首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Brecht JK  Huber DJ 《Plant physiology》1988,88(4):1037-1041
Enzymically active cell wall from ripe tomato (Lycopersicon esculentum Mill.) fruit pericarp release uronic acids through the action of wall-bound polygalacturonase. The potential involvement of products of wall hydrolysis in the induction of ethylene synthesis during tomato ripening was investigated by vacuum infiltrating preclimacteric (green) fruit with solutions containing pectin fragments enzymically released from cell wall from ripe fruit. Ripening initiation was accelerated in pectin-infiltrated fruit compared to control (buffer-infiltrated) fruit as measured by initiation of climacteric CO2 and ethylene production and appearance of red color. The response to infiltration was maximum at a concentration of 25 micrograms pectin per fruit; higher concentrations (up to 125 micrograms per fruit) had no additional effect. When products released from isolated cell wall from ripe pericarp were separated on Bio-Gel P-2 and specific size classes infiltrated into preclimacteric fruit, ripening-promotive activity was found only in the larger (degree of polymerization >8) fragments. Products released from pectin derived from preclimacteric pericarp upon treatment with polygalacturonase from ripe pericarp did not stimulate ripening when infiltrated into preclimacteric fruit.  相似文献   

2.
Discs prepared from the outer pericarp of tomato (Lycopersiconesculentum Mill. cv. Sunny) and placed in buffer exhibit anenzymic release of pectin fragments. Over a 2.5 h period at34 °C, discs from mature-green, 4 d and 10 d postbreakerfruit released approximately 90, 440 and 675 µg galacturonicacid equivalents (g–1 disc fr. wt.), respectively. Bio-GelP-2 chromatography of the products revealed the presence ofpolymeric, oligomeric and monomeric uronic acids. The similarityof these products to those released from isolated, enzymatically-activecell walls and from enzymatically-inactive walls treated withpurified PG 2 provides evidence for the participation of polygalacturonase(PG, E. C. 3.2.1.15 [EC] ) in the release of pectin from disc tissue. The magnitude of pectin release from external pericarp discswas found to parallel ripening and increase progressively indiscs from the blossom, equatorial and shoulder regions, respectively.The use of discs and other systems to estimate in vivo PG activitywill be discussed. Key words: Cell wall, polyuronides  相似文献   

3.
A nonsoftening tomato (Lycopersicon esculentum L.) variety, dg, was examined to assess the physiological basis for its inability to soften during ripening. Total uronic acid levels, 18 milligrams uronic acid/100 milligrams wall, and the extent of pectin esterification, 60 mole%, remained constant throughout fruit development in this mutant. The proportion of uronic acid susceptible to polygalacturonase in vitro also remained constant. Pretreatment of heat-inactivated dg fruit cell walls with tomato pectinmethylesterase enhances polygalacturonase susceptibility at all ripening stages. Pectinesterase activity of cell wall protein extracts from red ripe dg fruit was half that in extracts from analogous tissue of VF145B. Polygalacturonase activities of cell wall extracts, however, were similar in both varieties. Diffusion of uronic acid from tissue discs of both varieties increased beginning at the turning stage to a maximum of 2.0 milligrams uronic acid released/gram fresh weight at the ripe stage. The increased quantity of hydrolytic products released during ripening suggests the presence of in situ polygalacturonase activity. Low speed centrifugation was employed to induce efflux of uronide components from the cell wall tree space. In normal fruit, at the turning stage, 2.1 micrograms uronic acid/gram fresh weight was present in the eluant after 1 hour, and this value increased to a maximum of 8.2 micrograms uronic acid/gram fresh weight at the red ripe stage. However, centrifuge-aided extraction of hydrolytic products failed to provide evidence for in situ polygalacturonase activity in dg fruit. We conclude that pectinesterase and polygalacturonase enzymes are not active in situ during the ripening of dg fruit. This could account for the maintenance of firmness in ripe fruit tissue.  相似文献   

