首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.  相似文献   

2.
Coral reefs provide food and livelihoods for hundreds of millions of people as well as harbour some of the highest regions of biodiversity in the ocean. However, overexploitation, land‐use change and other local anthropogenic threats to coral reefs have left many degraded. Additionally, coral reefs are faced with the dual emerging threats of ocean warming and acidification due to rising CO2 emissions, with dire predictions that they will not survive the century. This review evaluates the impacts of climate change on coral reef organisms, communities and ecosystems, focusing on the interactions between climate change factors and local anthropogenic stressors. It then explores the shortcomings of existing management and the move towards ecosystem‐based management and resilience thinking, before highlighting the need for climate change‐ready marine protected areas (MPAs), reduction in local anthropogenic stressors, novel approaches such as human‐assisted evolution and the importance of sustainable socialecological systems. It concludes that designation of climate change‐ready MPAs, integrated with other management strategies involving stakeholders and participation at multiple scales such as marine spatial planning, will be required to maximise coral reef resilience under climate change. However, efforts to reduce carbon emissions are critical if the long‐term efficacy of local management actions is to be maintained and coral reefs are to survive.  相似文献   

3.
Relatively little is known about how the future effects of climatic change, including increases in sea level, temperature and storm severity and frequency, will impact on patterns of biodiversity on coral reefs, with the notable exception of recent work on corals and fish in tropical reef ecosystems. Sessile invertebrates such as ascidians, sponges and bryozoans occupying intertidal rubble habitats on coral reefs contribute significantly to the overall biodiversity and ecosystem function, but there is little or no information available on the likely impacts on these species from climate change. The existing strong physical gradients in these intertidal habitats will be exacerbated under predicted climatic change. By examining the distribution and abundance of nonscleractinian, sessile invertebrate assemblages exposed to different levels of wave action and at different heights on the shore around a coral reef, we show that coral reef intertidal biodiversity is particularly sensitive to physical disturbance. As physical disturbance regimes increase due to more intense storms and wave action associated with global warming, we can expect to see a corresponding decrease in the diversity of these cryptic sessile assemblages. This could impact negatively on the future health and productivity of coral reef ecosystems, given the ecosystem services these organisms provide.  相似文献   

4.
Anthropogenic activities such as land‐use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific‐wide and regional (1,000s–10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human‐induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both “top‐down” (fishing of predators) and “bottom‐up” (degradation of benthic communities) contexts.  相似文献   

5.
6.
High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year), spatially extensive (∼115,000 kms2) dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.  相似文献   

7.
陈飚  余克服 《生态学报》2022,42(21):8531-8543
病毒对珊瑚礁生态系统中的生物进化、生物地球化学循环、珊瑚疾病等方面具有重要的生态影响。随着珊瑚礁的全球性退化,病毒在珊瑚礁生态系统中的功能与危害日益显现。综述了珊瑚礁生态系统中病毒的研究现状与进展,包括:(1)珊瑚礁病毒的多样性与分布特征(水体、宿主、核心病毒组);(2)珊瑚礁病毒的生态功能(感染方式、促进生物进化、生物地球化学循环);(3)珊瑚礁病毒对全球气候变化的响应(热压力、珊瑚疾病)。总体而言,珊瑚礁生态系统具有极高的病毒多样性,所发现的60个科占已知所有病毒科数量的58%。珊瑚的核心病毒组主要由双链DNA病毒、单链DNA病毒、单链逆转录病毒所组成,珊瑚黏液层对病毒具有富集作用。"Piggyback-the-Winner"(依附-胜利)是病毒在珊瑚礁中主要的生物动力学模式,其可通过水平基因迁移的方式促进礁区生物进化。病毒可通过裂解细菌与浮游藻类的途径参与珊瑚礁的生物地球化学循环,尤其是碳循环与氮循环过程。此外,病毒还具有介导珊瑚热白化与直接引发珊瑚疾病的能力,这会影响珊瑚礁生态系统应对气候变化的适应性与恢复力。基于国际上的研究进展综述,结合南海珊瑚礁生态现状提出以下研究方向,以期促进我国珊瑚礁病毒学的发展:(1)开展南海珊瑚礁中病毒多样性的识别及其时-空分布特征研究;(2)探索病毒对南海珊瑚热白化、珊瑚疾病的介导作用及其与气候变化的关系;(3)揭示病毒对南海珊瑚礁生物地球化学循环的贡献。  相似文献   

