首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenotypically plastic changes in response to variation in perceived predation risk are widespread, but little is known about if and how social environment modulates induced responses to predation risk. We investigated the influence of perceived predation risk (i.e. chemical cues from a predator) and social environment (i.e. one, two or 20 individuals reared together) on three‐spined stickleback (Gasterosteus aculeatus) morphology in a factorial common garden experiment. We found that exposure to chemical cues from potential predators did not influence growth or body condition or induce more robust morphological defences (i.e. lateral plate numbers and dorsal spine lengths). However, sticklebacks exposed to predator cues developed longer caudal peduncles and larger eyes as compared with fish from the control treatment. As these responses may improve sticklebacks’ ability to avoid piscine predation, they might be adaptive. Social environment/density also influenced expression of some traits, but these effects were independent of predation‐risk treatment effects. In general, these results suggest that apart from the classic morphological defence structures, which appear mostly constitutive, three‐spined sticklebacks are capable of expressing potentially adaptive morphological responses to chemical cues from potential predators.  相似文献   

2.
When individuals of the crayfish Orconectes virilis detect an unlearned danger cue (alarm odor) and a novel cue (goldfish odor) at the same time, they form a learned association and behave as if the novel cue is associated with increased predation risk ( Hazlett et al. 2002 ). This study examined the potential for learned irrelevance in O. virilis and the circumstances under which blockage of the formation of a learned association could occur. If individuals experience a random pattern of alarm odor and goldfish odor over the days prior to the simultaneous detection of those two cues, no learned association is formed (= learned irrelevance). That is, there is no inhibition of responses to a food cue when goldfish odor is added if the crayfish has experienced a random pattern of the two cues. Learning was eliminated if the random pattern of cues was experienced before or after the simultaneous detection. To present the two cues (alarm and goldfish odors) to crayfish independently on separate days, the water containing goldfish odor had to be removed from the aquaria as the odor persisted at least 24 h. The importance of the learned irrelevance phenomenon on predator–prey interactions is discussed.  相似文献   

3.
Olfactory cues that indicate predation risk elicit a number of defensive behaviors in fishes, but whether they are sufficient to also induce morphological defenses has receivedlittle attention. Cichlids are characterized by a high level of morphological plasticity during development, and the few species that have been tested do exhibit defensive behaviors when exposed to alarm cues released from the damaged skin of conspecifics. We utilized young juvenile Nicaragua cichlids Hypsophrys nicaraguensis to test if the perception of predation risk from alarm cue (conspecific skin extract) alone induces an increased relative body depth which is a defense against gape-limited predators. After two weeks of exposure, siblings that were exposed to conspecific alarm cue increased their relative body depth nearly double the amount of those exposed to distilled water (control) and zebrafish Danio rerio alarm cue. We repeated our measurements over the last two weeks (12 and 14) of cue exposure when the fish were late-stage juveniles to test if the rate of increase was sustained; there were no differences in final dimensions between the three treatments. Our results show that 1) the Nicaragua cichlid has an innate response to conspecific alarm cue which is not a generalized response to an injured fish, and 2) this innate recognition ultimately results in developing a deeper body at a stage of the life history where predation risk is high [Current Zoology 56 (1): 36-42, 2010].  相似文献   

4.
In two laboratory experiments we tested juvenile yellow perch, Perca flavescens, for behavioural responses to alarm cues of injured conspecifics and several prey guild members: adult perch, Iowa darters, Etheostoma exile and spottail shiners, Notropis hudsonius. Spottail shiners are phylogenetically distant to yellow perch whereas Iowa darters and perch are both members of the Family Percidae. Groups of juvenile yellow perch increased shoal cohesion and movement towards the substrate after detecting conspecific alarm cues when compared to cues of injured swordtails, Xiphophorus helleri, a species phylogenetically distant from perch. Individual juvenile perch increased shelter use and froze more when exposed to chemical alarm cues from both juvenile and adult perch, shiners and darters compared to exposure to injured swordtail cues or distilled water. The response to cues of darters may indicate that alarm cues are evolutionarily conserved within percid fishes or that perch had learned to recognize darter cues. The response to spot tail shiners likely represents learned recognition of the cues of a prey guild member.  相似文献   