4.
Cell wall isolation procedures were evaluated to determine their effect on the total pectin content and the degree of methylesterification of tomato (Lycopersicon esculentum L.) fruit cell walls. Water homogenates liberate substantial amounts of buffer soluble uronic acid, 5.2 milligrams uronic acid/100 milligrams wall. Solubilization appears to be a consequence of autohydrolysis mediated by polygalacturonase II, isoenzymes A and B, since the uronic acid release from the wall residue can be suppressed by homogenization in the presence of 50% ethanol followed by heating. The extent of methylesterification in heat-inactivated cell walls, 94 mole%, was significantly greater than with water homogenates, 56 mole%. The results suggest that autohydrolysis, mediated by cell wall-associated enzymes, accounts for the solubilization of tomato fruit pectin in vitro. Endogenous enzymes also account for a decrease in the methylesterification during the cell wall preparation. The heat-inactivated cell wall preparation was superior to the other methods studied since it reduces β-elimination during heating and inactivates constitutive enzymes that may modify pectin structure. This heat-inactivated cell wall preparation was used in subsequent enzymatic analysis of the pectin structure. Purified tomato fruit polygalacturonase and partially purified pectinmethylesterase were used to assess changes in constitutive substrates during tomato fruit ripening. Polygalacturonase treatment of heat-inactivated cell walls from mature green and breaker stages released 14% of the uronic acid. The extent of the release of polyuronides by polygalacturonase was fruit development stage dependent. At the turning stage, 21% of the pectin fraction was released, a value which increased to a maximum of 28% of the uronides at the red ripe stage. Pretreatment of the walls with purified tomato pectinesterase rendered walls from all ripening stages equally susceptible to polygalacturonase. Quantitatively, the release of uronides by polygalacturonase from all pectinesterase treated cell walls was equivalent to polygalacturonase treatment of walls at the ripe stage. Uronide polymers released by polygalacturonase contain galacturonic acid, rhamnose, galactose, arabinose, xylose, and glucose. As a function of development, an increase in the release of galacturonic acid and rhamnose was observed (40 and 6% of these polymers at the mature green stage to 54 and 15% at the red ripe stage, respectively). The amount of galactose and arabinose released by exogenous polygalacturonase decreased during development (41 and 11% from walls of mature green fruit to 11 and 6% at the red ripe stage, respectively). Minor amounts of glucose and xylose released from the wall by exogenous polygalacturonase (4-7%) remained constant throughout fruit development.  相似文献   

5.
Avocado (Persea americana) fruit experience a rapid and extensive loss of firmness during ripening. In this study, we examined whether the chelator solubility and molecular weight of avocado polyuronides paralleled the accumulation of polygalacturonase (PG) activity and loss in fruit firmness. Polyuronides were derived from ethanolic precipitates of avocado mesocarp prepared using a procedure to rapidly inactivate endogenous enzymes. During ripening, chelator (cyclohexane-trans-1,2-diamine tetraacetic acid [CDTA])-soluble polyuronides increased from approximately 30 to 40 [mu]g of galacturonic acid equivalents (mg alcohol-insoluble solids)-1 in preripe fruit to 150 to 170 [mu]g mg-1 in postclimacteric fruit. In preripe fruit, chelator-extractable polyuronides were of high molecular weight and were partially excluded from Sepharose CL- 2B-300 gel filtration media. Avocado polyuronides exhibited marked downshifts in molecular weight during ripening. At the postclimacteric stage, nearly all chelator-extractable polyuronides, which constituted from 75 to 90% of total cell wall uronic acid content, eluted near the total volume of the filtration media. Rechromatography of low molecular weight polyuronides on Bio-Gel P-4 disclosed that oligomeric uronic acids are produced in vivo during avocado ripening. The gel filtration behavior and pattern of depolymerization of avocado polyuronides were not influenced by the polyuronide extraction protocol (imidazole versus CDTA) or by chromatographic conditions designed to minimize interpolymeric aggregation. Polyuronides from ripening tomato (Lycopersicon esculentum) fruit extracted and chromatographed under conditions identical with those used for avocado polyuronides exhibited markedly less rapid and less extensive downshifts in molecular weight during the transition from mature-green to fully ripe. Even during a 9-d period beyond the fully ripe stage, tomato fruit polyuronides exhibited limited additional depolymerization and did not include oligomeric species. A comparison of the data for the avocado and tomato fruit indicates that downshifts in polyuronide molecular weight are a prominent feature of avocado ripening and may also explain why molecular down-regulation of PG (EC 3.2.1.15) in tomato fruit has resulted in minimal effects on fruit performance until the terminal stages of ripening.  相似文献   

