首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Brecht JK  Huber DJ 《Plant physiology》1988,88(4):1037-1041
Enzymically active cell wall from ripe tomato (Lycopersicon esculentum Mill.) fruit pericarp release uronic acids through the action of wall-bound polygalacturonase. The potential involvement of products of wall hydrolysis in the induction of ethylene synthesis during tomato ripening was investigated by vacuum infiltrating preclimacteric (green) fruit with solutions containing pectin fragments enzymically released from cell wall from ripe fruit. Ripening initiation was accelerated in pectin-infiltrated fruit compared to control (buffer-infiltrated) fruit as measured by initiation of climacteric CO2 and ethylene production and appearance of red color. The response to infiltration was maximum at a concentration of 25 micrograms pectin per fruit; higher concentrations (up to 125 micrograms per fruit) had no additional effect. When products released from isolated cell wall from ripe pericarp were separated on Bio-Gel P-2 and specific size classes infiltrated into preclimacteric fruit, ripening-promotive activity was found only in the larger (degree of polymerization >8) fragments. Products released from pectin derived from preclimacteric pericarp upon treatment with polygalacturonase from ripe pericarp did not stimulate ripening when infiltrated into preclimacteric fruit.  相似文献   

2.
The pedicel of tomato fruit (Lycopersicon esculentum Mill., cv `Rutgers') of different developmental stages from immature-green (IG) to red was injected on the vine with 7 microcuries [14C(U)]sucrose and harvested after 18 hours. Cell walls were isolated from outer pericarp and further fractionated yielding ionically associated pectin, covalently bound pectin, hemicellulosic fraction I, hemicellulosic fraction II, and cellulosic fraction II. The dry weight of the total cell wall and of each cell wall fraction per gram fresh weight of pericarp tissue decreased after the mature-green (MG) stage of development. Incorporation of radiolabeled sugars into each fraction decreased from the IG to MG3 (locules jellied but still green) stage. Incorporation in all fractions increased from MG3 to breaker and turning (T) and then decreased from T to red. Data indicate that cell wall synthesis continues throughout ripening and increases transiently from MG4 (locules jellied and yellow to pink in color) to T, corresponding to the peak in respiration and ethylene synthesis during the climacteric. Synthesis continued at a time when total cell wall fraction dry weight decreased indicating the occurrence of cell wall turnover. Synthesis and insertion of a modified polymer with removal of other polymers may produce a less rigid cell wall and allow softening of the tissue integrity during ripening.  相似文献   

3.
Pericarp discs were excised from mature green and red ripe tomato (Lycopersicon esculentum Mill. cv. Jackpot) fruit and kept in sterile tissue culture plates for 4 days, including 2 days of incubation with D-[U-13C]-glucose. Cell walls were prepared and differentially extracted with dimethylsulfoxide (DMSO), trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA). Na2CO3, 4 M KOH and 8 M KOH. Cell wall noncellulosic neutral sugar (NS) composition and cell wall synthetic capacity (i.e. incorporation of density label into cell wall sugars) were determined by using a gas chromatograph coupled to a flame ionization detector and a mass spectrometer, respectively. In the crude cell wall, there was significantly less galactose (Gal) and glucose (Glc) in the “outer”2-mm pericarp region, including the cuticle, compared to the “inner”2-mm region immediately below it (closer to the locules). In the CDTA-soluble pectin, rhamnose (Rha), arabinose (Ara) and Gal accounted for approximately 90% of the total NS. The ratios of these sugars were very similar in the total (12C plus 13C) sugars, and also in the newly synthesized ([13C]-labeled) sugars, suggesting that newly synthesized NS associated with the chelator-extractable pectic fraction has a composition very similar to that of preexisting NS. In the 4 M KOH-soluble material, xylose (Xyl) and Glc accounted for approximately 70% of the total NS. The ratio of these sugars was very similar in the total sugars, but much lower in the newly synthesized portion. This suggests that the hemicellulosic polymers synthesized during the ripening process are different in type and/or proportion from those present in the developing fruit. Because the outer pericarp of tomatoes contains at least two distinct tissue types and these have a distinct cell wall composition, analysis of tomato cell wall polysaccharide composition by homogenization of the entire outer pericarp will obscure subtle changes associated with ripening/softening within specific tissue types.  相似文献   