5.
Animals commonly approach (i.e. 'inspect') potential predators. Glowlight tetras, Hemigrammus erythrozonus, have previously been shown to inspect the combined chemical and visual cues originating from novel predators and to modify their inspection (approach) behaviour depending upon the predator's diet. We conducted two experiments to determine whether tetras would inspect the chemical cues of injured prey or the dietary cues of a novel predator in the absence of any visual cues. Shoals of glowlight tetras were exposed to either distilled water (control) or the skin extract of swordtail (lacking ostariophysan alarm pheromones) or the skin extract of tetra (with alarm pheromones). There was no significant difference in the frequency of predator inspection behaviour towards swordtail or tetra skin extract compared to the distilled water controls. In the second experiment, we exposed shoals of tetras to either distilled water or the odour of Jack Dempsey cichlids, Cichlasoma octofasciatum, which had been food deprived, or fed a diet of swordtails or tetras. There was no significant difference in the frequency of predator inspection behaviour towards the odour of the starved cichlids and the odour of the fed cichlids in either of the two diet treatments. However, when tetras were exposed to the odour of cichlids fed tetras, they took significantly longer to initiate an inspection visit, remained further from the source of the chemical cues and inspected in smaller groups, compared with the odour of a starved cichlid or a cichlid fed swordtails. These data strongly suggest that tetras will inspect chemical cues alone, but only if the cue contains information about the predator. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

6.
Chemical cues released as a by-product of predation mediate antipredator behaviour, but little is known about the physiological responses to olfactory detection of predation risk. In this study, zebrafish Danio rerio were exposed to either chemical alarm cues from conspecifics, or water (control). Compared with water controls, D. rerio exposed to alarm cues responded behaviourally with antipredator behaviours such as erratic dashing and an increase in time spent near the bottom of the test aquarium. Danio rerio were sacrificed 5 min after exposure to test cues (alarm cues or water). Enzyme-linked immunosorbent assay (ELISA) revealed whole-body levels of cortisol that were significantly higher for fish exposed to alarm cues (mean ± SE, 11.9 ± 3.4 ng g−1) than control fish (1.5 ± 0.7 ng g−1). These data provide a benchmark for future studies of the proximate mechanisms of olfactorily mediated antipredator responses, modelling effects on aquatic life in a changing climate and, as a model organism, Danio rerio can further our understanding of anxiety in humans.  相似文献   

7.
Individuals that dare approach predators (predator inspection behaviour) may benefit by acquiring information regarding the potential threat of predation. Although information acquisition based on visual cues has been demonstrated for fish, it is unknown whether fish will inspect predators on the basis of chemical cues or whether such inspection behaviour results in information acquisition. Here, we first ascertained whether predator inspection behaviour can be mediated by chemical cues from predators by exposing groups of predator-naive glowlight tetras (Hemigrammus erythrozonus) to the chemical cues of a potential fish predator (convict cichlid Cichlasoma nigrofasciatum) that had been fed either tetras (which possess an alarm pheromone) or swordtails (Xiphophorus helleri, which lack Ostariophysan alarm pheromones). Tetras showed a significant increase in antipredator behaviour when exposed to the tetra-diet cue, but not when exposed to the swordtail-diet cue. Chemically mediated predator inspection behaviour was also affected. Both the latency to inspect and the minimum approach distance to the predator significantly increased, and the mean number of inspectors per predator inspection visit significantly decreased when tetras were exposed to the tetra-diet versus the swordtail-diet chemical cues. We then examined a potential benefit associated with chemically mediated predator inspection behaviour. Only tetras that were initially exposed to the tetra-diet cue and that had inspected the predator acquired the visual recognition of a convict cichlid as a predation threat. Our results thus demonstrate that (1) predator inspection behaviour in the glowlight tetra can be initiated by chemical cues, (2) chemically mediated inspection behaviour is affected by the presence of alarm pheromone, and (3) inspectors benefit by acquiring the recognition of novel predators. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

