-parasite interactions and hence upon alleles at genetic loci that code for these proteins. We propose that polymorphism in wildtype populations which has been the subject of much theorizing in mathematical genetics may be due to host-pathogen interactions. Our model suggests how a polymorphic population, once established, can remain polymorphic indefinitely.  相似文献   

16.
Christensen AC 《Genetics》2000,155(3):999-1004
I have used an exercise involving domestic cats in the General Genetics course at the University of Nebraska-Lincoln for the past 5 years. Using a coherent set of traits in an organism familiar to the students makes it easy to illustrate principles of transmission and population genetics. The one-semester course consists primarily of sophomores and juniors who have either taken a one-semester introductory biology course, a one-semester cell biology course, or have a strong high school biology background. The students are given a handout and asked to determine the genotype at seven unlinked loci of at least one cat. To fill out the form, the students have to grasp such concepts as dominance, incomplete dominance, temperature-sensitive mutations, epistatic interactions, sex linkage, and variable expressivity. Completing the form reinforces these concepts as they observe the cat's phenotype and fill in the genotype. I then analyze the collected data and use it in my lectures on population genetics to illustrate the Hardy-Weinberg equilibrium, calculate allele frequencies, and use statistics. This allows the students to look at population genetics in a very positive light and provides concrete examples of some often misunderstood principles.  相似文献   

17.
Neutral genetic markers are commonly used to understand the effects of fragmentation and population bottlenecks on genetic variation in threatened species. Although neutral markers are useful for inferring population history, the analysis of functional genes is required to determine the significance of any observed geographical differences in variation. The genes of the major histocompatibility complex (MHC) are well‐known examples of genes of adaptive significance and are particularly relevant to conservation because of their role in pathogen resistance. In this study, we survey diversity at MHC class I loci across a range of tuatara populations. We compare the levels of MHC variation with that observed at neutral microsatellite markers to determine the relative roles of balancing selection, diversifying selection and genetic drift in shaping patterns of MHC variation in isolated populations. In general, levels of MHC variation within tuatara populations are concordant with microsatellite variation. Tuatara populations are highly differentiated at MHC genes, particularly between the northern and Cook Strait regions, and a trend towards diversifying selection across populations was observed. However, overall our results indicate that population bottlenecks and isolation have a larger influence on patterns of MHC variation in tuatara populations than selection.  相似文献   

18.
With increasing urbanization, urban‐fragmented landscapes are becoming more and more prevalent worldwide. Such fragmentation may lead to small, isolated populations that face great threats from genetic factors that affect even avian species with high dispersal propensities. Yet few studies have investigated the population genetics of species living within urban‐fragmented landscapes in the Old World tropics, in spite of the high levels of deforestation and fragmentation within this region. We investigated the evolutionary history and population genetics of the olive‐winged bulbul (Pycnonotus plumosus) in Singapore, a highly urbanized island which retains <5% of its original forest cover in fragments. Combining our own collected and sequenced samples with those from the literature, we conducted phylogenetic and population genetic analyses. We revealed high genetic diversity, evidence for population expansion, and potential presence of pronounced gene flow across the population in Singapore. This suggests increased chances of long‐term persistence for the olive‐winged bulbul and the ecosystem services it provides within this landscape.  相似文献   

19.
There are two main types of metapopulation models. Spatially implicit models are analytically tractable but neglect spatial heterogeneities. Spatially explicit models are more realistic but too complex. In this paper, I build a bridge between both approximations. I derive a new metapopulation model using a well-known technique in population genetics. Spatial heterogeneities are captured by an aggregate statistical measure of spatial correlation. When this correlation is zero, i.e., space is homogeneous, the model becomes the well-known Levins' model. As spatial correlation increases, equilibrium patch occupancy decreases from what would be expected under the spatially homogeneous assumption. I proceed by testing how well spatial complexities from a spatially explicit simulation can be encapsulated by such an aggregate statistical measure.  相似文献   

20.
Habitat fragmentation threatens the survival of many species and local populations. Habitat fragmentation has two major consequences: populations become more isolated and are reduced in size. Small compared with large populations have increased extinction risks because of different types stochasticity (e.g. genetic drift) and inbreeding, which can negatively affect the fitness of individuals or populations. Habitat fragmentation may also change the abiotic conditions of the surrounding landscape, which influences biotic interactions. This review gives an introduction to the theory of the effects of habitat fragmentation on mean fitness of plant populations. It intends to help bridge the gap between conservation biologists and conservation practitioners. The paper shortly introduces basic concepts of population biology, demography and genetics and cites relevant and new literature. Special attention is given to more common plant species, which have attracted far less conservation attention than rare species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号