8.
The architectural complexity of coral reefs is largely generated by reef‐building corals, yet the effects of current regional‐scale declines in coral cover on reef complexity are poorly understood. In particular, both the extent to which declines in coral cover lead to declines in complexity and the length of time it takes for reefs to collapse following coral mortality are unknown. Here we assess the extent of temporal and spatial covariation between coral cover and reef architectural complexity using a Caribbean‐wide dataset of temporally replicated estimates spanning four decades. Both coral cover and architectural complexity have declined rapidly over time, with little evidence of a time‐lag. However, annual rates of change in coral cover and complexity do not covary, and levels of complexity vary greatly among reefs with similar coral cover. These findings suggest that the stressors influencing Caribbean reefs are sufficiently severe and widespread to produce similar regional‐scale declines in coral cover and reef complexity, even though reef architectural complexity is not a direct function of coral cover at local scales. Given that architectural complexity is not a simple function of coral cover, it is important that conservation monitoring and restoration give due consideration to both architecture and coral cover. This will help ensure that the ecosystem services supported by architectural complexity, such as nutrient recycling, dissipation of wave energy, fish production and diversity, are maintained and enhanced.  相似文献   

9.
Dramatic coral loss has significantly altered many Caribbean reefs, with potentially important consequences for the ecological functions and ecosystem services provided by reef systems. Many studies examine coral loss and its causes—and often presume a universal decline of ecosystem services with coral loss—rather than evaluating the range of possible outcomes for a diversity of ecosystem functions and services at reefs varying in coral cover. We evaluate 10 key ecosystem metrics, relating to a variety of different reef ecosystem functions and services, on 328 Caribbean reefs varying in coral cover. We focus on the range and variability of these metrics rather than on mean responses. In contrast to a prevailing paradigm, we document high variability for a variety of metrics, and for many the range of outcomes is not related to coral cover. We find numerous “bright spots,” where herbivorous fish biomass, density of large fishes, fishery value, and/or fish species richness are high, despite low coral cover. Although it remains critical to protect and restore corals, understanding variability in ecosystem metrics among low‐coral reefs can facilitate the maintenance of reefs with sustained functions and services as we work to restore degraded systems. This framework can be applied to other ecosystems in the Anthropocene to better understand variance in ecosystem service outcomes and identify where and why bright spots exist.  相似文献   

10.
The importance of structural complexity in coral reefs has come to the fore with the global degradation of reef condition; however, the limited scale and replication of many studies have restricted our understanding of the role of complexity in the ecosystem. We qualitatively and quantitatively (where sufficient standardised data were available) assess the literature regarding the role of structural complexity in coral reef ecosystems. A rapidly increasing number of publications have studied the role of complexity in reef ecosystems over the past four decades, with a concomitant increase in the diversity of methods used to quantify structure. Quantitative analyses of existing data indicate a strong negative relationship between structural complexity and algal cover, which may reflect the important role complexity plays in enhancing herbivory by reef fishes. The cover of total live coral and branching coral was positively correlated with structural complexity. These habitat attributes may be creating much of the structure, resulting in a collinear relationship; however, there is also evidence of enhanced coral recovery from disturbances where structural complexity is high. Urchin densities were negatively correlated with structural complexity; a relationship that may be driven by urchins eroding reef structure or by their gregarious behaviour when in open space. There was a strong positive relationship between structural complexity and fish density and biomass, likely mediated through density-dependent competition and refuge from predation. More variable responses were found when assessing individual fish families, with all families examined displaying a positive relationship to structural complexity, but only half of these relationships were significant. Although only corroborated with qualitative data, structural complexity also seems to have a positive effect on two ecosystem services: tourism and shoreline protection. Clearly, structural complexity is an integral component of coral reef ecosystems, and it should be incorporated into monitoring programs and management objectives.  相似文献   

11.
Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (~AD 1400-1820) and an ongoing recovery in the NWHI (~AD 1950-2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>10(3) km(2)). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts.  相似文献   

12.
Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae‐dominated system may accompany coral loss. In this case, the composition of the reef‐associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae‐dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small‐bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species.  相似文献   

13.
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.  相似文献   

14.
Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers, generally meaning that declines in ecosystem metrics are not as steep as the sum of individual effects of the drivers. These analyses offer one way to quantify impacts and interactions of particular stressors in an ecosystem context and so provide guidance to managers. For example, the model showed that improving water quality, rather than prohibiting fishing, extended the timescales over which corals can maintain high abundance by at least 5–8 years. This result, in turn, provides more scope for corals to adapt or for resilient species to become established and for local and global management efforts to reduce or reverse stressors.  相似文献   

15.
Abstract Biodiversity is frequently associated with functional redundancy. Indo‐Pacific coral reefs incorporate some of the most diverse ecosystems on the globe with over 3000 species of fishes recorded from the region. Despite this diversity, we document changes in ecosystem function on coral reefs at regional biogeographical scales as a result of overfishing of just one species, the giant humphead parrotfish (Bolbometopon muricatum). Each parrotfish ingests over 5 tonnes of structural reef carbonates per year, almost half being living corals. On relatively unexploited oceanic reefs, total ingestion rates per m2 balance estimated rates of reef growth. However, human activity and ecosystem disruption are strongly correlated, regardless of local fish biodiversity. The results emphasize the need to consider the functional role of species when formulating management strategies and the potential weakness of the link between biodiversity and ecosystem resilience.  相似文献   