6.
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.  相似文献   

7.
An approach commonly employed to assess the potential role of the enzyme polygalacturonase (PG, EC 3.2.1.15) in tomato fruit cell-wall pectin metabolism includes correlating levels of extractable PG with changes in specific characteristics of cell wall pectins, most notably solubility and molecular weight. Since information on these features of pectins is generally derived from analyses of subfractions of isolated cell wall, assurance of inactivation of the various isoforms of wall-associated PG is imperative. In the present study, cell wall prepared from ripe tomato (Lycopersicon esculentum Mill. cv. Rutgers) fruit was examined for the presence of active PG and for the ability of phenolic solvents to inactivate the enzyme. Using pectin solubility and Mr (relative molecular mass) changes as criteria for the presence of wall-associated PG activity, pectins from phenol-treated and nonphenol-treated (enzymically active) cell wall from ripe fruit incubated in 50 mM Na-acetate, 50 mM cyclohexanetrans-1,2-diamine tetraacetic acid (CDTA), pH 6.5 (outside the catalytic range of PG), were of similar Mr and exhibited no change in size with incubation time. Wall prepared without exposure to the phenolic protein-denaturants exhibited extensive pectin solubilization and depolymerization when incubated in 50 mM Na-acetate, 50 mM CDTA at pH 4.5, indicating the presence of active PG. Based on the changes in the Mr of pectins solubilized in 50 mM Na-acetate, 50 mM CDTA, pH 4.5, active PG was also detected in wall exposed during isolation to phenolacetic acid-water (PAW, 2:1:1, w/v/v), a solvent commonly employed as an enzyme denaturant. Although the depolymerization of pectins in PAW-treated wall was extensive, oligouronides constituted minor reaction products. Interestingly, PAW-treated wall did not exhibit PG-mediated pectin release when incubated under conditions (30 mM Na-acetate, 150 mM NaCl, pH 4.5) in which nonphenol-treated cell wall exhibited high autolytic activity. In an alternative protocol designed to inactivate PG, cell wall was exposed to Tris-buffered phenol (BP). In contrast to pectins released from PAW-treated wall, pectins solubilized from BP-treated wall at pH 4.5 were indistinguishable in Mr from those recovered from BP-treated wall at pH 6.5 Even when incubated at pH 4.5 at 34°C, conditions under which pectins from PAW-treated wall underwent more rapid and extensive depolymerization, pectins from BP-treated wall exhibited no change in Mr, providing evidence that active PG was not present in these wall preparations. The implications of this study in interpreting the solubility and Mr of pectin in cell wall from ripening fruit are discussed.  相似文献   

