首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Clinical treatments with typical antipsychotic drugs (APDs) are accompanied by extrapyramidal motor side-effects (EPS) such as hypokinesia and catalepsy. As little is known about electrophysiological substrates of such motor disturbances, we investigated the effects of a typical APD, α-flupentixol, on the motor behavior and the neuronal activity of the whole basal ganglia nuclei in the rat.

Methods and Findings

The motor behavior was examined by the open field actimeter and the neuronal activity of basal ganglia nuclei was investigated using extracellular single unit recordings on urethane anesthetized rats. We show that α-flupentixol induced EPS paralleled by a decrease in the firing rate and a disorganization of the firing pattern in both substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN). Furthermore, α-flupentixol induced an increase in the firing rate of globus pallidus (GP) neurons. In the striatum, we recorded two populations of medium spiny neurons (MSNs) after their antidromic identification. At basal level, both striato-pallidal and striato-nigral MSNs were found to be unaffected by α-flupentixol. However, during electrical cortico-striatal activation only striato-pallidal, but not striato-nigral, MSNs were found to be inhibited by α-flupentixol. Together, our results suggest that the changes in STN and SNr neuronal activity are a consequence of increased neuronal activity of globus pallidus (GP). Indeed, after selective GP lesion, α-flupentixol failed to induce EPS and to alter STN neuronal activity.

Conclusion

Our study reports strong evidence to show that hypokinesia and catalepsy induced by α-flupentixol are triggered by dramatic changes occurring in basal ganglia network. We provide new insight into the key role of GP in the pathophysiology of APD-induced EPS suggesting that the GP can be considered as a potential target for the treatment of EPS.  相似文献   

2.
The globus pallidus externus (GP) is a nucleus of the basal ganglia (BG), containing GABAergic projection neurons that arborize widely throughout the BG, thalamus and cortex. Ongoing work seeks to map axonal projection patterns from GP cell types, as defined by their electrophysiological and molecular properties. Here we use transgenic mice and recombinant viruses to characterize parvalbumin expressing (PV+) GP neurons within the BG circuit. We confirm that PV+ neurons 1) make up ~40% of the GP neurons 2) exhibit fast-firing spontaneous activity and 3) provide the major axonal arborization to the STN and substantia nigra reticulata/compacta (SNr/c). PV+ neurons also innervate the striatum. Retrograde labeling identifies ~17% of pallidostriatal neurons as PV+, at least a subset of which also innervate the STN and SNr. Optogenetic experiments in acute brain slices demonstrate that the PV+ pallidostriatal axons make potent inhibitory synapses on low threshold spiking (LTS) and fast-spiking interneurons (FS) in the striatum, but rarely on spiny projection neurons (SPNs). Thus PV+ GP neurons are synaptically positioned to directly coordinate activity between BG input nuclei, the striatum and STN, and thalamic-output from the SNr.  相似文献   

3.
Abstract: We investigated the effects of continuous intranigral perfusion of dopamine D1 and D2 receptor agonists and antagonists on the biotransformation of locally applied l -DOPA to dopamine in the substantia nigra of freely moving rats by means of in vivo microdialysis. The "dual-probe" mode was used to monitor simultaneously changes in extracellular dopamine levels in the substantia nigra and the ipsilateral striatum. Intranigral perfusion of 10 µ M l -DOPA for 20 min induced a significant 180-fold increase in extracellular nigral dopamine level. No effect of the intranigral l -DOPA administration was observed on dopamine levels in the ipsilateral striatum, suggesting a tight control of extracellular dopamine in the striatum after enhanced nigral dopamine levels. Continuous nigral infusion with the D1 receptor agonist CY 208243 (10 µ M ) and with the D2 receptor agonist quinpirole at 10 µ M (a nonselective concentration) attenuated the l -DOPA-induced increase in dopamine in the substantia nigra by 85 and 75%, respectively. However, perfusion of the substantia nigra with a lower concentration of quinpirole (1 µ M ) and the D1 antagonist SCH 23390 (10 µ M ) did not affect the nigral l -DOPA biotransformation. The D2 antagonist (−)-sulpiride (10 µ M ) also attenuated the l -DOPA-induced dopamine release in the substantia nigra to ∼10% of that of the control experiments. We confirm that there is an important biotransformation of l -DOPA to dopamine in the substantia nigra. The high concentrations of dopamine formed after l -DOPA administration may be the cause of dyskinesias or further oxidative stress in Parkinson's disease. Simultaneous administration of D1 receptor agonists with l -DOPA attenuates the biotransformation of l -DOPA to dopamine in the substantia nigra. The observed effects could occur via changes in nigral GABA release that in turn influence the firing rate of the nigral dopaminergic neurons.  相似文献   