8.
The distribution and extent of chemical alarm signaling systems among some families of fishes, including the Cottidae, remains unclear. In laboratory experiments, we tested whether reticulate sculpins, Cottus perplexus, respond to chemical alarm signals released by injured conspecifics. Sculpins decreased movement following exposure to skin extracts from conspecifics, but did not respond to cues of syntopic speckled dace, Rhinichthyes osculus, or allotopic swordtails, Xiphophorous helleri. Additional tests demonstrated that the responses of sculpins to alarm cues were dependent on the hunger level of the test fish. Sculpins deprived of food for 2 days failed to respond to conspecific alarm cues, however, the same individuals fed to satiation did respond to alarm cues.  相似文献   

9.
Predation is a strong selective force acting on both morphology and behaviour of prey animals. While morphological defences (e.g. crypsis, presence of armours or spines or specific body morphologies) and antipredator behaviours (e.g. change in foraging or reproductive effort, or hiding and fleeing behaviours) have been widely studied separately, few studies have considered the interplay between the two. The question raised in our study is whether antipredator behaviours of a prey fish to predator odours could be influenced by the morphology of prey conspecifics in the diet of the predator. We used goldfish (Carassius auratus) as our test species; goldfish exposed to predation risk significantly increase their body depth to length ratio, which gives them a survival advantage against gape‐limited predators. We exposed shallow‐bodied and deep‐bodied goldfish to the odour of pike (Esox lucius) fed either form of goldfish. Deep‐bodied goldfish displayed lower intensity antipredator responses than shallow‐bodied ones, consistent with the hypothesis that individuals with morphological defences should exhibit less behavioural modification than those lacking such defences. Moreover, both shallow‐ and deep‐bodied goldfish displayed their strongest antipredator responses when exposed to the odour of pike fed conspecifics of their own morphology, indicating that goldfish are able to differentiate the morphology of conspecifics through predator diet cues. For a given individual, predator threat increases as the prey become more like the individual eaten, revealing a surprising level of sophistication of chemosensory assessment by prey fish.  相似文献   

10.
Recent evidence suggests that predator inspection behaviour by Ostariophysan prey fishes is regulated by both the chemical and visual cues of potential predators. In laboratory trials, we assessed the relative importance of chemical and visual information during inspection visits by varying both ambient light (visual cues) and predator odour (chemical cues) in a 2 × 2 experimental design. Shoals of glowlight tetras (Hemigrammus erythrozonus) were exposed to a live convict cichlid (Archocentrus nigrofasciatus) predator under low (3 lux) or high (50 lux) light levels and in the presence of the odour of a cichild fed tetras (with an alarm cue) or swordtails (Xiphophorus helleri, with an alarm cue not recognized by tetras). Tetras exhibited threat‐sensitive inspection behaviour (increased latency to inspect, reduced frequency of inspection, smaller inspecting group sizes and increased minimum approach distance) towards a predator paired with a tetra‐fed diet cue, regardless of light levels. Similar threat‐sensitive inspection patterns were observed towards cichlids paired with a swordtail‐fed diet cue only under high light conditions. Our data suggest that chemical cues in the form of prey alarm cues in the diet of the predator, are the primary source of information regarding local predation risk during inspection behaviour, and that visual cues are used when chemical information is unavailable or ambiguous.  相似文献   