8.
The catalytic activity of endopolygalacturonase (PG, EC 3.2.1.15) against pectic polymers in vitro is typically not expressed in vivo. In the present study, the binding and catalytic properties of PG isozyme 2 and the influence of the β-subunit protein were investigated in cell walls prepared from tomato fruit expressing an antisense gene to the β-subunit protein. Cell walls prepared from mature-green fruit were employed for binding and assay of PG2. Walls were provided with rate-limiting quantities of purified PG2 and incubated at 100 mM KCl, pH 4.5, or 25 mM KCl, pH 6.0. Cell walls of both β-subunit antisense and wild-type fruit retained comparable quantities of added PG2. The release of pectin from PG2-loaded walls was proportional to the quantity of added enzyme, consistent with a finite catalytic capacity of individual PG proteins. β-Subunit-antisense cell walls released 2- to 3-fold higher levels of pectin in response to PG2 than did wild-type walls. Cell walls incubated at pH 6.0 released lower quantities and showed less extensive depolymerization of pectins than did walls incubated at pH 4.5. Pectins recovered from ripe fruit were similar in size distribution to polymers released by PG2 at pH 6.0, indicating that pH can influence both quantitative and qualitative aspects of pectin metabolism and may be responsible for the restricted hydrolysis of pectins in vivo. Molecular mass differences were not evident in the polymers rendered freely soluble in response to PG2-mediated hydrolysis of β-subunit-antisense compared with wild-type cell walls. The solubilization of pectin from cell walls was not the sole indicator of the extent of PG-mediated cell wall hydrolysis. Hydrolytic modifications were also evident in a pectic fraction extracted from postcatalytic cell walls with 50 mM CDTA (trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid), and were more extensive for the β-subunit-antisense cell walls compared with the wild-type walls. Pectic polymers derived from ethanol insoluble-powders showed molecular mass downshifts during ripening but differences between the β-subunit-antisense and wild-type fruits were not observed.  相似文献   

9.
Ripening-associated pectin disassembly in melon is characterized by a decrease in molecular mass and an increase in the solubilization of polyuronide, modifications that in other fruit have been attributed to the activity of polygalacturonase (PG). Although it has been reported that PG activity is absent during melon fruit ripening, a mechanism for PG-independent pectin disassembly has not been positively identified. Here we provide evidence that pectin disassembly in melon (Cucumis melo) may be PG mediated. Three melon cDNA clones with significant homology to other cloned PGs were isolated from the rapidly ripening cultivar Charentais (C. melo cv Reticulatus F1 Alpha) and were expressed at high levels during fruit ripening. The expression pattern correlated temporally with an increase in pectin-degrading activity and a decrease in the molecular mass of cell wall pectins, suggesting that these genes encode functional PGs. MPG1 and MPG2 were closely related to peach fruit and tomato abscission zone PGs, and MPG3 was closely related to tomato fruit PG. MPG1, the most abundant melon PG mRNA, was expressed in Aspergillus oryzae. The culture filtrate exponentially decreased the viscosity of a pectin solution and catalyzed the linear release of reducing groups, suggesting that MPG1 encodes an endo-PG with the potential to depolymerize melon fruit cell wall pectin. Because MPG1 belongs to a group of PGs divergent from the well-characterized tomato fruit PG, this supports the involvement of a second class of PGs in fruit ripening-associated pectin disassembly.Fruit ripening is a genetically programmed event that is characterized by a number of biochemical and physiological processes that alter fruit color, flavor, aroma, and texture (Brady, 1987). Extensive cell wall modifications occur during ripening and are thought to underlie processes such as fruit softening, tissue deterioration, and pathogen susceptibility. These modifications are regulated at least in part by the expression of genes that encode cell wall-modifying enzymes (Fischer and Bennett, 1991). Pectins are a major class of cell wall polysaccharides that are degraded during ripening, undergoing both solubilization and depolymerization. In tomato the majority of ripening-associated pectin degradation is attributable to the cell wall hydrolase PG. Transgenic tomato plants with altered PG gene expression indicated that PG-dependent pectin degradation is neither required nor sufficient for tomato fruit softening to occur (Sheehy et al., 1988; Smith et al., 1988; Giovannoni et al., 1989). However, data from experiments using fruit of the same transgenic lines strongly suggested that PG-mediated pectin degradation is important in the later, deteriorative stages of ripening and in pathogen susceptibility of tomato fruit (Schuch et al., 1991; Kramer et al., 1992).In melon (Cucumis melo) substantial amounts of pectin depolymerization and solubilization take place during ripening (McCollum et al., 1989; Ranwala et al., 1992; Rose et al., 1998), implicating a role for PG in ripening-associated cell wall disassembly in melons. However, melons have been reported to lack PG enzyme activity (Hobson, 1962; Lester and Dunlap, 1985; McCollum et al., 1989; Ranwala et al., 1992). The possibility exists that PG is present in melon but that it does not conform to the expected enzymic properties in terms of abundance and/or lability, a point illustrated by recent reports in apple and strawberry, which were previously reported to lack PG activity but that do in fact accumulate low amounts of protein and/or measurable activity (Nogata et al., 1993; Wu et al., 1993). In light of the unexplained discrepancy between ripening-associated pectin depolymerization and undetectable PG activity in melons, we have undertaken a study to reexamine the status of PG in melon using the rapidly ripening cv Charentais (C. melo cv Reticulatus F1 Alpha).As reported for other cultivars, Charentais melons exhibit substantial solubilization and a downshift in the molecular-mass profile of water-soluble pectins, but this is associated with the later stages of ripening, after softening is initiated (Rose et al., 1998). By utilizing a molecular approach to analyze PG in melon, we have attempted to overcome some of the potential limitations of biochemical methods, such as low abundance of protein, reliance on other cell wall components, and unknown cofactors for activity and/or lability during extraction. In doing so, we have identified and characterized a multigene family encoding putative PGs from Charentais melon, including three PG homologs that are expressed abundantly during fruit ripening. The pattern of PG gene expression correlates temporally with the depolymerization of water-soluble pectins and an increase in pectin-degrading enzyme activity. Three additional PG homologs were also identified and shown to be expressed in mature anthers and fruit-abscission zones, tissues that, similar to ripening fruit, are undergoing cell separation. The most abundant ripening-associated putative PG mRNA, MPG1, was expressed in the filamentous fungus Aspergillus oryzae. The culture filtrate from the transformed A. oryzae strain XMPG1 exhibited endo-PG activity, further supporting a role for endo-PG in ripening-associated pectin disassembly in Charentais melon fruit.  相似文献   