4.
Dopamine (DA) receptors generate many cellular signals and play various roles in locomotion, motivation, hormone production, and drug abuse. According to the location and expression types of the receptors in the brain, DA signals act in either stimulatory or inhibitory manners. Although DA autoreceptors in the substantia nigra pars compacta are known to regulate firing activity, the exact expression patterns and roles of DA autoreceptor types on the firing activity are highly debated. Therefore, we performed individual correlation studies between firing activity and receptor expression patterns using acutely isolated rat substantia nigra pars compacta DA neurons. When we performed single-cell RT-PCR experiments, D(1), D(2)S, D(2)L, D(3), and D(5) receptor mRNA were heterogeneously expressed in the order of D(2)L > D(2)S > D(3) > D(5) > D(1). Stimulation of D(2) receptors with quinpirole suppressed spontaneous firing similarly among all neurons expressing mRNA solely for D(2)S, D(2)L, or D(3) receptors. However, quinpirole most strongly suppressed spontaneous firing in the neurons expressing mRNA for both D(2) and D(3) receptors. These data suggest that D(2) S, D(2)L, and D(3) receptors are able to equally suppress firing activity, but that D(2) and D(3) receptors synergistically suppress firing. This diversity in DA autoreceptors could explain the various actions of DA in the brain.  相似文献   

5.
Activation of metabotropic glutamate receptor 5 (mGluRs) in the subthalamic nucleus (STN) results in burst-firing activity of STN neurons, which is similar to that observed in Parkinson's disease (PD). We examined the effects of chronic and systemic treatment with 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, in firing activity of STN neurons in partially lesioned rats by 6-hydroxydopamine (6-OHDA). In 6-OHDA-lesioned rats treated with vehicle, injection of 6-OHDA (4 microg) into the medial forebrain bundle produced a partial lesion causing 36% loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc). The 6-OHDA lesion in vehicle-treated rats showed an increasing firing rate and a more irregular firing pattern of STN neurons. Whereas chronic, systemic treatment of MPEP (3 mg/kg/day, 14 days) produced neuroprotecive effects on the TH-ir neurons and normalized the hyperactive firing activity of STN neurons in 6-OHDA partially lesioned rats. These data demonstrate that partial lesion of the nigrostriatal pathway increases firing activity of STN neurons in the rat, and chronic, systemic MPEP treatment has the neuroprotective effect and reverses the abnormal firing activity of STN neurons, suggesting that MPEP has an important implication for the treatment of PD.  相似文献   

6.
Nigrostriatal dopaminergic neurons release dopamine from dendrites in substantia nigra and axon terminals in striatum. The cellular mechanisms for somatodendritic and axonal dopamine release are similar, but somatodendritic and nerve terminal dopamine release may not always occur in parallel. The current studies used in vivo microdialysis to simultaneously measure changes in dendritic and nerve terminal dopamine efflux in substantia nigra and ipsilateral striatum respectively, following intranigral application of various drugs by reverse dialysis through the nigral probe. The serotonin releasers (+/-)-fenfluramine (100 micro m) and (+)-fenfluramine (100 micro m) significantly increased dendritic dopamine efflux without affecting extracellular dopamine in striatum. The non-selective serotonin receptor agonist 1-(m-chlorophenyl)-piperazine (100 micro m) elicited a similar pattern of dopamine release in substantia nigra and striatum. NMDA (33 micro m) produced an increase in nigral dopamine of a similar magnitude to mCPP or either fenfluramine drug. However, NMDA also induced a concurrent increase in striatal dopamine. The D2 agonist quinpirole (100 micro m) had a parallel inhibitory effect on dopamine release from dendritic and terminal sites as well. Taken together, these data suggest that serotonergic afferents to substantia nigra may evoke dendritic dopamine release through a mechanism that is uncoupled from the impulse-dependent control of nerve terminal dopamine release.  相似文献   

7.
Zetidoline (ZET), a rather selective dopamine (DA) D2-receptor blocker, was found to be equipotent to haloperidol and over 300 times as potent as sulpiride in activating the firing rate of substantia nigra dopaminergic neurons (SN-DA neurons) in unanesthetized rats. Moreover, like classic and atypical neuroleptics, ZET reversed and prevented apomorphine-induced inhibition of SN-DA neurons.  相似文献   

8.

