首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The distribution of the matrix protein fibronectin was studied by indirect immunofluorescence in differentiating mouse molars from bud stage to the stage of dentin and enamel secretion, and compared to that of collagenous proteins procollagen type III and collagen type I. Fibronectin was seen in mesenchymal tissue, basement membranes, and predentin. The dental mesenchyme lost fibronectin staining when differentiating into odontoblasts. Fibronectin was not detected in mineralized dentin. Epithelial tissues were negative except for the stellate reticulum within the enamel organ. Particularly intense staining was seen at the epithelio-mesenchymal interface between the dental epithelium and mesenchyme. Fibronectin may here be involved in anchorage of the mesenchymal cells during their differentiation into odontoblasts. Procollagen type III was lost from the dental mesenchyme during odontoblast differentiation but reappeared with advancing vascularization of the dental papilla. Similarly, procollagen type III present in the dental basement membrane during the bud and cap stages disappeared from the cuspal area along with odontoblast differentiation. Weak staining was seen in predentin but not in mineralized dentin. The staining with anti-collagen type I antibodies was weak in dental mesenchyme but intense in predentin as well as in mineralized dentin.  相似文献   

2.
Tooth enamel is formed by epithelially-derived cells called ameloblasts, while the pulp dentin complex is formed by the dental mesenchyme. These tissues differentiate with reciprocal signaling interactions to form a mature tooth. In this study we have characterized ameloblast differentiation in human developing incisors, and have further investigated the role of extracellular matrix proteins on ameloblast differentiation. Histological and immunohistochemical analyses showed that in the human tooth, the basement membrane separating the early developing dental epithelium and mesenchyme was lost shortly before dentin deposition was initiated, prior to enamel matrix secretion. Presecretary ameloblasts elongated as they came into contact with the dentin matrix, and then shortened to become secretory ameloblasts. In situ hybridization showed that the presecretory stage of odontoblasts started to express type I collagen mRNA, and also briefly expressed amelogenin mRNA. This was followed by upregulation of amelogenin mRNA expression in secretory ameloblasts. In vitro, amelogenin expression was upregulated in ameloblast lineage cells cultured in Matrigel, and was further up-regulated when these cells/Matrigel were co-cultured with dental pulp cells. Co-culture also up-regulated type I collagen expression by the dental pulp cells. Type I collagen coated culture dishes promoted a more elongated ameloblast lineage cell morphology and enhanced cell adhesion via integrin α2β1. Taken together, these results suggest that the basement membrane proteins and signals from underlying mesenchymal cells coordinate to initiate differentiation of preameloblasts and regulate type I collagen expression by odontoblasts. Type I collagen in the dentin matrix then anchors the presecretary ameloblasts as they further differentiate to secretory cells. These studies show the critical roles of the extracellular matrix proteins in ameloblast differentiation.  相似文献   

3.
The fine structure of differentiating ameloblasts was studied in the lower second molar of 1-week-old kittens after perfusion fixation with and without subsequent decalcification. The differentiation zone was divided into three phases. In Differentiation 1, ameloblasts are about 27 mum long and face an uninterrupted basal lamina. The predentin adjacent to the basal lamina contains a few collagen fibrils oriented mainly at right angles to the ameloblast surface. The specialized predentin forms a well-defined layer, up to 1.5 mum thick, referred to as the junctional layer. In Differentiation 2, ameloblast processes extend through the basal lamina and the thickness of the junctional layer. The processes consist of cytoplasmic sheets forming a honeycomb-like network. Dentin starts to calcify after process-formation is underway. Two distinct types of odontoblast processes, having different shapes and contents, come in contact with the ameloblasts and push into the ameloblastic layer. In Differentiation 3, stippled material appears in the extracellular spaces between ameloblasts. Later, stippled material-like substances appear in the predentin close to the ameloblast apex and close to odontoblast processes within the dentin. Ameloblasts now are up to 40 mum high. Enamel secretion starts in small circumscribed areas which gradually enlarge, leading to the disappearance of the ameloblast processes. These findings are compared with results obtained in other species, including man, and their possible functional significance is discussed.  相似文献   

