首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
把莱茵衣藻(Chlamydomonas reinhardtii)叶绿体作为生物反应器来表达外源基因具有广阔的应用前景。人们利用莱茵衣藻叶绿体表达体系已成功表达多种重组蛋白,其中包括人类药用蛋白。综述了莱茵衣藻叶绿体转化的方法、影响外源基因表达的主要因素以及外源基因在莱茵衣藻叶绿体表达研究进展。  相似文献   

2.
Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires the introduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins or metabolic pathways. In order to accomplish the expression of multiple genes in a single transformation event, we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonas reinhardtii chloroplast expression vector, resulting in papc-S. The constructed vector was then introduced into the chloroplast of C. reinhardtii by micro-particle bombardment. Polymerase chain reaction and Southern blot analysis revealed that the two genes had integrated into the chloroplast genome. Western blot and enzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria could be correctly expressed in the chloroplasts of C. reinhardtii. The expressed foreign protein in transformants accounted for about 2%-3% of total soluble proteins. These findings pave the way to the reconstitution of multi-subunit proteins or metabolic pathways in transgenic C. reinhardtii chloroplasts in a single transformation event.  相似文献   

3.
Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires theintroduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins ormetabolic pathways.In order to accomplish the expression of multiple genes in a single transformationevent,we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonasreinhardtii chloroplast expression vector,resulting in papc-S.The constructed vector was then introducedinto the chloroplast of C.reinhardtii by micro-particle bombardment.Polymerase chain reaction and Southernblot analysis revealed that the two genes had integrated into the chloroplast genome.Western blot andenzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria couldbe correctly expressed in the chloroplasts of C.reinhardtii.The expressed foreign protein in transformantsaccounted for about 2%-3% of total soluble proteins.These findings pave the way to the reconstitution ofmulti-subunit proteins or metabolic pathways in transgenic C.reinhardtii chloroplasts in a single transformationevent.  相似文献   

4.
The nuclear gene PsaD encodes an abundant chloroplast protein located on the stromal side of the Photosystem I complex. We have cloned and sequenced a genomic fragment containing the PsaD gene from the green alga Chlamydomonas reinhardtii. Sequence comparison with its cDNA revealed that the PsaD ORF contains no introns. Thus, the regulatory sequences required for high-level expression of PsaD must lie in the flanking promoter and untranslated regions. We used this genomic fragment to construct a vector that allows for high-level expression of endogenous and exogenous genes, as well as cDNAs that could not be expressed from existing vectors. It is also possible to use the PsaD transit sequence to target the expressed protein to the chloroplast compartment.  相似文献   

5.
莱茵衣藻(Chlamydomonas reinharditi)是一种遗传机制已研究比较清楚的模式植物。近年来,生物反应器是当今世界上各国生物技术研究的一个热点,随着生物技术的发展,已成功实现衣藻作为生物反应器生产重组蛋白及抗体,生产的部分产品已经实现了商品化,与其他生物反应器相比,其在外源基因表达水平和转基因植物安全性等方面有明显的优势,尤其是在控制转基因沉默和遗传稳定性方面展示了极大的优越性。因此,莱茵衣藻是一种具有很好发展前景的生物反应器,必将在未来的药用蛋白生物技术领域发挥重要作用。主要对提高基因在莱茵衣藻叶绿体中表达的策略,转化技术的特点及其未来的发展前景等方面进行了简单评述。  相似文献   

6.
Luciferase reporter genes have been successfully used in a variety of organisms to examine gene expression in living cells, but are yet to be successfully developed for use in chloroplast. Green fluorescent protein (gfp) has been used as a reporter of chloroplast gene expression, but because of high auto-fluorescence, very high levels of GFP accumulation are required for visualization in vivo. We have developed a luciferase reporter for chloroplast by synthesizing the two-subunit bacterial luciferase (lux)AB, as a single fusion protein in Chlamydomonas reinhardtii chloroplast codon bias. We expressed a chloroplast luciferase gene, luxCt, in C. reinhardtii chloroplasts under the control of the ATPase alpha subunit (atpA) or psbA promoter and 5' untranslated regions (UTRs) and the rubisco large subunit (rbcL) 3' UTR. We show that luxCt is a sensitive reporter of chloroplast gene expression, and that luciferase activity can be measured in vivo using a charge coupled device (CCD) camera or in vitro using a luminometer. We further demonstrate that luxCt protein accumulation, as measured by Western blot analysis, is proportional to luminescence, as determined both in vivo and in vitro, and that luxCt is capable of reporting changes in chloroplast gene expression during a dark to light shift. These data demonstrate the utility of the luxCt gene as a versatile and sensitive reporter of chloroplast gene expression in living cells.  相似文献   

