首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.  相似文献   

2.
Often associated to the colonization by Candida spp. biofilm, the catheter-related infections are a serious health problem since the absence of a specific therapy. Hence, the main objective of this work was to evaluate the activity of 8-hydroxyquinoline and quinazoline derivatives on Candida spp. biofilms. A quinazoline derivative (PH100) and an 8-hydroxyquinoline derivative (PH157) were tested against nine strains of C. albicans, C. tropicalis and C. parapsilosis, and their biofilms in polystyrene microtitre plates and on polyurethane central venous catheter. The PH157 compound was incorporated into a film-forming system-type formulation and its capacity to inhibit biofilm formation on catheters was evaluated. The compounds were active against planktonic and sessile cells, as well as against the tested biofilms. PH157 compound performed better than the PH100 compound. The formulation containing PH157 presented results very similar to those of the compound in solution, which indicates that its activity was preserved. Both compounds showed activity against Candida spp. strains and their biofilm, with better PH157 activity. The formulation preserved the action of the PH157 compound, in addition, it facilitates its application on the catheter. The structural modifications that these compounds allow can generate compounds that are even more active, both against planktonic cells and biofilms.  相似文献   

3.
AIMS: To determine the effect of a composition comprising ovotransferrin (OT), protamine sulfate (PS) and ethylenediaminetetraacetic acid (EDTA) on biofilm formation by catheter-associated bacteria. METHODS AND RESULTS: The in vitro activity of OT, PS and EDTA alone and in combinations against biofilm formation by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Enterococcus faecalis and Staphylococcus epidermidis was investigated. All the three compounds either alone or in combinations failed to inhibit the growth completely at the concentrations tested. However, the subinhibitory concentrations of three compounds in a composition showed synergistic inhibitory effect on biofilm formation by K. pneumoniae, Ps. aeruginosa and S. epidermidis. Furthermore, 79-95% reduction in Ps. aeruginosa and S. epidermidis biofilm formation was observed in a clear vinyl urinary catheter treated with the composition. CONCLUSION: The subinhibitory concentrations of OT, PS and EDTA in a composition were effective in reducing biofilm formation by catheter-associated bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that a synergistic composition-comprising non-antibiotic generally regarded as safe (GRAS) compounds such as OT, PS and EDTA may be used in the prevention of catheter-related infections.  相似文献   

4.
《Phytomedicine》2014,21(3):286-289
Resveratrol, a phytochemical commonly found in the skin of grapes and berries, was tested for its biofilm inhibitory activity against Vibrio cholerae. Biofilm inhibition was assessed using crystal violet assay. MTT assay was performed to check the viability of the treated bacterial cells and the biofilm architecture was analysed using confocal laser scanning microscopy. The possible target of the compound was determined by docking analysis. Results showed that subinhibitory concentrations of the compound could significantly inhibit biofilm formation in V. cholerae in a concentration-dependent manner. AphB was found to be the putative target of resveratrol using docking analysis. The results generated in this study proved that resveratrol is a potent biofilm inhibitor of V. cholerae and can be used as a novel therapeutic agent against cholera. To our knowledge, this is the first report of resveratrol showing antibiofilm activity against V. cholerae.  相似文献   

5.
6.
With the goal of discovering new anti-infective agents active against microbial biofilms, this investigation focused on some natural pyrrolomycins, a family of halogenated pyrrole antibiotics. In this study the anti-staphylococcal biofilm activity of pyrrolomycins C, D, F1, F2a, F2b, F3 and of the synthesized related compounds I, II, III were investigated. The susceptibility of six staphylococcal biofilms was determined by methyltiazotetrazolium staining. Most of the compounds were active at concentrations of 1.5 μg ml?1 with significant inhibition percentages. A few of the compounds were active at the lowest screening concentration of 0.045 μg ml?1. The population log reduction of activity against the two best biofilm forming Staphylococcus aureus strains as determined by viable plate counts is also reported. In order to adequately assess the utility of these compounds, their toxicity against human cells was evaluated. It is concluded that pyrrolomycins and synthetic derivatives are promising compounds for developing novel effective chemical countermeasures against staphylococcal biofilms.  相似文献   