11.
Although the abilities of prey to detect and respond to chemical substances associated with a predator have been widely reported, the factors promoting the evolution of responses to prey alarm cues vs. predator odours are still vague. In this article, we combined field research with laboratory experiments to explore which chemical substance associated with predator activity (predator odour, conspecific or heterospecific alarm substances) induces defence responses in the aquatic oligochaete Stylaria lacustris, which is vulnerable to common littoral predators. The field results indicated that predators injure the oligochaetes and a great proportion, up to 45% of individuals in the population, were found to be damaged. The results of the laboratory experiments revealed that chemical odours from damselfly larvae feeding on S. lacustris did not induce the defence response in the oligochaetes. On the contrary, oligochaetes detected and responded to alarm substances from damaged conspecifics alone and substances from damaged cladoceran Daphnia magna. We discussed conditions favouring the responses to damage released prey alarm cues instead of predator odours in Stylaria lacustris. Our data suggest that the selection of responses to alarm cues from damaged prey vs. predator odours may be dependent on three factors: (1) non-species-specific predation, (2) divergence of food niche of the different stages of the predator and (3) complex food web with multiple predators. Handling editor: S. Declerk  相似文献   

12.
1.  Inducible defences may be temporary and favoured where predation is intermittent and have been demonstrated in several invertebrates and vertebrates when prey detect chemical cues (kairomones) released by predators. Daphnia pulex (a water flea) exposed to Chaoborus (midge larvae) kairomones produce small neckteeth on the dorsal surface of the head as a defence against this gape-limited predator and survive better in the presence of Chaoborus . Recent studies have shown that waterborne copper (Cu) impairs the induction of neckteeth which could lead to lower survival.
2.  Here, we examined the effects of Cu on morphological changes and shifts in life-history traits in D. pulex exposed to kairomone from Chaoborus americanus . We exposed D. pulex mothers to chemical cues of C. americanus fed on either D. pulex neonates or on brine shrimp Artemia salina , the same Chaoborus cues combined with an environmentally relevant concentration of copper (10 μg L−1), or dechlorinated tap water. We examined several morphological characteristics of neonates and life-historical characteristics of adults as well as assessing survival of neonates by staging encounters with predators.
3.  Neonates from mothers exposed to kairomone plus copper had fewer and shorter neckteeth than neonates from mothers exposed to kairomone alone. Moreover, neonates exposed to Cu had lower survival during encounters with predators than neonates exposed to kairomone without Cu.
4.  Adult female Daphnia exposed to kairomones released more neonates within the first 24 h of brood release and emptied their brood pouches quicker than mothers not exposed to kairomones, irrespective of the presence of Cu.
5.  Impairment by metals of morphological defences in zooplankton could lead to a decline in population density and alter community structure.  相似文献   

13.
A wide diversity of aquatic organisms release alarm signals upon being attacked by a predator. Alarm signals may 'warn' nearby individuals of danger. Moreover, the signals may be important in facilitating learned recognition of unknown stimuli. It is common for different prey species to respond to each other's chemical alarm signals. In many cases, the responses are learned but no learning mechanisms have been identified to date. In this study we tested whether prey fish can learn the identity of an unknown alarm signal when they detect it in association with conspecific alarm cues in the diet of a predator. Chemical alarm cues are known to be conserved in the diet of predators. We conditioned fathead minnows ( Pimephales promelas ) with chemical stimuli from predatory yellow perch ( Perca flavescens ) fed a mixed diet of minnows and brook stickleback ( Culaea inconstans ), perch fed a mixed diet of swordtails ( Xiphophorus helleri ) and stickleback or distilled water. Minnows were subsequently exposed to chemical alarm cues of injured stickleback alone. Those minnows previously conditioned with perch fed a mixed diet of minnows and stickleback increased their use of shelter and 'froze' significantly more than minnows previously conditioned with perch fed a diet of swordtails and stickleback or those exposed to distilled water. These data demonstrate a mechanism by which minnows can learn the identity of a heterospecific alarm signal.  相似文献   

