首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Peter Eklöv  Earl E. Werner 《Oikos》2000,88(2):250-258
This study examined the effects of multiple predators on size‐specific behavior and mortality of two species of anuran larvae. Particularly, we focused on how trait changes in predators and prey may be transmitted to other species in the food web. In laboratory experiments, we examined the effects of bluegill sunfish, Lepomis macrochirus, and the odonate larva Anax junius on behavior and mortality of tadpoles of the bullfrog, Rana catesbeiana, and the green frog R. clamitans. Experiments were conducted with predators alone and together to assess effects on behavior and mortality of the tadpoles. The experiments were replicated on five size classes of the tadpoles to evaluate how responses varied with body size.
Predation rates by Anax were higher on bullfrogs than on green frogs, and both bullfrogs and green frogs suffered greater mortality from Anax than from bluegill. Bluegill only consumed green frogs. Predation rates by both predators decreased with increasing tadpole size and decreased in the non‐lethal (caged) presence of the other predator. Both anuran larvae decreased activity when exposed to predators. Bullfrogs, however, decreased activity more in the presence of Anax than in the presence of bluegill, whereas green frogs decreased activity similarly in the presence of both predators. The largest size class of green frogs, but not of bullfrogs, exhibited spatial avoidance of bluegill. These responses were directly related to the risk posed by the different predators to each anuran species. Anax activity (speed and move frequency) also was higher when alone than in the non‐lethal presence of bluegill. We observed decreased predation rate of each predator in the non‐lethal presence of the other, apparently caused by two different mechanisms. Bluegill decreased Anax mortality on tadpoles by restricting the Anax activity. In contrast, Anax decreased bluegill mortality on tadpoles by reducing tadpole activity. We discuss how the activity and spatial responses of the tadpoles interact with palatability and body size to create different mortality patterns in the prey species and the implications of these results to direct and indirect interactions in this system.  相似文献   

2.
When confronted by signals of predators presence, many aquatic organisms modify their phenotype (e.g., behaviour or morphology) to reduce their risk of predation. A principal means by which organisms assess predation risk is through chemical cues produced by the predators and/or prey during predation events. Such responses to predation risk can directly affect prey fitness and indirectly affect the fitness of species with which the prey interacts. Accurate assessment of the cue will affect the adaptive nature, and hence evolution, of the phenotypic response. It is therefore, important to understand factors affecting the assessment of chemical cues. Here I examined the effect of the age of chemical cues arising from an invertebrate predator, a larval dragonfly (Anax junius), which was fed bullfrog tadpoles, on the behavioural response (activity level and position) of bullfrog tadpoles. The bullfrog response to chemical cues declined as a function of chemical cue age, indicating the degradation of the chemical cue was on the order of 2–4 days. Further, the decay occurred more rapidly when the chemical cue was placed in pond water rather than well water. These results indicate a limitation of the tadpoles to interpret factors that affect the magnitude of the chemical cue and hence accurately assess predation risk. These findings also have implications for experimental design and the adaptation of phenotypic responses to chemical cues of predation risk.  相似文献   

3.
Chemical cues transmitted through the environment are thought to underlie many prey responses to predation risk, but despite the known ecological and evolutionary significance of such cues, their basic composition are poorly understood. Using anuran tadpoles (prey) and dragonfly larvae (predators), we identified chemical cues associated with predation risk via solid phase extraction and mass spectrometry of the extracts. We found that dragonfly larvae predators consistently produced a negative ion, m/z 501.3, when they fed on bullfrog (Rana catesbeiana) and mink frog (Rana septentrionalis) tadpoles, but this ion was absent when dragonflies were fasted or fed invertebrate prey. When tadpole behavioral responses to dragonfly chemical cues were examined, tadpoles reduced their activity, particularly in response to dragonflies feeding on tadpoles. Furthermore, a negative correlation was noted between the level of tadpole activity and the concentration of the m/z 501.3 compound in dragonfly feeding trials, indicating that this ion was possibly responsible for tadpole anti-predator behavior.  相似文献   