4.
Acellular dental matrices promote functional differentiation of ameloblasts   总被引:3,自引:0,他引:3  
EDTA treatment of post-natal mouse molars made possible the isolation of cell-free dental matrices composed of basal lamina, predentin, dentin and enamel. Trypsin-isolated dental papillae and enamel organs from embryonic-mouse mandibular molars were combined with isolated matrices and cultured in vitro. In such recombinations, functional odontoblasts were never observed. On the other hand, competent preameloblasts in contact with the epithelial side of occlusal predentin overtly differentiated. Matrices treated with guanidine-EDTA or acetic acid were unable to promote the functional differentiation of ameloblasts. These data are discussed in terms of the epitheliomesenchymal interactions involved in odontogenesis.  相似文献   

5.
Summary We have examined radioautographically the protein synthetic and secretory activity of differentiating odontoblasts and ameloblasts, exposed for 9 h in vitro to various concentrations of colchicine in the presence of 3H-proline. Colchicine impairs the cytodifferentiation of the dental epithelium into ameloblasts and of the dental mesenchyme into odontoblasts; the effects depend on the dose. However, denial epithelial cells are more sensitive to the drug than dental mesenchymal cells. In stages prior to odontoblast differentiation, colchicine enhances the number of radioautographic grains over the dental epithelium without changing the grain counts over the dental basement membrane area: This suggests that in vitro the dental epithelium synthesizes and secretes proline-containing components that are not constituents of the dental basement membrane. Also, during the subsequent stages of ameloblast differentiation colchicine increases the number of radioautographic grains over the preameloblasts. The present data suggest that the primary in vitro target of colchicine is not the dental mesenchyme, but the dental epithelium. The data also indicate that differentiating ameloblasts synthesize and secrete significant amounts of proteins in vitro prior to the first deposition of enamel.  相似文献   

6.
The distribution of certain basement membrane (BM) components including type IV collagen, laminin, BM proteoglycan, and fibronectin was studied in developing mouse molar teeth, using antibodies or antisera specific for these substances in indirect immunofluorescence. At the onset of cuspal morphogenesis, type IV collagen, laminin, and BM proteoglycan were found to be present throughout the basement membranes of the tooth. Fibronectin was abundant under the inner enamel epithelium at the region of differentiating odontoblasts and also in the mesenchymal tissues. After the first layer of predentin had been secreted by the odontoblasts at the epithelial-mesenchymal interface, laminin remained in close association with the epithelial cells whereas type IV collagen, BM proteoglycan, and fibronectin were distributed uniformly throughout this area. Later when dentin had been produced and the epithelial cells had differentiated into ameloblasts, basement membrane components disappeared from the cuspal area. These matrix components were not detected in dentin while BM proteoglycan and fibronectin were present in predentin. The observed changes in the collagenous and noncollagenous glycoproteins and the proteoglycan appear to be closely associated with cell differentiation and matrix secretion in the developing tooth.  相似文献   

7.
Summary The relationship between odontoblasts and pulp capillaries in the process of dentinogenesis was studied in rat lower incisors, both on the labial and lingual sides, using light and transmission electron microscopy. The odontoblasts showed remarkable differences from the apical to the incisal end. Near the apical end of the tooth, immature odontoblasts, which were thought to be involved in the formation of the mantle dentin, were arranged in a single layer, and continuous capillaries were located just beneath the odontoblasts. In the middle of the tooth, mature odontoblasts with highly developed cell organelles and notable processes formed a pseudostratified layer; fenestrated capillaries were found between these cells close to the predentin. The height of the odontoblast layer and the rate of dentin deposition on the labial (enamel-related) side was significantly greater than that on the lingual (cementum-related) side. Near the incisal end, cementum-related odontoblasts gradually decreased in height and number to become post-odontoblasts that produced atubular dentin; continuous capillaries were located subjacent to the post-odontoblasts. On the labial (enamel-related) side, however, odontoblasts retained their pseudostratification; fenestrated capillaries were still observed in the odontoblast layer. No atubular dentin was formed on the labial side.  相似文献   