4.
The fruit of the Alcobaca landrace of tomato (Lycopersicon esculentum Mill.) have prolonged keeping qualities (determined by the allele a/c) and contain three times as much putrescine as the standard Rutgers variety (A/c) at the ripe stage (ARG Dibble, PJ Davies, MA Mutschler [1988] Plant Physiol 86: 338-340). Polyamine metabolism and biosynthesis were compared in fruit from Rutgers and Rutgers-a/c—a near isogenic line possessing the allele a/c, at four different stages of ripening. The levels of soluble polyamine conjugates as well as wall bound polyamines in the pericarp tissue and jelly were very low or nondetectable in both genotypes. The increase in putrescine content in a/c pericarp is not related to normal ripening as it occurred with time and whether or not the fruit ripened. Pericarp discs of both normal and a/c fruit showed a decrease in the metabolism of [1,4-14C]putrescine and [terminal labeled-3H]spermidine with ripening, but there were no significant differences between the two genotypes. The activity of ornithine decarboxylase was similar in the fruit pericarp of the two lines. Arginine decarboxylase activity decreased during ripening in Rutgers but decreased and rose again in Rutgers-a/c fruit, and as a result it was significantly higher in a/c fruit than in the normal fruit at the ripe stage. The elevated putrescine levels in a/c fruit appear, therefore, to be due to an increase in the activity of arginine decarboxylase.  相似文献   

5.
The pressure microprobe was used to determine whether the turgor pressure in tomato (Lycopersicon esculentum Mill., variety “Castelmart”) pericarp cells changed during fruit ripening. The turgor pressure of cells located 200 to 500 micrometers below the fruit epidermis was uniform within the same tissue (typically ± 0.02 megapascals), and the highest turgors observed (<0.2 megapascals) were much less than expected, based on tissue osmotic potential (−0.6 to −0.7 megapascals). These low turgor values may indicate the presence of apoplastic solutes. In both intact fruit and cultured discs of pericarp tissue, a small increase in turgor preceded the onset of ripening, and a decrease in turgor occurred during ripening. Differences in the turgor of individual intact fruit occurred 2 to 4 days before parallel differences in their ripening behavior were apparent, indicating that changes in turgor may reflect physiological changes at the cell level that precede expression of ripening at the tissue level.  相似文献   

6.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

7.
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.  相似文献   

8.
The ripening of discs cut from the pericarp of green tomato (Lycopersicon esculentum Mill.) fruits is inhibited by treatments with GA3 and several divalent cations, including calcium. Normal ripening is marked by an increase in the solubility of wall pectins. Calcium and GA3 alter the pattern of pectin solubility changes. In part this may be because polygalacturonase synthesis and/or secretion to the apoplast is reduced. The impact of divalent cations on ripening-related tissue softening appears to have a nonmetabolic component. Ripening-inhibiting ions rapidly reduce tissue softening, pectin solubilization and the normal ripening-related decrease in cellular turgor.  相似文献   

9.
Huber DJ  Lee JH 《Plant physiology》1988,87(3):592-597
Isolated cell wall from tomato (Lycopersicon esculentum Mill. cv Rutgers) fruit released polymeric (degree of polymerization [DP] > 8), oligomeric, and monomeric uronic acids in a reaction mediated by bound polygalacturonase (PG) (EC 3.2.1.15). Wall autolytic capacity increased with ripening, reflecting increased levels of bound PG; however, characteristic oligomeric and monomeric products were recovered from all wall isolates exhibiting net pectin release. The capacity of wall from fruit at early ripening (breaker, turning) to generate oligomeric and monomeric uronic acids was attributed to the nonuniform ripening pattern of the tomato fruit and, consequently, a locally dense distribution of enzyme in wall originating from those fruit portions at more temporally advanced stages of ripening. Artificial autolytically active wall, prepared by permitting solubilized PG to bind to enzymically inactive wall from maturegreen fruit, released products which were similar in size characteristics to those recovered from active wall isolates. Extraction of wall-bound PG using high concentrations of NaCl (1.2 molar) did not attenuate subsequent autolytic activity but greatly suppressed the production of oligomeric and monomeric products. An examination of water-soluble uronic acids recovered from ripe pericarp tissue disclosed the presence of polymeric and monomeric uronic acids but only trace quantities of oligomers. The significance in autolytic reactions of enzyme quantity and distribution and their possible relevance to in vivo pectin degradation will be discussed.  相似文献   