4.
The introduction of non-native predators is thought to have important negative effects on native prey populations. The susceptibility of native prey to non-native or introduced predators may depend on their ability to respond appropriately to the presence of these non-native predators. We conducted a laboratory based behavioral experiment to examine the response of American toad (Bufo americanus) and bullfrog (Rana catesbeiana) tadpoles to the presence of cues from the introduced mosquitofish (Gambusia affinis), a potential tadpole predator. Neither the American toad tadpoles nor the bullfrog tadpoles responded behaviorally to the presence of mosquitofish cues. If tadpoles are unable to respond to the presence of mosquitofish cues appropriately, then their ability to avoid predation by mosquitofish may be compromised and this may contribute to the impacts of mosquitofish on some tadpole populations.  相似文献   

5.
Individual organisms vary in personality, and the ecological consequences of that variation can affect the strength of predator–prey interactions. Prey with bolder tendencies can mitigate the strength of species interactions by altering growth and initiating ontogenetic niche shifts (ONS). While the link between personality and growth has been established, recent research has highlighted the important interplay between ONS and predator cues in community ecology. The objective of this study was to evaluate the effects of prey personality and predator cues on prey growth and ONS. We predicted growth–mortality trade-offs among personalities with higher survival, larger size, and accelerated ONS for bold individuals in comparison with shy individuals. To evaluate this objective, we conducted behavioral assays and a mesocosm experiment to test how southern leopard frog (Rana sphenocephala) tadpole personality and predatory fish (bluegill, Lepomis macrochirus) cues affects tadpole growth and metamorphosis. On average, bold tadpoles had higher mortality across all treatments in comparison with shy tadpoles. The effects of fish cues were dependent on tadpole personality with shy tadpoles metamorphosing significantly later than bold tadpoles. Bold tadpoles were larger than shy tadpoles at metamorphosis; however, that pattern reversed with fish cues as shy individuals metamorphosed larger than bold individuals. Our results suggest personality may be useful for predicting growth and life history for some prey species with predators. Specifically, the threat of predation can interact with personality to incur a benefit (earlier ONS) while also incurring a cost (size at metamorphosis). Hence by incorporating predator cues with personality, ecologists will be able to elucidate growth–mortality trade-offs mediated by personality.  相似文献   

6.
Many species alter their activity, microhabitat use, morphology and life history in response to predators. Predation risk is related to predator size and palatability of prey among others factors. We analyzed the predation risk of three species of tadpoles that occur in norwestern Patagonia, Argentina: Pleurodema thaul, Pleurodema bufoninum and Rhinella spinulosa. We sampled aquatic insect predators in 18 ponds to determine predator–tadpole assemblage in the study area. In laboratory conditions, we analysed the predation rate imposed by each predator on each tadpole species at different tadpole sizes. Finally, we tested whether tadpoles alter their activity in the presence of chemical and visual cues from predators. Small P. thaul and P. bufoninum tadpoles were the most vulnerable prey species, while small R. spinulosa tadpoles were only consumed by water bugs. Dragonflies and water bugs were the most dangerous tadpole predators. Small P. thaul tadpoles reduced their activity when they were exposed to all predators, while large tadpoles only reduced the activity in the presence of large predators (dragonfly larvae and water bugs). Small P. bufoninum tadpoles reduced the activity when they were exposed to beetle larvae and dragonfly larvae, while large tadpoles only reduced activity when they were exposed to larger predators (water bugs and dragonfly larvae). R. spinulosa tadpoles were the less sensitive to presence of predators, only larger tadpoles responded significantly to dragonfly larvae by reducing their activity. We conclude that behavioural responses of these anuran species were predator-specific and related to the risk imposed by each predator.  相似文献   