8.
Immunodetection of osteoadherin in murine tooth extracellular matrices   总被引:1,自引:1,他引:0  
An antiserum was generated from synthetic peptides highly conserved between different mammalian species to immunolocalise the small leucine-rich proteoglycan osteoadherin (OSAD) in murine teeth. In 19-day-old embryos of rats and mice, a positive staining was found in incisor predentin and alveolar bone surrounding developing incisors and molars. In newborns, OSAD was detected at the tip of the first molar cusp where it accumulated in predentin concomitantly with odontoblast differentiation. In 2-day-old rats and mice, in the first molar, immunostaining revealed positive predentin, enamel matrix close to the apical pole of ameloblasts and a strong signal in dentin. At this stage, OSAD was detected in predentin in the second molar. Ultrastructural immunocytochemistry showed gold particles associated with collagen fibres in predentin and in foci at the dentin mineralisation front. Gold particles were also detected near the secretory pole of ameloblasts where enamel crystallites elongate. No staining was detected in pulp tissue and dental follicle. Restriction of OSAD expression to the extracellular matrix of bone, dentin and enamel suggests a role of this proteoglycan in the organisation of mineralised tissues.  相似文献   

9.
Potassium pyroantimonate-osmium tetroxide cytochemistry has been used to study the distribution of ionic calcium in hamster tooth germs during cell differentiation and during early dentinogenesis and amelogenesis. Before the onset of mineralization, pyroantimonate (PA) reaction product was found in the nucleus of differentiating preameloblasts and preodontoblasts. In the predentin, it was preferentially located along striated collagen fibrils, lying perpendicular to the basal lamina. At the onset of mineralization, a pronounced increase of PA reaction product was evident in the predentin and on the plasma membrane and in mitochondria of both preodontoblasts and preameloblasts opposite the mineralizing mantle dentin. During early enamel mineralization, PA reaction product was present in the "growing" crystal ends, while in the secretory ameloblasts, most of the PA reaction product was localized on the cytoplasmic side of the apical plasma membranes and in mitochondria. When Tomes' processes developed, PA reaction product, both cytoplasmic and membrane bound, was low or absent deep in the processes, but gradually increased toward the apical terminal web. A corresponding gradient of PA reaction product was observed on the opposing enamel crystallites. From this study we conclude that both preodontoblasts and preameloblasts seem to be involved in calcium acquisition necessary for the early stages of mantle dentin mineralization. Tomes' processes seem to regulate the entry of calcium into the enamel mineralization front.  相似文献   

10.
Laminin alpha2 is subunit of laminin-2 (alpha2beta1gamma1), which is a major component of the muscle basement membrane. Although the laminin alpha2 chain is expressed in the early stage of dental mesenchyme development and localized in the tooth germ basement membrane, its expression pattern in the late stage of tooth germ development and molecular roles are not clearly understood. We analyzed the role of laminin alpha2 in tooth development by using targeted mice with a disrupted lama2 gene. Laminin alpha2 is expressed in dental mesenchymal cells, especially in odontoblasts and during the maturation stage of ameloblasts, but not in the pre-secretory or secretory stages of ameloblasts. Lama2 mutant mice have thin dentin and a widely opened dentinal tube, as compared with wild-type and heterozygote mice, which is similar to the phenotype of dentinogenesis imperfecta. During dentin formation, the expression of dentin sialoprotein, a marker of odontoblast differentiation, was found to be decreased in odontoblasts from mutant mice. Furthermore, in primary cultures of dental mesenchymal cells, dentin matrix protein, and dentin sialophosphoprotein, mRNA expression was increased in laminin-2 coated dishes but not in those coated with other matrices, fibronectin, or type I collagen. Our results suggest that laminin alpha2 is essential for odontoblast differentiation and regulates the expression of dentin matrix proteins.  相似文献   

11.
Summary The distribution of Calcium and Phosphorus and of Na, K, S and Cl was studied in the mineralizing matrices and strata of ameloblasts and odontoblasts in developing mouse molars (5–14 days). Sections cut in a cryostat were prepared by freeze-drying and examined in an SEM by the method of energy dispersive x-ray analysis. In enamel a gradient of mineralization was observed with respect to age and topography. Progressive loss of sulfur was also demonstrated. Less striking mineralization gradients were found in dentin. Predentin accumulated Ca at a concentration about 2% that of dentin and the Ca/P ratio was lower than that for apatite. Significant concentrations of calcium were localized in ameloblast and odontoblast strata. The concentration increased five-fold in ameloblasts as the cells matured and enamel mineralization entered the final phases, levels in odontoblasts remained stable. With age in both cellular strata, potassium counts decreased. In maturing ameloblasts the concentrations of sodium and chloride rose.This work was supported in part by a grant from the Graduate College, University of Illinois at the Medical Center  相似文献   