10.
The unconjugated N-glycans Manα1→6(Manα→3)Manα1→6(Manα1→3)-Manβ1→4GlcNAc (Man5GlcNAc) and Manα1→6(Manα1→3)(Xy1β1→2)-Manβ1→4GlcNAcβ1→4(Fucα1→3)GlcNAc were shown to stimulate and delay ripening of mature green tomato fruit (Lycopersicon esculentum Mill. cv. Rutgers) at 1 and 10 ng (g fresh weight)−1, respectively (Priem and Gross 1992, Plant Physiol. 98: 399–401). Also, the occurrence and structure of 10 unconjugated N-glycans, including Man5GlcNAc, in tomato fruit were recently reported (Priem et al. 1993, Plant Physiol. 102: 445–458). In this work, we studied the potential interaction between Man5GlcNAc and several compounds by using a system that allowed pericarp discs to be kept up to 14 days after excision. Studies were performed to determine the effect of Man5GlcNAc, indole-3-acetic acid (IAA), concanavalin A and tomato lectin on ripening as defined by red coloration of the skin. Ripening in pericarp discs, unlike that in intact fruit, was unaffected by 1 ng (g fresh weight)−1 Man5GlcNAc. However, discs showed delayed ripening with 10 ng (g fresh weight)−1, and the delay of coloration was galactose dependent. Man5GlcNAc at 10 ng (g fresh weight)−1 inhibited the stimulation of coloration induced by 100 μ IAA in the presence of 40 μg (g fresh weight)−1 galactose. Man5GlcNAc lost biological activity in the presence of the two lectins. These results support the possible interaction of IAA and various oligosaccharides during plant growth and development, and for the first time suggest a physiological significance for tomato lectin.  相似文献   

11.
Post‐harvest storage is largely limited by fruit softening, a result of cell wall degradation. Pectin methylesterase (PE) (EC 3.1.1.11) is a major hydrolase responsible for pectin de‐esterification in the cell wall, a response to fruit ripening. Two major PE isoforms, PE1 and PE2, have been isolated from tomato (Solanum lycopersicon) pericarp tissue and both have previously been down‐regulated using antisense suppression. In this paper, PE1 and PE2 double antisense tomato plants were successfully generated through crossing the two single antisense lines. In the double antisense fruit, approximately 10% of normal PE activity remained and ripening associated pectin de‐esterification was almost completely blocked. However, double antisense fruit softened normally during ripening. In tomato fruit, the PE1 isoform was found to contribute little to total PE activity and have little effect on the degree of esterification of pectin. In contrast, the other dominant fruit isoform, PE2, has a major impact on de‐esterification of total pectin. PE2 appears to act on non‐CDTA‐soluble pectin during ripening and on CDTA‐soluble pectin before the start of ripening in a potentially block‐wise fashion.  相似文献   

12.
A water-soluble, ethanol-insoluble extract of autolytically inactive tomato (Lycopersicon esculentum Mill.) pericarp tissue contains a series of galacturonic acid-containing (pectic) oligosaccharides that will elicit a transient increase in ethylene biosynthesis when applied to pericarp discs cut from mature green fruit. The concentration of these oligosaccharides in extracts (2.2 [mu]g/g fresh weight) is in excess of that required to promote ethylene synthesis. Oligomers in extracts of ripening fruits were partially purified by preparative high-performance liquid chromatography, and their compositions are described. Pectins were extracted from cell walls prepared from mature green fruit using chelator and Na2CO3 solutions. These pectins are not active in eliciting ethylene synthesis. However, treatment of the Na2CO3-soluble, but not the chelator-soluble, pectin with pure tomato polygalacturonase 1 generates oligomers that are similar to those extracted from ripening fruit (according to high-performance liquid chromatography analysis) and are active as elicitors. The possibility that pectin-derived oligomers are endogenous regulators of ripening is discussed.  相似文献   