7.
Several molecules have been discovered that interfere with formation of bacterial biofilms, opening a new strategy for the development of more efficient treatments in case of antibiotic resistant bacteria. Amongst the most active compounds are some natural brominated furanones from marine algae Delisea pulchra that have proven to be able to control pathogenic biofilms. We have recently reported that some rubrolide analogues are able to inhibit biofilm formation of Enterococcus faecalis. In the present Letter we describe results of the biological evaluation of a small library of 28 compounds including brominated furanones and the corresponding lactams against biofilm formation of Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis and Streptococcus mutans. Our results showed that in general these compounds were more active against biofilms of S. epidermidis and P. aeruginosa, with little or no inhibition of planktonic bacterial growth. In some cases they were able to prevent biofilm formation of P. aeruginosa at concentrations as low as 0.6 μg/mL (1.3 μM, compound 3d) and 0.7 μg/mL (1.3 μM, 3f). Results also indicate that, in general, lactams are more active against biofilms than their precursors, thus designating this class of molecules as good candidates for the development of a new generation of antimicrobial drugs targeted to biofilm inhibition.  相似文献   

8.
Abstract

Bacteriocins are small peptides that can inhibit the growth of a diverse range of microbes. There is a need to identify bacteriocins that are effective against biofilms of resistant clinical strains. The present study focussed on the efficacy of purified nisin like bacteriocin-GAM217 against extended spectrum β-lactamase (ESBL) and metallo-beta-lactamase (MBL) producing clinical strains. Bacteriocin-GAM217 when combined with curcumin and cinnamaldehyde, synergistically enhanced antibacterial activity against planktonic and biofilm cultures of Staphylococcus epidermidis and Escherichia coli. Bacteriocin-GAM217 and phytochemical combinations inhibited biofilm formation by >80%, and disrupted the biofilm for selected ESBL and MBL producing clinical strains. The anti-adhesion assay showed that these combinatorial compounds significantly lowered the attachment of bacteria to Vero cells and that they elicited membrane permeability and rapid killing as viewed by confocal microscopy. This study demonstrates that bacteriocin-GAM217 in combination with phytochemicals can be a potential anti-biofilm agent and thus has potential for biomedical applications.  相似文献   

9.
The automated docking program DOCK 5.3.0 was applied to screening for quorum sensing inhibitors (QSIs) of Peudomonus aeruginosa from a database containing 51 active components of Traditional Chinese Medicines with antibacterial activity. Five potential QSIs were revealed by the computer-based virtual screening. The compounds 3, 4, 5, 6, 7 inhibit biofilm formation of P. aeruginosa at a concentration of 200 μM. Compound 4 (baicalein) does not inhibit the growth of P. aeruginosa; however, it significantly inhibits biofilm formation of the bacteria at a lower concentration of 20 μM and promoted proteolysis of the signal receptor TraR protein in Escherichia coli at 4–40 mM. Baicalein and ampicillin showed synergistic activity against P. aeruginosa. These results suggested that baicalein can interfere with quorum sensing system of P. aeruginosa and will be developed as antibacterial agent with novel target.  相似文献   

10.
Yi Wang  Sui M. Lee 《Biofouling》2013,29(3):307-318
Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ~3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.  相似文献   

11.
The antifouling (AF) potential of the serine protease Esperase HPF (subtilisin) was evaluated for the ability to prevent the formation of a four-species bacterial biofilm. The effects of enzyme activity, time and application of the enzyme were tested on the density and the oxidative metabolism of biofilm developed in microtiter wells. Esperase HPF did not inhibit the oxidative metabolism of the bacterial biofilm or planktonic growth, but the enzyme inhibited biofilm formation by its proteolytic activity as inactivated enzyme had no effect. The effective enzyme concentration was determined over a period of 72 h, as by then all the tested concentrations inhibited biofilm formation maximally. The effective concentrations of the enzymes in solution were the same regardless of time of application (ie before or after biofilm formation), but immobilisation of the enzymes caused a lower effective concentration. Esperase HPF is an attractive alternative to the biocidal compounds used in AF coatings today.  相似文献   

12.

Diabetes is considered as a major health concern worldwide and patients with diabetes are at high risk for infectious diseases. Therefore, α-glucosidase inhibitors possessing antibacterial activity along with the ability to inhibit biofilms would be better therapeutic agents for diabetic patients. In the present study, two fractions (AF1 and AF2) possessing α-glucosidase inhibitory activity were purified from an endophytic fungus Alternaria destruens (AKL-3) isolated from Calotropis gigantea. These were evaluated for their antimicrobial and antibiofilm potential against human pathogens. AF1 exhibited broad spectrum antimicrobial activity against all the tested pathogens. It also significantly inhibited biofilm formation and dispersed the preformed biofilm at sub-optimal concentrations. AF2 possessed lesser activity as compared to AF1. The active compounds were purified using semi preparative HPLC. Some of the active compounds were identified to be phenolic in nature. The active fractions were also determined to be non-mutagenic and non-cytotoxic in safety analysis. The study highlights the role of endophytic fungi as sources of α-glucosidase inhibitors with antimicrobial potential which can have application in management of diabetes.