12.
Morphogenesis and cytodifferentiation are distinct processes in tooth development. Cell proliferation predominates in morphogenesis; differentiation involves changes in form and gene expression. The cytoskeleton is essential for both processes, being regulated by Rho GTPases. The aim of this study was to verify the expression, distribution, and role of Rho GTPases in ameloblasts and odontoblasts during tooth development in correlation with actin and tubulin arrangements and amelogenin and dentin sialophosphoprotein (DSPP) expression. RhoA, Rac1, and Cdc42 were strongly expressed during morphogenesis; during cytodifferentiation, RhoA was present in ameloblasts and odontoblasts, Rac1 and its effector Pak3 were observed in ameloblasts; and Cdc42 was present in all cells of the tooth germ and mesenchyme. The expression of RhoA mRNA and its effectors RockI and RockII, Rac1 and Pak3, as analyzed by real-time polymerase chain reaction, increased after ameloblast and odontoblast differentiation, according to the mRNA expression of amelogenin and DSPP. The inhibition of all Rho GTPases by Clostridium difficile toxin A completely abolished amelogenin and DSPP expression in tooth germs cultured in anterior eye chamber, whereas the specific inhibition of the Rocks showed only a partial effect. Thus, both GTPases are important during tooth morphogenesis. During cytodifferentiation, Rho proteins are essential for the complete differentiation of ameloblasts and odontoblasts by regulating the expression of amelogenin and DSPP. RhoA and its effector RockI contribute to this role. A specific function for Rac1 in ameloblasts remains to be elucidated; its punctate distribution indicates its possible role in exocytosis/endocytosis.  相似文献   

13.
Morphological and functional changes during ameloblast and odontoblast differentiation suggest that enamel and dentin formation is under circadian control. Circadian rhythms are endogenous self-sustained oscillations with periods of 24h that control diverse physiological and metabolic processes. Mammalian clock genes play a key role in synchronizing circadian functions in many organs. However, close to nothing is known on clock genes expression during tooth development. In this work, we investigated the expression of four clock genes during tooth development. Our results showed that circadian clock genes Bmal1, clock, per1, and per2 mRNAs were detected in teeth by RT-PCR. Immunohistochemistry showed that clock protein expression was first detected in teeth at the bell stage (E17), being expressed in EOE and dental papilla cells. At post-natal day four (PN4), all four clock proteins continued to be expressed in teeth but with different intensities, being strongly expressed within the nucleus of ameloblasts and odontoblasts and down-regulated in dental pulp cells. Interestingly, at PN21 incisor, expression of clock proteins was down-regulated in odontoblasts of the crown-analogue side but expression was persisting in root-analogue side odontoblasts. In contrast, both crown and root odontoblasts were strongly stained for all four clock proteins in first molars at PN21. Within the periodontal ligament (PDL) space, epithelial rests of Malassez (ERM) showed the strongest expression among other PDL cells. Our data suggests that clock genes might be involved in the regulation of ameloblast and odontoblast functions, such as enamel and dentin protein secretion and matrix mineralization.  相似文献   

14.
The collagenous fibers of von Korff pass from the dentin matrix between the odontoblasts into the dental pulp. Although collagen fibrils are known to be present between odontoblasts, the existence of von Korff fibers has remained controversial. This may be because their continuity between the dentin matrix and the pulp has not been demonstrated ultrastructurally. In this study we have examined the odontoblast layer in the middle to apical regions of perfusion-fixed permanent canine teeth of cats by using transmission electron microscopy. Ultrathin sections of demineralized specimens revealed frequent bundles of collagen fibrils 1) entering the odontoblast layer from the predentin, 2) present between odontoblast cell bodies, and 3) passing from between the odontoblasts into the pulp. The question of continuity of these bundles from the predentin, across the odontoblast layer into the pulp was examined in ultrathin serial sections. Unbroken continuity of a collagen bundle from the predentin between the odontoblasts into the pulp was established in a reconstruction of one series of 22 serial sections and was very strongly suggested by a number of other series in which the numbers of available sections restricted their full visibility. This investigation has shown, therefore, that classical von Korff fibers are present and that these fibers are present in fully erupted teeth with closed apices, i.e., at a time when secondary circumpulpal dentinogenesis is in progress. The findings call for a reexamination of the question of von Korff fibers during mantle dentinogenesis and primary circumpulpal dentinogenesis. Resolution of their existence at the earlier stages of dentinogenesis should be possible by using the ultrathin serial-sectioning technique.  相似文献   