13.
The effect of pectic oligomers and 1-aminocyclopropane carboxylic acid on ethylene biosynthesis and color change was studied in ripening tomato pericarp discs excised from mature-green tomato fruit (Lycopersicon esculentum Mill.). Pectic oligomers induced at least four distinct responses when added to pericarp discs: (a) a short-term, transient increase in ethylene biosynthesis; (b) a long-term, persistent increase in climacteric ethylene in discs excised from mature-green fruit; (c) an advance in ripening processes, as indicated by increased reddening of the disc surfaces; and (d) a darkening of the treated endocarp surface. Pectic oligomers appear to affect the ripening of exocarp and endocarp tissues by different mechanisms. In exocarp tissues, the acceleration of reddening by pectic oligomers might simply be a consequence of induced ethylene biosynthesis. In endocarp tissues, the acceleration of reddening appears to be a direct effect of oligomers on ripening processes. We suggest that the rate of ripening of endocarp tissues may be regulated, in part, by the release of pectic oligomers from the cell walls of adjacent exocarp tissues. Exocarp and endocarp tissues of pericarp discs appear to differ in their sensitivity to ethylene at each maturity stage, and to exhibit independent changes in sensitivity to ethylene as ripening progresses. The tissue-specific pattern of reddening in tomato pericarp may result from this differential sensitivity to endogenous ethylene concentrations.  相似文献   

14.
15.
Cell wall isolation procedures were evaluated to determine their effect on the total pectin content and the degree of methylesterification of tomato (Lycopersicon esculentum L.) fruit cell walls. Water homogenates liberate substantial amounts of buffer soluble uronic acid, 5.2 milligrams uronic acid/100 milligrams wall. Solubilization appears to be a consequence of autohydrolysis mediated by polygalacturonase II, isoenzymes A and B, since the uronic acid release from the wall residue can be suppressed by homogenization in the presence of 50% ethanol followed by heating. The extent of methylesterification in heat-inactivated cell walls, 94 mole%, was significantly greater than with water homogenates, 56 mole%. The results suggest that autohydrolysis, mediated by cell wall-associated enzymes, accounts for the solubilization of tomato fruit pectin in vitro. Endogenous enzymes also account for a decrease in the methylesterification during the cell wall preparation. The heat-inactivated cell wall preparation was superior to the other methods studied since it reduces β-elimination during heating and inactivates constitutive enzymes that may modify pectin structure. This heat-inactivated cell wall preparation was used in subsequent enzymatic analysis of the pectin structure. Purified tomato fruit polygalacturonase and partially purified pectinmethylesterase were used to assess changes in constitutive substrates during tomato fruit ripening. Polygalacturonase treatment of heat-inactivated cell walls from mature green and breaker stages released 14% of the uronic acid. The extent of the release of polyuronides by polygalacturonase was fruit development stage dependent. At the turning stage, 21% of the pectin fraction was released, a value which increased to a maximum of 28% of the uronides at the red ripe stage. Pretreatment of the walls with purified tomato pectinesterase rendered walls from all ripening stages equally susceptible to polygalacturonase. Quantitatively, the release of uronides by polygalacturonase from all pectinesterase treated cell walls was equivalent to polygalacturonase treatment of walls at the ripe stage. Uronide polymers released by polygalacturonase contain galacturonic acid, rhamnose, galactose, arabinose, xylose, and glucose. As a function of development, an increase in the release of galacturonic acid and rhamnose was observed (40 and 6% of these polymers at the mature green stage to 54 and 15% at the red ripe stage, respectively). The amount of galactose and arabinose released by exogenous polygalacturonase decreased during development (41 and 11% from walls of mature green fruit to 11 and 6% at the red ripe stage, respectively). Minor amounts of glucose and xylose released from the wall by exogenous polygalacturonase (4-7%) remained constant throughout fruit development.  相似文献   

16.
采用电子显微镜技术系统研究了指状青霉Penicillium digitatum对柑橘果实的侵染过程及超微结构特征。结果表明室温条件下,接种12h后,伤口附近的分生孢子开始萌发产生芽管;然后从伤口处直接侵入果实表皮细胞内;接种24h后,受侵染果实细胞中的菌丝向相邻细胞扩展蔓延,寄主细胞壁开始消解,质壁分离,细胞内含物及各类细胞器凝集,颜色加深,最后完全消解,伤口部位的果皮开始变软,伤口处的菌丝向外生长;84h后伤口处病斑软化,部分长出白色的霉层;96h后病斑软化面积直径达3cm,白色霉层面积逐渐扩大;120h后白色霉层中间伤口处霉层颜色加深变为灰绿色;144h后整个果实变软腐烂。果胶质标记结果表明,菌丝侵入果实后产生果胶酶并降解柑橘细胞壁中的果胶,使得细胞壁松弛,软化腐烂。  相似文献   