7.
Reporter genes have been successfully used in chloroplasts of higher plants, and high levels of recombinant protein expression have been reported. Reporter genes have also been used in the chloroplast of Chlamydomonas reinhardtii, but in most cases the amounts of protein produced appeared to be very low. We hypothesized that the inability to achieve high levels of recombinant protein expression in the C. reinhardtii chloroplast was due to the codon bias seen in the C. reinhardtii chloroplast genome. To test this hypothesis, we synthesized a gene encoding green fluorescent protein (GFP) de novo, optimizing its codon usage to reflect that of major C. reinhardtii chloroplast-encoded proteins. We monitored the accumulation of GFP in C. reinhardtii chloroplasts transformed with the codon-optimized GFP cassette (GFPct), under the control of the C. reinhardtii rbcL 5'- and 3'-UTRs. We compared this expression with the accumulation of GFP in C. reinhardtii transformed with a non-optimized GFP cassette (GFPncb), also under the control of the rbcL 5'- and 3'-UTRs. We demonstrate that C. reinhardtii chloroplasts transformed with the GFPct cassette accumulate approximately 80-fold more GFP than GFPncb-transformed strains. We further demonstrate that expression from the GFPct cassette, under control of the rbcL 5'- and 3'-UTRs, is sufficiently robust to report differences in protein synthesis based on subtle changes in environmental conditions, showing the utility of the GFPct gene as a reporter of C. reinhardtii chloroplast gene expression.  相似文献   

8.
Chen HC  Melis A 《Planta》2004,220(2):198-210
Recent work [H.-C. Chen et al. (2003) Planta 218:98-106] reported on the genomic, proteomic, phylogenetic and evolutionary aspects of a putative nuclear gene ( SulP) encoding a chloroplast sulfate permease in the model green alga Chlamydomonas reinhardtii. In this article, evidence is provided for the envelope localization of the SulP protein and its function in the uptake and assimilation of sulfate by the chloroplast. Localization of the SulP protein in the chloroplast envelope was concluded upon isolation of C. reinhardtii chloroplasts, followed by fractionation into envelope and thylakoid membranes and Western blotting of these fractions with specific polyclonal antibodies raised against the recombinant SulP protein. The function of the SulP protein was probed in antisense transformants of C. reinhardtii having lower expression levels of the SulP gene. Results showed that cellular sulfate uptake capacity was lowered as a consequence of attenuated SulP gene expression in the cell, directly affecting rates of de novo protein biosynthesis in the chloroplast. The antisense transformants exhibited phenotypes of sulfate-deprived cells, displaying slow rates of light-saturated oxygen evolution, low levels of Rubisco in the chloroplast and low steady-state levels of the photosystem-II D1 reaction-center protein. The role of the chloroplast sulfate transport in the uptake and assimilation of sulfate in C. reinhardtii is discussed along with its impact on the repair of photosystem-II from a frequently occurring photo-oxidative damage and potential use for the elucidation of the H(2)-evolution-related metabolism in this green alga.  相似文献   

9.
Reverse-genetic studies of chloroplast genes in the green alga Chlamydomonas reinhardtii have been hampered by the paucity of suitable selectable markers for chloroplast transformation. We have constructed a series of vectors for the targeted insertion and expression of foreign genes in the Chlamydomonas chloroplast genome. Using these vectors we have developed a novel selectable marker based on the bacterial gene aphA-6, which encodes an aminoglycoside phosphotransferase. The aphA-6 marker allows direct selection for transformants on medium containing either kanamycin or amikacin. The marker can be used to inactivate or modify specific chloroplast genes, and can be used as a reporter of gene expression. The availability of this marker now makes possible the serial transformation of the chloroplast genome of Chlamydomonas. Received: 26 October 1999 / Accepted: 28 December 1999  相似文献   

10.
来源于Pyrococcusfuriosus的耐高温α-淀粉酶是一种重要的酒精工业用酶,在植物中表达耐高温α-淀粉酶可以大大降低用植物秸秆生产酒精的成本。选择衣藻叶绿体基因组同源片段clpP-trnL-petB-chlL-rpl23-rpl2和壮观霉素抗性基因,构建了来源于Pyrococcusfuriosus的耐高温α-淀粉酶基因的衣藻叶绿体表达载体p64A。通过基因枪将其导入衣藻叶绿体中,经壮观霉素抗性(100mg/L)筛选,获得了9个抗性衣藻转化子。转化子经过抗性继代筛选后,经PCR、Southernblot检测分析及暗培养,证实耐高温α-淀粉酶基因已整合到衣藻叶绿体基因组中并得到表达。酶活性检测表明,转基因衣藻表达产物具有耐高温α-淀粉酶活性,每克鲜重衣藻最高达77.5u。实验结果证明在植物叶绿体中表达工业酶制剂是可行的。  相似文献   