7.
Low dissolved oxygen concentrations present numerous challenges for non-air-breathing aquatic organisms. Amphibian larvae and their predators can respond to oxygen levels by altering their behavior and physiology, but the ecological consequences of these responses are generally unknown. We conducted two laboratory experiments to study the effects of dissolved oxygen on respiratory behavior and susceptibility to predation of larval bullfrogs (Rana catesbeiana). In the first, we exposed small, lungless tadpoles to a predatory salamander larva (Ambystoma tigrinum) under high and low oxygen conditions. More tadpoles were consumed in high oxygen tanks than in low ones, presumably because salamanders remained near the surface in the low oxygen tanks while most tadpoles rested on the bottom. Tadpole activity depended on both oxygen and predator presence: swimming decreased after addition of salamanders under high oxygen, but increased under low oxygen. In the second experiment, we examined the effect of predator chemical cues on the air-breathing rate of large tadpoles with well-developed lungs under low oxygen conditions. In the presence of chemical cues produced by dragonfly larvae consuming bullfrog tadpoles, air-breathing and swimming were significantly reduced relative to controls. These experiments demonstrate the potential impact of dissolved oxygen on predator-prey interactions, and suggest that outcomes depend on the respiratory ecology of both predator and prey.  相似文献   

8.
Red swamp crayfish Procambarus clarkii, a widespread invasive alien crayfish, represents a serious threat for several freshwater species, including amphibians, which are declining at a global scale. As a shared coevolutionary history is the main factor determining the emergence of antipredator responses, Anuran tadpoles may not be able to cope effectively with this introduced predator. We performed two experiments to assess agile frog's (Rana dalmatina) defensive responses to both P. clarkii and native dragonfly larvae (Anax imperator). First, we conditioned embryos (collected from two ponds 30 km away from each other) with predators’ chemical cues to explore possible variation in hatching time caused by predation risk. In the second experiment, to evaluate how predators’ diet affects tadpole behavior, we conditioned tadpoles for a 5‐week period with cues from tadpole‐fed and gammarid‐fed predators and recorded behavioral and morphological responses. Embryos did not alter hatching time in the presence of any predator cue, while tadpoles from both populations strongly reduced activity and visibility when raised in the presence of tadpole‐fed dragonfly larvae. Morphological changes were less straightforward and were induced only in one population, for which broader tails and a slight increase in body size of tadpoles exposed to tadpole‐fed predators were observed. The lack of defensive responses in crayfish‐exposed tadpoles suggests that the spreading of this invasive species in agricultural lowlands of northern Italy may represent a further threat to their conservation.  相似文献   

9.
Foraging behavior is often determined by the conflicting benefits of energy gain and the risk of mortality from predation or other causes. Theory predicts that animals should have lower activity levels when either the risk of predation or the availability of resources in the environment is high. We investigated the adjustment of the behavior of I. elegans larvae to predator presence (Anax imperator) and prey density (Daphnia sp.) and their interaction in a completely crossed factorial experiment in the lab and the effect of behavior on growth. The foraging activity of the I. elegans larvae was significantly reduced in the presence of a free-swimming predator but not a caged predator. Abdominal movements were significantly reduced at a low prey density. Growth was significantly reduced by the presence of a free swimming predator and low prey densities. These results provide evidence that these damselfly larvae adjust their behavior to the presence of predators to increase their survival at the expense of reduced growth and development.  相似文献   

10.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

11.
Predator-prey relationships among larval dragonflies,salamanders, and frogs   总被引:2,自引:0,他引:2  
Summary Tadpoles of the barking tree frog, Hyla gratiosa, are abundant in spring and summer in some ponds and Carolina bays on the Savannah River Plant near Aiken, South Carolina. To determine how these tadpoles survive in the presence of predaceous salamander larvae, Ambystoma talpoideum, and larvae of an aeshnid dragonfly, Anax junius, we determined fields densities and sizes of the predators and the prey and conducted predation experiments in the laboratory. Tadpoles rapidly grow to a size not captured by Ambystoma, although Anax larvae can capture slightly larger tadpoles. Differing habitat preferences among the tadpoles and the two predator species probably aid in reducing predation pressure. Preliminary work indicates that the tadpoles may have an immobility response to an attack by a predator. In addition, the smallest, most vulnerable tadpoles have a distinctive color pattern which may function to disrupt the body outline and make them indiscernable to predators.  相似文献   