Background

The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson''s disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.

Principal Findings

In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABAA receptors were involved in this effect.

Significance

Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.  相似文献   

9.
目的:观察高频刺激丘脑底核(STN)对帕金森病(PD)大鼠模型纹状体 (STR)神经元自发放电的影响.方法:应用6-羟基多巴胺(6-OHDA)制备偏侧PD大鼠模型,丘脑底核区插入刺激电极进行高频刺激,采用细胞外单位记录的方法观察STR神经元自发放电频率的改变.结果:正常大鼠刺激后STR神经元反应主要以兴奋型反应为主, PD大鼠STR神经元反应主要以兴奋抑制型为主,且随着刺激时间的延长,抑制持续时间逐渐增加,持续时间与刺激时间密切相关(r=0.94).结论:刺激STN可使PD大鼠纹状体的异常放电得到改善,提示高频电刺激STN可作为一种有效的治疗PD的方法.  相似文献   

10.
Organic cation transporters (OCTs) are carrier-type polyspecific permeases known to participate in low-affinity extraneuronal catecholamine uptake in peripheral tissues. OCT3 is the OCT subtype most represented in the brain, yet its implication in central aminergic neurotransmission in vivo had not been directly demonstrated. In a detailed immunohistochemistry study, we show that OCT3 is expressed in aminergic pathways in the mouse brain, particularly in dopaminergic neurons of the substantia nigra compacta, non-aminergic neurons of the ventral tegmental area, substantia nigra reticulata (SNr), locus coeruleus, hippocampus and cortex. Although OCT3 was found mainly in neurons, it was also occasionally detected in astrocytes in the SNr, hippocampus and several hypothalamic nuclei. In agreement with this distribution, OCT3/Slc22a3-deficient mice show evidence of altered monoamine neurotransmission in the brain, with decreased intracellular content and increased turnover of aminergic transmitters. The behavioral characterization of these mutants reveal subtle behavioral alterations such as increased sensitivity to psychostimulants and increased levels of anxiety and stress. Altogether our data support a role of OCT3 in the homeostastic regulation of aminergic neurotransmission in the brain.  相似文献   

11.
Single unit recording and micropressure ejection techniques were used to investigate the actions of opiates on dopaminergic and non-dopaminergic neurons in the rat substantia nigra. Systemic administration of morphine, 1 to 4 mg/kg, led to a naloxone-reversible increase in firing rate of all zona compacta dopaminergic (ZC) neurons examined (n=10). In a specifically defined subpopulation of non-dopaminergic nigral zona reticulata (ZR) neurons, systemically administered morphine led to a naloxone reversible decrease in activity (n=9). D-Ala2-d-leu5 (DADL)-enkephalin, when applied directly onto ZC neurons by micropressure ejection techniques, had no effect on their firing rate. In contrast, micropressure ejection of DADL enkephalin onto ZR neurons produced a decrease in firing rate which was blocked by systemically administered naloxone. Morphine sulfate applied by pressure ejection onto both ZC and ZR neurons produced mixed results which were not always blocked by naloxone. These results suggest that one of the mechanisms by which opiates increase dopaminergic neurotransmission is through disinhibition of dopaminergic neurons in the substantia nigra.  相似文献   

12.
Clonidine regularizes substantia nigra dopamine cell firing   总被引:2,自引:0,他引:2  
J Grenhoff  T H Svensson 《Life sciences》1988,42(20):2003-2009
The effects of clonidine on the activity of single substantia nigra dopamine neurons were studied in the chloral hydrate anesthetized rat. Although clonidine did not affect the firing rate of the cells, it regularized the firing pattern and decreased burst firing at 2-8 micrograms kg-1 i.v. These effects were antagonized by the alpha 2-antagonist yohimbine. Yohimbine (1.0 mg kg-1) deregularized the firing pattern and increased the firing rate as well as the burst firing. The regularization produced by clonidine is discussed in terms of synaptic efficacy. The results might explain the therapeutic effects of clonidine in certain neuropsychiatric disorders.  相似文献   