10.
The Charentais variety of melon (Cucumis melo cv Reticulatus F1 Alpha) was observed to undergo very rapid ripening, with the transition from the preripe to overripe stage occurring within 24 to 48 h. During this time, the flesh first softened and then exhibited substantial disintegration, suggesting that Charentais may represent a useful model system to examine the temporal sequence of changes in cell wall composition that typically take place in softening fruit. The total amount of pectin in the cell wall showed little reduction during ripening but its solubility changed substantially. Initial changes in pectin solubility coincided with a loss of galactose from tightly bound pectins, but preceded the expression of polygalacturonase (PG) mRNAs, suggesting early, PG-independent modification of pectin structure. Depolymerization of polyuronides occurred predominantly in the later ripening stages, and after the appearance of PG mRNAs, suggesting the existence of PG-dependent pectin degradation in later stages. Depolymerization of hemicelluloses was observed throughout ripening, and degradation of a tightly bound xyloglucan fraction was detected at the early onset of softening. Thus, metabolism of xyloglucan that may be closely associated with cellulose microfibrils may contribute to the initial stages of fruit softening. A model is presented of the temporal sequence of cell wall changes during cell wall disassembly in ripening Charentais melon.  相似文献   

11.
Fruit of tomato (Lycopersicon esculentum Mill.) in which endopolygalacturonase (PG) activity had been suppressed to <1% of wild-type levels were slightly firmer than nontransgenic controls later in ripening. Enzymically inactive cell walls were prepared from these ripening fruit using Tris-buffered phenol. When extracted with chelator followed by Na2CO3, the amounts of pectin solubilized from cell walls of nontransgenic control or from transgenic antisense PG fruit were similar. Size-exclusion chromatography analysis showed that, relative to controls, in antisense PG fruit polyuronide depolymerization was delayed in the chelator-soluble fraction throughout ripening and reduced in the Na2CO3-soluble fraction at the overripe stage. Reduced pectin depolymerization rather than altered extractability thus may have contributed to enhanced fruit firmness. Substantially larger effects of suppressed PG activity were detected in tomato fruit homogenates processed to paste. In control paste the majority of the polyuronide was readily soluble in water and was very highly depolymerized. In antisense PG paste the proportion of polyuronide solubilized by water was reduced, and polyuronides retained a high degree of polymerization. The suppression of fruit PG activity thus has a small effect on polyuronide depolymerization in the fruit but a much larger effect in paste derived from these fruit. This indicates that in the cell wall PG-mediated degradation of polyuronide is normally restricted but that in tissue homogenates or in isolated cell walls this restriction is removed and extensive pectin disassembly results unless PG is inactivated.  相似文献   