12.
Predation threat-associated behavioral response was studied in Rana temporalis tadpoles to discover the importance of predators’ visual and chemical cues (kairomones and diet-derived metabolites of consumed prey) in evoking antipredator behavior. The caged predators (dragonfly larvae) fed on prey tadpoles or insects (Notonecta spp.) and water conditioned with the predators provided the threat stimuli to the tadpole prey. The predators’ visual cues were ineffective in evoking antipredator behaviors in the tadpole prey. However, exposure to caged tadpole-fed predators or water conditioned with tadpole-fed predators elicited predator avoidance behavior in the tadpoles; they stayed away from the predators, significantly reduced swimming activity (swimming time and distance traveled), and increased burst speed. Interestingly, exposure to water conditioned with starved predators did not elicit any antipredator behavior in the prey. Further, the antipredator responses of predator-experienced tadpoles were significantly greater than those exhibited by predator-na?ve tadpoles. The study shows that R. temporalis tadpoles assess predation threat based exclusively on chemical cues emanating from the predators’ dietary metabolites and that the inclusion of conspecific prey items in the diet of the predators is perceived as a threat. The study also shows that antipredator behavior in these tadpoles is innate and is enhanced during subsequent encounters with the predators.  相似文献   

13.
The ability of prey to respond to novel predator cues may depend on the generality or specificity of the response to predator cues. We used laboratory behavioral experiments to examine the ability of tadpoles of three species of anurans (American toad, Bufo americanus ; bullfrog, Rana catesbeiana ; and green frog, R. clamitans ) to respond to the presence of two native potential predators (bluegill, Lepomis macrochirus ; and largemouth bass, Micropterus salmoides ) and one non-native potential predator (goldfish, Carassius auratus ). We also examined the effect of tadpole size on the behavioral responses of American toads and green frogs to predator cues. All three species of tadpoles responded to the presence of predator cues, although the specific responses varied among species. American toads and green frogs reduced activity in the presence of at least some fish cues, but bullfrog tadpoles did not change their activity. Bullfrogs decreased use of vegetation in the presence of some predator cues, whereas American toads and green frogs did not. American toads only responded to the presence of bluegill cues but not the other fish predator cues, whereas bullfrogs and green frogs responded more generally to the fish predators. In both American toads and green frogs, tadpole size affected behavior. For American toads, activity increased, as did the use of the vegetated side of the aquarium, in larger tadpoles. Not only did size affect American toad behavior, but it also influenced the responses of the tadpoles to predator cues. For green frogs, activity decreased in larger tadpoles. Our results suggest that behavioral responses of tadpoles to predator cues can be influenced by both the identity of the predator and the prey, as well as the size of the potential prey.  相似文献   

14.
Invasive species capable of recognizing potential predators may have increased establishment rates in novel environments. Individuals may retain historical predator recognition and invoke innate responses in the presence of taxonomically or ecologically similar predators, generalize antipredator responses, or learn to avoid risky species in novel environments. Invasive amphibians in aquatic environments often use chemical cues to assess predation risk and learn to avoid novel predators via direct experience and/or associated chemical cues. Ontogeny may also influence recognition; experience with predators may need to occur at certain developmental stages for individuals to respond correctly. We tested predator recognition in invasive American bullfrog ( Lithobates catesbeianus) tadpoles that varied in experience with fish predators at the population and individual scale. We found that bullfrog tadpoles responded to a historical predator, largemouth bass ( Micropterus salmoides), only if the population was locally sympatric with largemouth bass. Individuals from a population that did not co‐occur with largemouth bass did not increase refuge use in response to either largemouth bass chemical cues alone or chemical cues with diet cues (largemouth bass fed bullfrog tadpoles). To test whether this behavioral response was generalized across fish predators, we exposed tadpoles to rainbow trout ( Oncorhynchus mykiss) and found that tadpoles could not recognize this novel predator regardless of co‐occurrence with other fish species. These results suggest that environment may be more important for predator recognition than evolutionary history for this invasive species, and individuals do not retain predator recognition or generalize across fish predators.  相似文献   