13.
The substantia nigra pars reticulata (SNr) forms a principal output from the basal ganglia. It also receives significant histamine (HA) input from the tuberomammillary nucleus whose functions in SNr remain poorly understood. One identified role is the regulation of serotonin (5-HT) neurotransmission via the HA-H(3) receptor. Here we have explored regulation by another HA receptor expressed in SNr, the H(2)-receptor (H(2)R), by monitoring electrically evoked 5-HT release with fast-scan cyclic voltammetry at carbon-fiber microelectrodes in SNr in rat brain slices. Selective H(2)R antagonists (inverse agonists) ranitidine and tiotidine enhanced 5-HT release while the agonist amthamine suppressed release. The 'neutral' competitive antagonist burimamide alone was without effect but prevented ranitidine actions indicating that inverse agonist effects result from constitutive H(2)R activity independent of HA tone. H(2)R control of 5-HT release was most apparent (from inverse agonist effects) at lower frequencies of depolarization (< or = 20 Hz), and prevailed in the presence of antagonists of GABA, glutamate or H(3)-HA receptors. These data reveal that H(2)Rs in SNr are constitutively active and inhibit 5-HT release through H(2)Rs on 5-HT axons. These data may have therapeutic implications for Parkinson's disease, when SNr HA levels increase, and for neuropsychiatric disorders in which 5-HT is pivotal.  相似文献   

14.
Cannabinoid receptors are widely distributed in the nuclei of the extrapyramidal motor and mesolimbic reward systems; their exact functions are, however, not known. The aim of the present study was to characterize the effects of cannabinoids on the electrically evoked release of endogenous dopamine in the corpus striatum and the nucleus accumbens. In rat brain slices dopamine release elicited by single electrical pulses was determined by fast cyclic voltammetry. Dopamine release was markedly inhibited by the OP2 opioid receptor agonist U-50488 and the D2/D3 dopamine receptor agonist quinpirole, indicating that our method is suitable for studying presynaptic modulation of dopamine release. In contrast, the CB1/CB2 cannabinoid receptor agonists WIN55212-2 (10(-6) M) and CP55940 (10(-6)-10(-5) M) and the CB1 cannabinoid receptor antagonist SR141716A (10(-6) M) had no effect on the electrically evoked dopamine release in the corpus striatum and the nucleus accumbens. The lack of a presynaptic effect on terminals of nigrostriatal and mesolimbic dopaminergic neurons is in accord with the anatomical distribution of cannabinoid receptors: The perikarya of these neurons in the substantia nigra and the ventral tegmental area do not synthesize mRNA, and hence protein, for CB1 and CB2 cannabinoid receptors. It is therefore unlikely that presynaptic modulation of dopamine release in the corpus striatum and the nucleus accumbens plays a role in the extrapyramidal motor and rewarding effects of cannabinoids.  相似文献   

15.
Parkinson's disease is a common and severe debilitating neurological disease that results from massive and progressive degenerative death of dopamine neurons in the substantia nigra, but the mechanisms of neuronal degeneration and disease progression remains largely obscure. We are interested in possible implications of low-affinity p75 neurotrophin receptor (p75NTR), which may mediate neuronal apoptosis in the central nervous system, in triggering cell death of the nigral dopamine neurons. The RT-PCR and immunohistochemistry were carried out to detect if p75NTR is expressed in these nigral neurons and up-regulated by kainic acid (KA) insult in adult rats. It revealed p75NTR-positive immunoreactivity in the substantia nigra, and co-localization of p75NTR and tyrosine hydroxylase (TH) was found in a large number of substantia nigra neurons beside confirmation of p75NTR in the choline acetyltransferase (ChAT)-positive forebrain neurons. Cell count data further indicated that about 47-100% of TH-positive nigral neurons and 98-100% of ChAT-positive forebrain neurons express p75NTR. More interestingly, significant increasing in both p75NTR mRNA and p75NTR-positive neurons occurred rapidly following KA insult in the substantia nigra of animal model. The present study has provided first evidence on p75NTR expression and KA-inducing p75NTR up-regulation in substantia nigra neurons in rodent animals. Taken together with previous data on p75NTR functions in neuronal apoptosis, this study also suggests that p75NTR may play important roles in neuronal cell survival or excitotoxic degeneration of dopamine neurons in the substantia nigra in pathogenesis of Parkinson's disease in human beings.  相似文献   