17.
18.
不同种源黄连木秋季色素含量与叶色参数的关系   总被引:2,自引:0,他引:2  
该研究以陕西汉中、河南林州、河北涉县和北京中国科学院植物研究所4个种源黄连木(Pistacia chinensis Bunge)的苗木为对象,用分光光度计和色差仪对其叶绿素、类胡萝卜素、花色素苷含量及叶色参数(L*、a*、b*)进行了测定分析,探讨不同种源苗木秋季叶色变化规律及差异,揭示黄连木叶色呈现与叶片色素含量之间的内在关联,为筛选适合城市绿化的优良黄连木种源提供依据。结果表明:(1)在秋季叶片转色期,随着时间的推移,4个种源黄连木叶片的叶绿素、类胡萝卜素和花色素苷含量的比例呈现不同的变化趋势,其中:河北种源的花色素苷含量较高,叶片呈现红色;陕西种源叶绿素含量较高,叶片呈现绿色的时间较长;河南、北京种源处于两者之间。(2)各个种源黄连木的叶色参数a*值(红/绿)均与花色素苷含量呈正相关关系,与叶绿素含量呈负相关关系,且相关系数均达到显著水平(P0.05),各个种源叶色参数L*值(光泽明亮度)也与叶绿素含量间表现出显著或极显著的正相关性。研究发现,河北种源黄连木秋季的叶色最红,陕西种源黄连木叶片呈现绿色的时间最长;色差仪的应用实现了叶色和各色素含量间量化的关系。  相似文献   

19.
The rate of decarboxylation of [1′-14C]indole-3-acetic acid (IAA) infiltrated into tomato (Lycopersicon esculentum Mill.) pericarp discs was much more rapid in green than in breaker and pink tissues. Studies were carried out in order to determine whether the decarboxylative catabolism occurring in the green pericarp discs was associated with ripening or was a consequence of wound-induced peroxidase activity and/or ethylene production. After a 2-h lag, the decarboxylative capacity of the green pericarp discs increased exponentially during a 24-h incubation period. This increase was accompanied by increases in IAA-oxidase activity in cell-free preparations from the intercellular space and cut surface of the discs. Although higher IAA-oxidase activity was detected in extracts from the tissue residue, which comprises mainly intracellular peroxidases, this activity did not increase during the 24-h incubation period. Analysis of the cell-free preparations by isoelectric focusing revealed the major component in all samples was a highly anionic peroxidase (pI=3.5) the levels of which did not increase during incubation. However, the intercellular and cut-surface preparations contained additional anionic and cationic peroxidases which increased in parallel with the increases in both the IAA-oxidase activity of the preparations and the decarboxylative capacity of the green pericarp discs from which they were derived. Treatment of green discs with the ethylene-biosynthesis inhibitors aminooxyacetic acid and CoCl2, inhibited the development of an enhanced capacity to decarboxylate [1′-14C]IAA but the inhibition was not counteracted by exogenous ethylene. Another ethylene-biosynthesis inhibitor, aminoethoxyvinyl glycine, also reduced ethylene levels but did not affect IAA decarboxylation, indicating that the decarboxylation was not a consequence of wound-induced ethylene production. The data obtained thus demonstrate that the enhanced capacity to decarboxylate [1′-14C]IAA that develops in green tomato pericarp discs following excision is not associated with ripening but instead is attributable to a wound-induced increase in anionic and cationic peroxidase activity in the intercellular fluid and at the cut surface of the excised tissues.  相似文献   

20.
以丰香和红丰草莓为试材,对果实发育成熟过程中细胞壁水解酶活性和细胞壁成份变化进行了研究.结果表明:半乳糖苷酶和α-甘露糖苷酶活性随草莓果实成熟而提高,葡萄糖苷酶活性不随草莓果实成熟而提高.随着果实发育成熟,纤维素酶活性、果胶酶活性不断提高.果实中未检测到内切多聚半乳糖醛酸酶活性,外切多聚半乳糖醛酸酶活性变化不随果实成熟软化而提高.随果实发育成熟,细胞壁中可溶性果胶和半纤维素增加,而离子结合果胶和共价结合果胶及纤维素减少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号