11.
Chloroplast-encoded genes, like nucleus-encoded genes, exhibit circadian expression. How the circadian clock exerts its control over chloroplast gene expression, however, is poorly understood. To facilitate the study of chloroplast circadian gene expression, we developed a codon-optimized firefly luciferase gene for the chloroplast of Chlamydomonas reinhardtii as a real-time bioluminescence reporter and introduced it into the chloroplast genome. The bioluminescence of the reporter strain correlated well with the circadian expression pattern of the introduced gene and satisfied all three criteria for circadian rhythms. Moreover, the period of the rhythm was lengthened in per mutants, which are phototactic rhythm mutants carrying a long-period gene in their nuclear genome. These results demonstrate that chloroplast gene expression rhythm is a bona fide circadian rhythm and that the nucleus-encoded circadian oscillator determines the period length of the chloroplast rhythm. Our reporter strains can serve as a powerful tool not only for analysis of the circadian regulation mechanisms of chloroplast gene expression but also for a genetic approach to the molecular oscillator of the algal circadian clock.  相似文献   

12.
We have used homologous recombination to disrupt the nuclear gene NIT8 in Chlamydomonas reinhardtii. This is the first report of targeted gene disruption of an endogenous locus in C. reinhardtii and only the second for a photosynthetic eukaryote. NIT8 encodes a protein necessary for nitrate and nitrite assimilation by C. reinhardtii. A disruption vector was constructed by placing the CRY1-1 selectable marker gene, which confers emetine resistance, within the NIT8 coding region. nit8 mutants are unable to grow on nitrate as their sole nitrogen source (Nit-) and are resistant to killing by chlorate. One of 2,000 transformants obtained after selection on emetine-chlorate medium contained a homologous insertion of five copies of the disruption plasmid into the NIT8 gene, producing an emetine-resistant, chlorate-resistant Nit- phenotype. The mutant phenotype was rescued by the wild-type NIT8 gene upon transformation. Seven other mutations at the nit8 locus, presumably resulting from homologous recombination with the disruption plasmid, were identified but were shown to be accompanied by deletions of the surrounding genomic region.  相似文献   

13.
14.
Microalgae are a diverse group of eukaryotic photosynthetic microorganisms. While microalgae play a crucial role in global carbon fixation and oxygen evolution, these organisms have recently gained much attention for their potential role in biotechnological and industrial applications, such as the production of biofuels. We investigated the potential of the microalga Chlamydomonas reinhardtii to be a platform for the production of human therapeutic proteins. C. reinhardtii is a unicellular freshwater green alga that has served as a popular model alga for physiological, molecular, biochemical and genetic studies. As such, the molecular toolkit for this microorganism is highly developed, including well-established methods for genetic transformation and recombinant gene expression. We transformed the chloroplast genome of C. reinhardtii with seven unrelated genes encoding for current or potential human therapeutic proteins and found that four of these genes supported protein accumulation to levels that are sufficient for commercial production. Furthermore, the algal-produced proteins were bioactive. Thus, the microalga C. reinhardtii has the potential to be a robust platform for human therapeutic protein production.  相似文献   

15.
The light-independent pathway of chlorophyll synthesis which occurs in some lower plants and algae is still largely unknown. We have characterized a chloroplast mutant, H13, of Chlamydomonas reinhardtii which is unable to synthesize chlorophyll in the dark and is also photosystem I deficient. The mutant has a 2.8 kb deletion as well as other rearrangements of its chloroplast genome. By performing particle gun mediated chloroplast transformation of H13 with defined wild-type chloroplast DNA fragments, we have identified a new chloroplast gene, chlN, coding for a 545 amino acid protein which is involved in the light-independent accumulation of chlorophyll, probably at the step of reduction of protochlorophyllide to chlorophyllide. The chlN gene is also found in the chloroplast genomes of liverwort and pine, but is absent from the chloroplast genomes of tobacco and rice.  相似文献   