16.
海洋酸化对珊瑚礁生态系统的影响研究进展   总被引:1,自引:0,他引:1  
张成龙  黄晖  黄良民  刘胜 《生态学报》2012,32(5):1606-1615
目前,大气CO2浓度的升高已导致海水pH值比工业革命前下降了约0.1,海水碳酸盐平衡体系随之变化,进而影响珊瑚礁生态系统的健康。近年来的研究表明海洋酸化导致造礁石珊瑚幼体补充和群落恢复更加困难,造礁石珊瑚和其它造礁生物(Reef-building organisms)钙化率降低甚至溶解,乃至影响珊瑚礁鱼类的生命活动。虽然海洋酸化对造礁石珊瑚光合作用的影响不显著,但珊瑚-虫黄藻共生体系会受到一定影响。建议选择典型海区进行长期系统监测,结合室内与原位模拟试验,从个体、种群、群落到系统不同层面,运用生理学和分子生物学技术,结合生态学研究手段,综合研究珊瑚的相应响应,以期深入认识海洋酸化对珊瑚礁生态系统健康(例如珊瑚白化)的影响及其效应。  相似文献   

17.
For many ecosystem services, it remains uncertain whether the impacts of climate change will be mostly negative or positive and how these changes will be geographically distributed. These unknowns hamper the identification of regional winners and losers, which can influence debate over climate policy. Here, we use coral reefs to explore the spatial variability of climate stress by modelling the ecological impacts of rising sea temperatures and ocean acidification, two important coral stressors associated with increasing greenhouse gas (GHG) emissions. We then combine these results with national per capita emissions to quantify inequities arising from the distribution of cause (CO2 emissions) and effect (stress upon reefs) among coral reef countries. We find pollution and coral stress are spatially decoupled, creating substantial inequity of impacts as a function of emissions. We then consider the implications of such inequity for international climate policy. Targets for GHG reductions are likely to be tied to a country's emissions. Yet within a given level of GHG emissions, our analysis reveals that some countries experience relatively high levels of impact and will likely experience greater financial cost in terms of lost ecosystem productivity and more extensive adaptation measures. We suggest countries so disadvantaged be given access to international adaptation funds proportionate with impacts to their ecosystem. We raise the idea that funds could be more equitably allocated by formally including a metric of equity within a vulnerability framework.  相似文献   

18.
Ocean warming under climate change threatens coral reefs directly, through fatal heat stress to corals and indirectly, by boosting the energy of cyclones that cause coral destruction and loss of associated organisms. Although cyclone frequency is unlikely to rise, cyclone intensity is predicted to increase globally, causing more frequent occurrences of the most destructive cyclones with potentially severe consequences for coral reef ecosystems. While increasing heat stress is considered a pervasive risk to coral reefs, quantitative estimates of threats from cyclone intensification are lacking due to limited data on cyclone impacts to inform projections. Here, using extensive data from Australia's Great Barrier Reef (GBR), we show that increases in cyclone intensity predicted for this century are sufficient to greatly accelerate coral reef degradation. Coral losses on the outer GBR were small, localized and offset by gains on undisturbed reefs for more than a decade, despite numerous cyclones and periods of record heat stress, until three unusually intense cyclones over 5 years drove coral cover to record lows over >1500 km. Ecological damage was particularly severe in the central‐southern region where 68% of coral cover was destroyed over >1000 km, forcing record declines in the species richness and abundance of associated fish communities, with many local extirpations. Four years later, recovery of average coral cover was relatively slow and there were further declines in fish species richness and abundance. Slow recovery of community diversity appears likely from such a degraded starting point. Highly unusual characteristics of two of the cyclones, aside from high intensity, inflated the extent of severe ecological damage that would more typically have occurred over 100s of km. Modelling published predictions of future cyclone activity, the likelihood of more intense cyclones within time frames of coral recovery by mid‐century poses a global threat to coral reefs and dependent societies.  相似文献   

19.
Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change.  相似文献   

20.
Experimental biology of coral reef ecosystems   总被引:1,自引:0,他引:1  
Coral reef ecosystems are at the crossroads. While significant gaps still exist in our understanding of how “normal” reefs work, unprecedented changes in coral reef systems have forced the research community to change its focus from basic research to understand how one of the most diverse ecosystems in the world works to basic research with strong applied implications to alleviate damage, save, or restore coral reef ecosystems. A wide range of stressors on local, regional, and global spatial scales including over fishing, diseases, large-scale disturbance events, global climate change (e.g., ozone depletion, global warming), and over population have all contributed to declines in coral cover or phase shifts in community structure on time scales never observed before. Many of these changes are directly or indirectly related to anthropogenically induced changes in the global support network that affects all ecosystems. This review focuses on some recent advances in the experimental biology of coral reef ecosystems, and in particular scleractinian corals, at all levels of biological organization. Many of the areas of interest and techniques discussed reflect a progression of technological advances in biology and ecology but have found unique and timely application in the field of experimental coral reef biology. The review, by nature, will not be exhaustive and reflects the author's interests to a large degree. Because of the voluminous literature available, an attempt has been made to capture the essential elements and references for each topic discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号