12.
对采后番茄果实的电镜观察表明:当果实成熟衰老时,叶绿体数量减少,多数基粒结构丧失;成熟果实胞壁中胶层水解成中空的电子透明区,初生壁的纤丝也发生一定程度的水解,相邻细胞分离;外源 PG(多聚半乳糖醛酸酶)提取物处理绿熟期果实组织,也可引起胞壁结构和叶绿体发生与正常衰老相同的变化。Ca~(2+)、Mg~(2+)、Co~(2+)二价金属离子处理果实,可明显降低番茄红素含量和 PG 活性,延缓果实软化。外源乙烯处理果实,可促进番茄红素的形成,提高 PG活性,并能解除钙对 PG 活性的抑制。本文也对 PG 在乙烯和 Ca~(2+)调节果实成熟中的作用进行了讨论。  相似文献   

13.
It has been reported that PG is a key enzyme related to the tomato fruit ripening. In this study tomato fruits were harvested at the mature-green stage and stored at room temperature. The cell ultrastructure of pericarp tissue was observed at different ripening stages, and the effects of treatments with ethylene and calcium on PG activity and fruit ripening were examined. The object of this study is to elucidate the role of PG in regulation of tomato fruit ripening by ethylene and calcium. PG activity, was undetectable at mature-green stage, but it rose rapidly as fruif ripening. The rise in PG activity was coincided with the dechnmg of fruit firmness during ripening of tomato fruits. The observation of cell ultrastructure showed that the most of grana in chloroplast were lost and the mitochondrial cristae decreased as fruit ripening. Striking changes of cell wall structure was most noted, beginning with dissolution of the middle lamella and eventual disruption of primary cell wall. A similar pattern of changes of cell wall and chloroplast have been observed in pericarp tissue treated with PG extract. In fruits treated with calcium and other divalent metal ions atmature-green stage, the lycopene content and PG activity decreased dramatically. Ethylene application enhanced the formation of lycopene and PG activity. The inhibition of Ca2+ on PG ac ivity was removed by ethylene. Based on the above results, it was demonstrated that PG played a major role in ripening of tomato fruits, and suggested that the regulation of fruit ripening by ethylene and Ca2+ was all mediated by PG. PG induced the hydrolysis of cell wall and released the other hydrolytic enzymes, then effected the ripening processes follow up.  相似文献   

14.
We have examined the possibility that pectin solubilization and cell separation in fruit may be due to organic acids disrupting calcium bridges between pectic polysaccharides. With fruit from a wild tomato (Lycopersicon pimpinellifolium [Dunal]) we demonstrated the validity of a nonaqueous fractionation method to obtain reliable estimates of the ionic content of the apoplast. In unripe fruit no organic acids were associated with the cell wall, which contained 67% of the total calcium and 47% of the magnesium. In ripe fruit 4% of the malate, 10% of the citrate, and 15% of the oxalate were estimated to be in the cell wall, together with 84% of the calcium and 52% of the magnesium. In contrast to the cultivated tomato, we did not find a consistent decrease in the degree of methyl esterification between unripe and ripe fruit, and an overall average of 75% was observed. In the cell walls of ripe fruit the ratio of calcium:magnesium:organic acid:unesterified uronic acid, on the basis of charge, was 15:4:4:16. The use of a computer program to predict the proportions of different ionic species in complex mixtures suggested that in ripe fruit 70% of the unesterified uronic acid would be complexed with calcium. Our results show that organic acids do not accumulate in the cell wall sufficiently to disrupt calcium cross-linking, nor is the calcium removed from the wall into the cell. We therefore conclude that organic acids do not contribute to cell separation during the ripening of tomato fruit.  相似文献   