16.
17.
A chloroplast-encoded gene, designated chlB, has been isolated from Chlamydomonas reinhardtii, its nucleotide sequence determined, and its role in the light-independent reduction of protochlorophyllide to chlorophyllide demonstrated by gene disruption experiments. The C. reinhardtii chlB gene is similar to open reading frame 563 (orf563) of C. moewusii, and its encoded protein is a homolog of the Rhodobacter capsulatus bchB gene product that encodes one of the polypeptide components of bacterial light-independent protochlorophyllide reduction. To determine whether the chlB gene product has a similar role in light-independent protochlorophyllide reduction in this alga, a series of plasmids were constructed in which the aadA gene conferring spectinomycin resistance was inserted at three different sites within the chlB gene. The mutated chlB genes were introduced into the Chlamydomonas chloroplast genome using particle gun-mediated transformation, and homoplasmic transformants containing the disrupted chlB genes were selected on the basis of conversion to antibiotic resistance. Individual transformed strains containing chlB disruptions were grown in the dark or light, and 17 of the 18 strains examined were found to have a "yellow-in-the-dark" phenotype and to accumulate the chlorophyll biosynthetic precursor protochlorophyllide. RNA gel blot analysis of chlB gene expression in wild-type cells indicated that the gene was transcribed at low levels in both dark- and light-grown cells. The results of these studies support the involvement of the chlB gene product in light-independent protochlorophyllide reduction, and they demonstrate that, similar to its eubacterial predecessors, this green alga requires at least three components (i.e., chlN, chlL, and chlB) for light-independent protochlorophyllide reduction.  相似文献   

18.
降低细胞内的氧气含量是提高莱茵衣藻产氢效率的重要手段之一。本研究首次尝试将豆血红蛋白基因lba转入衣藻叶绿体中表达,利用豆血红蛋白具有与氧可逆结合的特性,期望降低转基因衣藻细胞内的氧气含量,达到提高衣藻产氢效率的目的。实验结果证明,lba成功转入到衣藻叶绿体中,且对其生长没有产生显著影响,这为下一步调控Lba在衣藻叶绿体中表达活性和提高衣藻产氢效率奠定了实验基础。  相似文献   

19.
Unusual chloroplast transformants of Chlamydomonas reinhardtii that contain 2000 copies of a mutant version of the chloroplast atpB gene, maintained as an extrachromosomal tandem repeat, have recently been described. In this paper studies have been undertaken to (i) address possible mechanisms for generating and maintaining the amplified DNA and (ii) determine whether it is possible to use chloroplast gene amplification to overexpress chloroplast or foreign genes. Data presented here indicate that high copy number transformants harbor characteristic rearrangements in both copies of the chloroplast genome large inverted repeat. These rearrangements appear to be a consequence of, or required for, maintenance of the amplified DNA. In an attempt to mimic the apparently autonomous replication of extrachromosomal DNA in the chloroplast, transformation was carried out with a plasmid that lacked homology with the chloroplast genome or with the same plasmid carrying a putative chloroplast DNA replication origin ( oriA ). Transformants were recovered only with the plasmid containing oriA , and all transformants contained an integrated plasmid copy at oriA , suggesting that establishment or maintenance of the extrachromosomal tandem repeat requires conditions that were not replicated in this experiment. To determine whether other genes could be maintained at high copy number in the chloroplast, plasmids carrying the wild-type atpB gene or the bacterial aadA gene were introduced into a high copy number transformant. Surprisingly, the copy number of the plasmid tandem repeat declined rapidly after the secondary transformation events, even when strong selective pressure for the introduced gene was applied. Thus, chloroplast transformation can either create or destabilize high copy number tandem repeats.  相似文献   

20.
Codon use and the rate of divergence of land plant chloroplast genes   总被引:2,自引:0,他引:2  
Codon fitnesses for chloroplast genes were estimated using the relative synonymous codon use of psbA, which has a different pattern of codon use than other chloroplast genes and is the major translation product of the chloroplast. These estimates were used to calculate the codon adaptation index (CAI) of chloroplast genes from Marchantia polymorpha, Nicotiana tabacum, and Chlamydomonas reinhardtii. The genes with the highest CAI values in M. polymorpha correspond to those that are expressed at the highest levels. The rate of divergence between M. polymorpha and both C. reinhardtii and N. tabacum is inversely related to the CAI value of the M. polymorpha gene. The data suggest that selection is acting on the synonymous codon use of the highly expressed genes of the M. polymorpha chloroplast genome. The data set is inconclusive about N. tabacum genes, but, as there is a weaker correspondence between CAI value and expression level, it suggests that selection is not operating in this lineage.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号