14.
Fathead minnows, Pimephales promelas, and glowlight tetras, Hemigrammus erythrozonus, were tested for their ability to associate predation risk with novel auditory stimuli after auditory stimuli were presented simultaneously with chemical alarm cues. Minnows and tetras gave a fright response when exposed to skin extract (alarm cue) and an artificial auditory sound stimulus, but no response to water (control) and sound, indicating that they did not have a pre-existing aversion to the auditory stimulus. When retested with sound stimuli alone, minnows and glowlight tetras that had previously been conditioned with water and sound showed no response, but those that had been conditioned with alarm cues and sound exhibited antipredator behaviour (reduced activity) in response to the auditory cue. This is the first known demonstration of learned association of an auditory cue with predation risk, and raises questions about the role of sound in mediating predator-prey interactions in fishes.  相似文献   

15.
Many prey organisms will approach (inspect) potential predators, primarily to assess local risk of predation. It has been demonstrated that Ostariphysan prey fishes can detect conspecific alarm pheromones in the diet of potential predators and use this chemical information to reduce their risk of predation while still gaining significant benefits associated with predator inspection. We conducted the current study to examine the possible effects of mixed diets on the use of these chemical predator diet cues during inspection visits. Shoals of four glowlight tetras ( Hemigrammus erythrozonus ) were exposed to Jack Dempsey cichlids ( Cichlasoma octofaciatum ) which had been fed diets consisting of: 100% tetras (with alarm pheromone); 75% tetra, 25% swordtail ( Xiphophorus helleri , which lack a recognizable alarm pheromone); 25% tetra, 75% swordtail; or 100% swordtails. Tetras significantly increased their anti-predator behaviour in response to predators fed 100% tetra or the two mixed predator diets, but not when exposed to predators fed a 100% swordtail diet. Likewise, we observed significant differences in inspection behaviour. Tetras took longer to initiate an inspection, inspected in smaller groups and directed a greater proportion of inspection visits towards the tail region of the predator when it had been fed 100% tetra or either of the two mixed prey diets. We found no significant differences in either anti-predator or inspection behaviour among the three diet treatments containing tetras. These data strongly suggest that glowlight tetras are capable of detecting relatively small amounts of conspecific alarm pheromone in the diet of potential predators and that they modify their behaviour based on the presence or absence of these cues.  相似文献   

16.
Crucian carp from populations that lack piscivores are extremely vulnerable to predation. However, in the presence of piscivores these fish develop an inducible morphological defence, a deep body. This switch from a vulnerable, shallow-bodied morph to a morphologically defended morph makes this species very suitable for investigations of anti-predator strategies, and trade-offs between morphological and behavioural defences. To address these questions, we performed eight different experiments. We found that crucian carp exhibited fright responses to chemical cues from unfamiliar predators (northern pike, perch) when these were fed prey that contained alarm substance (for northern pike: crucian carp, roach; for perch: crucian carp). Cues from small pike that were fed prey that lacked alarm substance (swordtails) caused no significant fright response whereas cues from larger pike with the same diet did. Perch on a chironomid diet elicited weaker but significant fright responses. Starved predators caused as strong fright reactions as recently fed ones did, whereas no response was exhibited towards nonpredatory fish (roach, crucian carp). Crucian carp were able to detect the presence of pike after cues had been diluted to an equivalent of 21 000 l, and larger predators elicited stronger fright responses. Prior experience of predators decreased fright responses. In particular, individuals from populations that coexisted with northern pike responded less to chemical cues from northern pike than individuals without prior experience did. Thus, crucian carp may use both alarm-substance related and predator-related cues to identify predators. Further, they were able to discriminate between large and small predators. Finally, individuals from populations that coexist with predators exhibit less pronounced fright responses. These fish have an induced morphological defence, a deep body, which most likely decreases the need for strong antipredator behaviour.  相似文献   