15.
The role of the cell wall hydrolase polygalacturonase (PG) during fruit ripening was investigated using novel mutant tomato lines in which expression of the PG gene has been down regulated by antisense RNA. Tomato plants were transformed with chimaeric genes designed to express anti-PG RNA constitutively. Thirteen transformed lines were obtained of which five were analysed in detail. All contained a single PG antisense gene, the expression of which led to a reduction in PG enzyme activity in ripe fruit to between 5% and 50% that of normal. One line, GR16, showed a reduction to 10% of normal PG activity. The reduction in activity segregated with the PG antisense gene in selfed progeny of GR16. Plants homozygous for the antisense gene showed a reduction of PG enzyme expression of greater than 99%. The PG antisense gene was inherited stably through two generations. In tomato fruit with a residual 1% PG enzyme activity pectin depolymerisation was inhibited, indicating that PG is involved in pectin degradation in vivo. Other ripening parameters, such as ethylene production, lycopene accumulation, polyuronide solubilisation, and invertase activity, together with pectinesterase activity were not affected by the expression of the antisense gene.  相似文献   

16.
The hydrolysis of cell wall pectins by tomato (Lycopersicon esculentum) polygalacturonase (PG) in vitro is more extensive than the degradation affecting these polymers during ripening. We examined the hydrolysis of polygalacturonic acid and cell walls by PG isozyme 2 (PG2) under conditions widely adopted in the literature (pH 4.5 and containing Na+) and under conditions approximating the apoplastic environment of tomato fruit (pH 6.0 and K+ as the predominate cation). The pH optima for PG2 in the presence of K+ were 1.5 and 0.5 units higher for the hydrolysis of polygalacturonic acid and cell walls, respectively, compared with activity in the presence of Na+. Increasing K+ concentration stimulated pectin solubilization at pH 4.5 but had little influence at pH 6.0. Pectin depolymerization by PG2 was extensive at pH values from 4.0 to 5.0 and was further enhanced at high K+ levels. Oligomers were abundant products in in vitro reactions at pH 4.0 to 5.0, decreased sharply at pH 5.5, and were negligible at pH 6.0. EDTA stimulated PG-mediated pectin solubilization at pH 6.0 but did not promote oligomer production. Ca2+ suppressed PG-mediated pectin release at pH 4.5 yet had minimal influence on the proportional recovery of oligomers. Extensive pectin breakdown in processed tomato might be explained in part by cation- and low-pH-induced stimulation of PG and other wall-associated enzymes.  相似文献   

17.
Cell wall isolated from pericarp of normal tomato (Lycopersicon esculentum Mill. cv `Rutgers') fruit released pectic polymers in a reaction apparently mediated by wall-bound polygalacturonase that appears with the onset of ripening. Release was negligible in wall preparations from normal green and the ripening mutant rin fruit. Pectin solubilization was most extensive at pH 2.5 with a less significant peak at 5.5. Brief exposure to low (1.5) or high (7.5) pH resulted in reduction of autolytic activity, which was also inhibited by high temperature, Ca2+, and treatments employed to dissociate protein from cell wall. Uronic acid solubilization was significantly enhanced by 150 millimolar NaCl and by increasing temperature within the physiological range. These data indicate that the release of polyuronide from isolated cell walls is enzymic and may provide a convenient and reliable system for the study of softening metabolism.  相似文献   