15.
The phenotypes of gray treefrog (Hyla chrysoscelis) tadpoles vary depending on whether predators are present in the pond. Tadpoles reared in ponds with predatory dragonfly larvae are relatively inactive compared with tadpoles in predator-free ponds, and have relatively large, brightly colored tailfins with dark spots along the margins. Models for the evolution of plasticity predict that induced phenotypes such as this should confer high fitness relative to the typical phenotype when in the presence of predators, but should be costly when the predator is absent. Our study tested for the predicted fitness trade-off in H. chrysoscelis by first rearing tadpoles in mesocosms under conditions that induce the alternate phenotypes, and then comparing the performance of both phenotypes in both environments. We generated the two phenotypes by rearing tadpoles in 600-liter outdoor artificial ponds that contained either two caged dragonflies (Anax junius) or an empty cage. Tadpoles from the two environments showed significantly different behavior, tail shape, and tail color within two weeks of exposure. We compared the growth and survival of both phenotypes over four weeks in ponds where there was no actual risk of predation. Under these conditions, both phenotypes grew at the same rate, but the predator-induced phenotype had significantly lower survival than the typical phenotype, indicating that induced tadpoles suffered greater mortality from causes other than odonate predation. We tested the susceptibility of both phenotypes to predation by exposing them to dragonflies in 24-h predation trials. The predator-induced phenotype showed a significant survival advantage in these trials. These results confirm that the predator-induced phenotype in H. chrysoscelis larvae is associated with fitness costs and benefits that explain why the defensive phenotype is induced rather than constitutive.  相似文献   

16.
The ability of prey to detect predators directly affects their probability of survival. Chemical cues are known to be important for predator detection in aquatic environments, but the role of other potential cues is controversial. We tested for changes in behaviour of Rana temporaria tadpoles in response to chemical, visual, acoustic, and hydraulic cues originating from dragonfly larvae (Aeshna cyanea) and fish (Gasterosteus aculeatus). The greatest reduction in tadpole activity occurred when all cues were available, but activity was also significantly reduced by visual cues only. We did not find evidence for tadpoles lowering their activity in response to acoustic and hydraulic cues. There was no spatial avoidance of predators in our small experimental containers. The results show that anuran larvae indeed use vision for predator detection, while acoustic and hydraulic cues may be less important. Future studies of predator‐induced responses of tadpoles should not only concentrate on chemical cues but also consider visual stimuli. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

17.
Boone MD  Semlitsch RD 《Oecologia》2003,137(4):610-616
The effect of a contaminant on a community may not be easily predicted, given that complex changes in food resources and predator-prey dynamics may result. The objectives of our study were to determine the interactive effects of the insecticide carbaryl and predators on body size, development, survival, and activity of tadpoles of the bullfrog (Rana catesbeiana). We conducted the study in cattle tank mesocosm ponds exposed to 0, 3.5, or 7.0 mg/l carbaryl, and no predators or two red-spotted newts (Notophthalmus viridescens), bluegill sunfish (Lepomis macrochirus), or crayfish (Orconectes sp.). Carbaryl negatively affected predator survival by eliminating crayfish from all ponds, and by eliminating bluegill sunfish from ponds exposed to the highest concentration of carbaryl; carbaryl exposure did not effect survival of red-spotted newts. Because crayfish were eliminated by carbaryl, bullfrogs were released from predation and survival was near that of predator controls at low concentrations of carbaryl exposure. High concentrations of carbaryl reduced tadpole survival regardless of whether predators survived carbaryl exposure or not. Presence of crayfish and newts reduced tadpole survival, while bluegill sunfish appeared to facilitate bullfrog tadpole survival. Presence of carbaryl stimulated bullfrog tadpole mass and development. Our study demonstrates that the presence of a contaminant stress can alter community regulation by releasing prey from predators that are vulnerable to contaminants in some exposure scenarios.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