17.
18.
P. Eklöv 《Oecologia》2000,123(2):192-199
Chemical signals are used as information by prey to assess predation risk in their environment. To evaluate the effects of multiple predators on prey growth, mediated by a change in prey activity, I exposed small and large bullfrog (Rana catesbeiana) larvae (tadpoles) to chemical cues from different combinations of bluegill sunfish (Lepomis macrochirus) and larval dragonfly (Anax junius) predators. Water was regularly transferred from predation trials (outdoor experiment) to aquaria (indoor experiment) in which activity and growth of tadpoles was measured. The highest predation mortality of small bullfrog larvae in the outdoor experiment was due to Anax, and it was slightly lower in the presence of both predators, probably resulting from interactions between predators. There was almost no mortality of prey with bluegill. The activity and growth of small bullfrog larvae was highest in the absence of predators and lowest in the presence of Anax. In the presence of bluegill only, or with both predators, the activity and growth of small bullfrog tadpoles was intermediate. Predators did not affect large tadpole activity and growth. Regressing mortality of small bullfrog tadpoles against activity and growth of bullfrog tadpoles revealed a significant effect for small bullfrog larvae but a non-significant effect for large bullfrog larvae. This shows that the response of bullfrog tadpoles to predators is related to their own body size. The experiment demonstrates that chemical cues are released both as predator odor and as alarm substances and both have the potential to strongly alter the activity and growth of prey. Different mechanisms by which chemical cues may be transmitted to species interactions in the food web are discussed. Received: 28 June 1999 / Accepted: 15 November 1999  相似文献   

19.
Pike-naive fathead minnows (Pimephales promelas) were fed ad libitum or deprived of food for 12, 24, or 48 h and then exposed to either conspecific alarm pheromone or distilled water and the odour of a predatory northern pike (Esox lucius). Minnows fed ad libitum or deprived for 12 h showed a stereotypic alarm response to the alarm pheromone (increased time under cover objects and increased occurrence of dashing and freezing behaviour); those deprived of food for 24 h showed a significantly reduced alarm response, while those deprived of food for 48 h did not differ significantly from the minnows exposed to a distilled water control. Upon subsequent testing in an Opto-Varimex activity meter, all groups initially exposed to alarm pheromone and pike odour exhibited an alarm response when exposed to pike odour alone. Those initially conditioned with distilled water and pike odour did nor show an alarm response to pike odour alone. These results demonstrate that there exists a significant trade-off between hunger level and predator-avoidance behaviour in fathead minnows and that minnows can learn the chemical cues of a predatory northern pike through association with alarm pheromone even in the absence of an observable alarm response.  相似文献   

20.
LaFiandra EM  Babbitt KJ 《Oecologia》2004,138(3):350-359
Predator-induced defenses can result from non-contact cues associated with the presence of a feeding predator; however, the nature of the predator cue has not been determined. We tested the role of two non-contact cues, metabolites of digestion of conspecific prey released by the predator and alarm pheromones released by attacked conspecific prey, in the development of inducible defenses by exposing pinewoods tree frog (Hyla femoralis) tadpoles to non-lethal dragonfly (Anax junius) larvae fed either inside experimental bins or removed from the bins for feeding to eliminate alarm pheromones. The costs associated with the development of the induced morphology were also investigated by providing the tadpoles with two food levels intended to provide adequate or growth limiting resources. The generalized morphological response of H. femoralis tadpoles to predators included the development of bodies and tails that were both deeper and shorter, smaller overall body size, and increased orange tail fin coloration and black tail outline. Metabolites of digestion were sufficient to initiate development of inducible defenses; however, the combination of metabolites and alarm cue resulted in a greater response. Furthermore, growth and development were slowed in tadpoles that expressed the induced morphology; however, this growth cost was insufficient to preclude the development of the induced morphology when food resources were low. These results indicate that two aspects of the indirect predator cue work together to trigger a morphological anti-predator response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号