18.
Polygalacturonase (PG) and pectin methylesterase (PME) activities were analyzed in ripening fruits of two tabasco pepper (Capsicum frutescens) lines that differ in the extent of pectin degradation (depolymerization and dissolution). Ripe 'Easy Pick' fruit is characterized by pectin ultra-degradation and easy fruit detachment from the calyx (deciduous trait), while pectin depolymerization and dissolution in ripe 'Hard Pick' fruit is limited. PG activity in protein extracts increased similarly in both lines during fruit ripening. PME activity in vivo assessed by methanol production, however, was detected only in fruit of the 'Easy Pick' line and was associated with decreased pectin methyl-esterification. In contrast, methanol production in vivo was not detected in fruits of the 'Hard Pick' line and the degree of pectin esterification remained the same throughout ripening. Consequently, a ripening specific PME that is active in vivo appears to enhance PG-mediated pectin ultra-degradation resulting in cell wall dissolution and the deciduous fruit trait. PME activity in vitro, however, was detected in protein extracts from both lines at all ripening stages. This indicates that some PME isozymes are apparently inactive in vivo, particularly in green fruit and throughout ripening in the 'Hard Pick' line, limiting PG-mediated pectin depolymerization which results in moderately difficult fruit separation from the calyx.  相似文献   

19.
Cell walls extracted from cv. Rutgers, 7711 (ripening inhibited), and nor (non-ripening) tomato ( Lycopersicon eseulentum Mill.) pericarp tissue at various stages of post-maturation development have been separated into four distinct fractions and their carbohydrate composition characterized. The amount of ionically-associated, chelator-soluble (CDTA, cyclohexanediaminetetraacetic acid) uronic acid in 'Rutgers' fruit cell walls remained constant during ripening, whereas the amount of residual pectin, which was extracted with cold alkali (Na2CO3) and was apparently covalently bound, decreased. These changes did not occur in rin and nor mutant fruit at a similar chronological age. The galactose content in pectic polysaccharide preparations extracted from tomato cell walls with CDTA and Na2,CO3, decreased by 65% during ripening. A similar but diminished decrease also occurred in rin and nor fruit. A non-cellulosic polysaccharide(s) was present in walls which resisted extraction with Na-acetate/CDTA, Na2CO3, and 4 M KOH. In 'Rutgers' fruit, the content of galactose in this polysaccharide(s) decreased 44% during ripening, whereas little or no significant change was observed in rin or nor mutant fruit.  相似文献   

20.
C F Watson  L Zheng    D DellaPenna 《The Plant cell》1994,6(11):1623-1634
The developmental changes that accompany tomato fruit ripening include increased solubilization and depolymerization of pectins due to the action of polygalacturonase (PG). Two PG isoenzymes can be extracted from ripe fruit: PG2, which is a single catalytic PG polypeptide, and PG1, which is composed of PG2 tightly associated with a second noncatalytic protein, the beta subunit. Previous studies have correlated ripening-associated increases in pectin solubilization and depolymerization with the presence of extractable PG1 activity, prior to the appearance of PG2, suggesting a functional role for the beta subunit and PG1 in pectin metabolism. To assess the function of the beta subunit, we produced and characterized transgenic tomatoes constitutively expressing a beta subunit antisense gene. Fruit from antisense lines had greatly reduced levels of beta subunit mRNA and protein and accumulated < 1% of their total extractable PG activity in ripe fruit as PG1, as compared with 25% for wild type. Inhibition of beta subunit expression resulted in significantly elevated levels of EDTA-soluble polyuronides at all stages of fruit ripening and a significantly higher degree of depolymerization at later ripening stages. Decreased beta subunit protein and extractable PG1 enzyme activity and increased pectin solubility and depolymerization all cosegregated with the beta subunit antisense transgene in T2 progeny. These results indicate (1) that PG2 is responsible for pectin solubilization and depolymerization in vivo and (2) that the beta subunit protein is not required for PG2 activity in vivo but (3) does play a significant role in regulating pectin metabolism in wild-type fruit by limiting the extent of pectin solubilization and depolymerization that can occur during ripening. Whether this occurs by direct interaction of the beta subunit with PG2 or indirectly by interaction of the beta subunit with the pectic substrate remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号