18.
Kishida O  Nishimura K 《Oecologia》2004,140(3):414-421
Predator induced morphological defenses are marked morphological shifts induced directly by cues associated with a predator. Generally, remote cues, i.e., chemical substances emitted from predators or injured conspecifics, are considered to be ideal signals to induce morphological change in aquatic environments rather than close cues, i.e., close chemical or tactile cues, since chemical substances that can propagate over relatively long distances and persist for a long period may allow organisms to keep safe and to deliberately change their morph. In fact, most organisms adopting an inducible morphological defense utilize remote chemical cues to detect predation risk and to produce morphological defenses. In this paper, we report a unique and functionally well designed inducible morphological defense strategy where the induction process requires close cues from a predator. The tadpoles of Rana pirica exhibited a bulgy bodied morphology when threatened with predation by larval salamanders, Hynobius retardatus, in close proximity. Predation trials and a function experiment showed that the induced bulgy morph is an adaptive defense phenotype against the gape-limited predator larval H. retardatus. Furthermore, R. pirica tadpoles use two adaptive strategies in terms of cost saving, i.e., adjustment of the extent of bulginess according to predation risk and reversibility by actual shrink of bulgy body after removing the predation threat. In general, R. pirica hatch earlier than H. retardatus. In natural ponds, during the early developmental stage R. pirica tadpoles live in close proximity to young H. retardatus larvae. As they grow, the salamanders gradually become serious predators and the predator–prey interaction becomes intimate. After a while, predation, cannibalism and metamorphosis decrease the number of salamanders in the ponds, and the predator–prey interaction weakens. Such a phenology in the predator–prey interaction allows the evolution of a close-cue detection system and adaptive cost-saving strategies. Our results highlight that the characteristics of the inducible defense depend on the intensity and specificity of the predator–prey system.  相似文献   

19.
Prey may experience ontogenetic changes in vulnerability to some predators, either because of changes in morphology or experience. If prey match their level of antipredator behavior to the level of predatory threat, prey responses to predators should reflect the appropriate level of threat for their stage of development. For larval salamanders, responses to predators may change with body size because larger larvae are less vulnerable to predation by gape‐limited predators or because fleeing responses by large salamanders may be more effective than for smaller salamanders. In a field experiment, small larval ringed salamanders, Ambystoma annulatum, responded to chemical stimuli (‘kairomones’) from predatory newts, Notophthalmus viridescens, with an antipredator response (decreased activity). Laboratory‐reared larvae decreased their activity following exposure to newt kairomones, indicating that larval ringed salamanders do not require experience with newts to recognize them as predators. In both experiments, larvae distinguished between chemical stimuli from newts and stimuli from tadpoles (non‐predators) and a blank control. In a third experiment, field‐caught (experienced) larvae showed a graded response to newt kairomones based on their body size: small larvae tended to decrease their activity while larger larvae showed no change or an increase in activity. This graded response was not observed for neutral stimuli, indicating that it is predator‐specific. Therefore, ringed salamander larvae exhibit threat‐sensitive ontogenetic changes in their response to chemical stimuli from predatory newts.  相似文献   

20.
Animals are exposed to different predators over their lifespan. This raises the question of whether exposure to predation risk in an early life stage affects the response to predators in subsequent life stages. In this study, we used wood frogs (Rana sylvatica) to test whether exposure to cues indicating predation risk from dragonfly larvae during the wood frog larval stage affected post‐metamorphic activity level and avoidance of garter snake chemical cues. Dragonfly larvae prey upon wood frogs only during the larval stage, whereas garter snakes prey upon wood frogs during both the larval stage and the post‐metamorphic stage. Exposure to predation risk from dragonflies during the larval stage caused post‐metamorphic wood frog juveniles to have greater terrestrial activity than juvenile wood frogs that were not exposed to larval‐stage predation risk from dragonflies. However, exposure to predation risk as larvae did not affect juvenile wood frog responses to chemical cues from garter snakes. Wood frogs exposed as larvae to predation risk from dragonfly larvae avoided garter snake chemical cues to the same extent as wood frog larvae not exposed to predation risk from dragonfly larvae. Our results demonstrate that while some general behaviors exhibit carry‐over effects from earlier life stages, behavioral responses to predators may remain independent of conditions experienced in earlier life stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号