15.
To determine the functions of fibromodulin (Fmod), a small leucine-rich keratan sulfate proteoglycan in tooth formation, we investigated the distribution of Fmod in dental tissues by immunohistochemistry and characterized the dental phenotype of 1-day-old Fmod-deficient mice using light and transmission electron microscopy. Immunohistochemistry was also used to compare the relative protein expression of dentin sialoprotein (DSP), dentin matrix protein-1 (DMP 1), bone sialoprotein (BSP), and osteopontin (OPN) between Fmod-deficient mice and wild-type mice. In normal mice and rats, Fmod immunostaining was mostly detected in the distal cell bodies of odontoblasts and in the stratum intermedium and was weaker in odontoblast processes and predentin. The absence of Fmod impaired dentin mineralization, increased the diameter of the collagen fibrils throughout the whole predentin, and delayed enamel formation. Immunohistochemistry provides evidence for compensatory mechanisms in Fmod-deficient mice. Staining for DSP and OPN was decreased in molars, whereas DMP 1 and BSP were enhanced. In the incisors, labeling for DSP, DMP 1, and BSP was strongly increased in the pulp and odontoblasts, whereas OPN staining was decreased. Positive staining was also seen for DMP 1 and BSP in secretory ameloblasts. Together these studies indicate that Fmod restricts collagen fibrillogenesis in predentin while promoting dentin mineralization and the early stages of enamel formation.  相似文献   

16.
We have used immunocytochemistry to analyse expression of nerve growth factor receptor (NGFR) in developing, aging and injured molar teeth of rats. The patterns of NGFR immunoreactivity (IR) in developing epithelia and mesenchyme matched the location of NGFR mRNA assayed by in situ hybridization with a complementary S35-labeled RNA probe. The following categories of NGFR expression were found. (1) There was NGFR-IR in the dental lamina epithelium and in adjacent mesenchyme during early stages of third molar formation. (2) NGFR-IR nerve fibers were posterior and close to the bud epithelium. (3) During crown morphogenesis NGFR expression was prominent in internal enamel epithelium and preodontoblasts; it faded as preameloblasts elongated and as odontoblasts began to make predentin matrix; and it was weak or absent from outer enamel epithelium, the cervical loop, and differentiated ameloblasts and odontoblasts. (4) When NGFR-IR nerve fibers entered the molars late in the bell stage, they innervated the most mature peripheral pulp and dentin in an asymmetric pattern which correlated more with asymmetric enamel synthesis than with mesenchymal NGFR-IR distribution. (5) The mesenchymal pulp cells continued to have intense NGFR expression in adult teeth, especially near coronal tubular dentin. (6) The pulpal NGFR-IR decreased in very old rats or subjacent to reparative dentin (naturally occurring or experimentally induced). (7) During root formation, the preodontoblasts had NGFR-IR but most root mesenchymal cells and Hertwig's epithelial root sheath did not. This work suggests that there are important epithelial and mesenchymal targets of NGF regulation during molar morphogenesis that differ for crown and root development and that do not correlate with neural development. The continuing expression of NGFR-IR by pulpal mesenchymal cells in adult rats was most intense near coronal odontoblasts making tubular dentin; and it was lost during aging, or subjacent to sites of dentin injury that caused a phenotypic change in the odontoblast layer.  相似文献   