16.
Khorevin  V. I.  Levchuk  T. E. 《Neurophysiology》2002,34(2-3):150-152
We demonstrate that dopamine itself, a selective dopamine D1 receptor agonist, SKF 38393, and a selective dopamine D2 receptor agonist, quinpirole, exert both facilitatory and suppressive effects on neuronal activity in the sensorimotor cortex of the cat, which is related to a conditioned movement. These effects are mediated by activation of dopamine receptors. Our data can be used for understanding the mechanisms underlying modulation of the excitability of central neurons during various behavioral events under the influence of dopamine.  相似文献   

17.
M Sasa  Y Ohno  S Takaori 《Life sciences》1988,43(3):263-269
The effects of a newly synthesized quinolinone derivative, 7-[3-(4-(2,3-dimethylphenyl)piperazinyl) propoxy]-2(1H)-quinolinone (OPC-4392) on neuronal activities of the caudate nucleus (CN) were investigated in cats anesthetized with alpha-chloralose using a microiontophoretic method. In the CN neurons of which spikes elicited by stimulation of the pars compacta of substantia nigra (SN) were suppressed by iontophoretically applied domperidone, a dopamine D-2 receptor antagonist, application of OPC-4392 (100-200 nA) inhibited the spike generation induced by SN stimulation. Conversely, the CN neurons insensitive to domperidone were unaffected by OPC-4392. Iontophoretic application of CPC-4392 up to 200 nA did not affect glutamate-induced firing of the CN neurons, of which the firing was blocked by dopamine less than 100 nA. In addition, OPC-4392 did not inhibit firing induced by bromocriptine, a dopamine D-2 agonist; while domperidone suppressed the bromocriptine-induced firing without affecting the glutamate-induced firing. These results suggest that OPC-4392 acts on the dopaminergic nerve terminals and inhibits excitatory transmission from the SN to the CN.  相似文献   

18.
19.
Microinjections of the GABA antagonist, bicuculline, where shown to selectively activate subthalamic neurons in the rat. Stimulation of subthalamic efferent pathways increased the neuronal discharge in the pallidal complex and pars reticulata of the substantia nigra. Most nigral dopaminergic neurons displayed a slight decrease in firing rate. According to these results, which are more coherent than those obtained through electrical stimulation, the subthalamic nucleus may be considered a source of tonic activation of the two output structures of the basal ganglia viz, pars reticulata of the substantia nigra and entopeduncular nucleus.  相似文献   

20.
The dopaminergic neurons of the substantia nigra pars compacta and ventral tegmental area play a crucial role in regulating movement and cognition respectively. Several lines of evidence suggest that a degeneration of dopaminergic cells in the substantia nigra produces the symptoms of Parkinson's disease. On the other hand, a hyperactivity of the dopaminergic transmission in the brain induces dyskinesia, dystonia and psychosis. It is also well established that the euphoric and rewarding responses evoked by drugs of addiction, such as amphetamine and cocaine, are mediated by central dopamine systems. Electrophysiological experiments which study the activity of single dopaminergic neurons in the ventral mesencephalon have shown that dopamine and dopaminergic drugs reduce the firing frequency of these cells. This is due to the stimulation of D2-D3 autoreceptors and to a hyperpolarization of the membrane produced by an increase in potassium conductance. In addition, substances which increase the release (amphetamine), the synthesis (levodopa) or block the uptake (cocaine, nomifensine, amineptine) of dopamine in the brain inhibit the firing activity of the dopaminergic cells throughout dopamine-mediated mechanisms. In this review, we will briefly examine the literature concerning the physiological and behavioural responses caused by dopamine and dopaminergic agents on the dopaminergic neurons of the ventral mesencephalon. Our conclusion suggests that the electrophysiological actions of dopamine and dopamine-related drugs on dopaminergic cells in the ventral mesencephalon might be indicative of the pharmacological effects of these agents on the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号