17.
18.
Using NBD-phallacidin, which specifically binds to F-actin, we investigated changes in the localization of actin during the differentiation of ameloblasts, related epithelial cells and odontoblasts in rat incisors. In cryosections treated with NBD-phallacidin, intense fluorescence was observed in undifferentiated epithelial cells in the apical loop and at the proximal extremity of undifferentiated inner enamel epithelial cells. During differentiation, the distal extremity began to exhibit strong fluorescence. In cross-sections of secretory ameloblasts, the fluorescence took the form of polygons of uniform intensity at the proximal end, and of rectangles of non-uniform intensity at the distal end. At the distal end, the fluorescence was more intense at right angles to the long axis of the incisor. At the distal end, this pattern was established just before the appearance of the enamel layer. These patterns were maintained during the secretory stage of ameloblasts. The location, pattern and time of appearance of these sites were identical to those of the terminal webs in ameloblasts. NBD-phallacidin weakly labelled the peripheral cytoplasm of the cell body of ameloblasts, and also labelled Tomes' process. The cells forming the stratum intermedium were mainly labelled at their periphery (i.e. forming larger polygons), while the overlying epithelial cells exhibited labelling throughout their cytoplasm. Except for the terminal webs, the cell bodies of odontoblasts were weakly labelled throughout the period of differentiation. Young odontoblasts secreting predentin were first labelled on the terminal web, with the fluorescence becoming gradually more intense as the thickness of the dentin increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The formation of dentin provides one well accepted paradigm for studying mineralized tissue formation. For the assembly of dentin, several cellular signaling pathways cooperate to provide neural crest-derived mesenchymal cells with positional information. Further, "cross-talk" between signaling pathways from the mesenchymal derived odontoblast cells and the epithelially derived ameloblasts during development is responsible for the formation of functional odontoblasts. These intercellular signals are tightly regulated, both temporally and spatially. When isolated from the developing tooth germ, odontoblasts quickly lose their potential to maintain the odontoblast-specific phenotype. Therefore, generation of an odontoblast cell line would be a valuable reproducible tool for studying the modulatory effects involved in odontoblast differentiation as well as the molecular events involved in mineralized dentin formation. In this study an immortalized odontoblast cell line, which has the required biochemical machinery to produce mineralized tissue in vitro, has been generated. These cells were implanted into animal models to determine their in vivo effects on dentin formation. After implantation, we observed a multistep, programmed cascade of gene expression in the exogenous odontoblasts as the dentin formed de novo. Some of the genes expressed include the dentin matrix proteins 1, 2, and 3, which are extracellular matrix molecules responsible for the ultimate formation of mineralized dentin. The biological response was also examined by histology and radiography and confirmed for mineral deposition by von Kossa staining. Thus, a transformed odontoblast cell line was created with high proliferative capacity that might ultimately be used for the regeneration and repair of dentin in vivo.  相似文献   

20.
Intercellular signaling controls all steps of odontogenesis. The purpose of this work was to immunolocalize in the developing mouse molar four molecules that play major roles during odontogenesis: BMP-2, -4, FGF-4, and WNT10b. BMP-2 and BMP-4 were detected in the epithelium and mesenchyme at the bud stage. Staining for BMP-2 markedly increased at the cap stage. The relative amount of BMP-4 strongly increased from E14 to E15. At E15, BMP-4 was detected in the internal part of the enamel knot where apoptosis was intense. In contrast to TGFbeta1, BMP-2 and -4 did not show accumulation at the epithelial-mesenchymal junction where the odontoblast started differentiation. When odontoblasts became functional, BMP-2 and BMP-4 were detected at the apical and basal poles of preameloblasts. BMP-2, which induces ameloblast differentiation in vitro, may also be involved physiologically. The decrease in FGF-4 from E14 to E15 supports a possible role for the growth factor in the control of mesenchymal cell proliferation. The relative amount of FGF-4 was maximal at E17. The subsequent decrease at E19 showed correlation with the withdrawal of odontoblasts and ameloblasts from the cell cycle. WNT10b might also stimulate cell proliferation. At E14-15, WNT10b was present in the mesenchyme and epithelium except for the enamel knot, where the mitotic activity was very low. At E19 there was a decreasing gradient of staining from the cervical loop where cells divide to the tip of the cusp in the inner dental epithelium where cells become postmitotic. The target cells for FGF-4 and WNT10b appeared different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号