  相似文献   

13.
Bacterial biofilms are defined as a community of surface-attached bacteria that are protected by an extracellular matrix of biomolecules. We have recently reported the synthesis of a small molecule, denoted TAGE, based on the natural product bromoageliferin and demonstrated that TAGE has anti-biofilm activity against Pseudomonas aeruginosa. Herein we demonstrate that TAGE: (1) does not have selective toxicity against cells within the biofilm state, (2) will inhibit biofilm development under flow conditions, indicating that the CV staining protocol correlates with the ability to be active under biomimetic conditions, and (3) will disperse preformed P. aeruginosa biofilms. We also present preliminary toxicity work that indicates that TAGE is devoid of cytotoxicity in rat and mice cell lines. Advanced derivatives of TAGE have generated compounds shown to be exceedingly effective as biofilm inhibitors against the gamma-proteobacteria in this study (P. aeruginosa strains PAO1, PA14, PDO300, and Acinetobacter baumannii). TAGE derivatives also possessed anti-biofilm activity against the beta-proteobacterium Bordetella bronchiseptica (Rb50) and the Gram-positive bacterium Staphylococcus aureus;TAGE derivatives inhibited the formation of biofilms, however, some of this activity is attributed to microbicidal activity. The TAGE derivatives presented in this study, however, do not disperse pre-formed biofilms with the same efficiency as TAGE.  相似文献   

14.
We outline the synthesis of six novel derivatives that are based on a recently discovered HDAC inhibitor FR235222. Our work is the first report utilizing a novel binding element, guanidine, as metal coordinators in HDAC inhibitors. Further, we demonstrate that these compounds show cytotoxicity that parallels their ability to inhibit deacetylase activity, and that the most potent compounds maintain an L-Phe at position 1, and a D-Pro at position 4. Both inhibition of HDAC activity and cytotoxicity against the pancreatic cancer cell line BxPC3 are exhibited by these compounds, establishing that a guanidine unit can be utilized successfully to inhibit HDAC activity.  相似文献   

15.
Streptococcus pyogenes biofilms tend to exhibit significant tolerance to antimicrobials during infections. We screened coral-associated actinomycetes (CAA) for antibiofilm activity against different biofilm forming M serotype of Streptococcus pyogenes. Actinomycetes isolated from the mucus of the coral Acropora digitifera were screened for antibiofilm activity against S. pyogenes biofilms wherein several isolates clearly demonstrated antibiofilm activity. The biofilm inhibitory concentrations (BICs) and the sub-BICs (1/2 and 1/4 BIC) of the extracts significantly prevented biofilm formation up to 60–80%. The extract of Streptomyces akiyoshinensis (A3) displayed efficient antibiofilm activity against all the biofilm forming M serotypes. All the five extracts efficiently reduced the cell surface hydrophobicity (a crucial factor for biofilm formation in S. pyogenes) of three M types and thus may inhibit biofilm formation. CAA represent an interesting source of marine invertebrates-derived antibiofilm agents in the development of new strategies to combat Streptococcal biofilms.  相似文献   

16.
Plants produce many compounds that are biologically active, either as part of their normal program of growth and development or in response to pathogen attack or stress. Traditionally, Anadenanthera colubrina, Commiphora leptophloeos and Myracrodruon urundeuva have been used by communities in the Brazilian Caatinga to treat several infectious diseases. The ability to impair bacterial adhesion represents an ideal strategy to combat bacterial pathogenesis, because of its importance in the early stages of the infectious process; thus, the search for anti-adherent compounds in plants is a very promising alternative. This study investigated the ability of stem-bark extracts from these three species to control the growth and prevent biofilm formation of Pseudomonas aeruginosa, an important opportunistic pathogen that adheres to surfaces and forms protective biofilms. A kinetic study (0–72 h) demonstrated that the growth of extract-treated bacteria was inhibited up to 9 h after incubation, suggesting a bacteriostatic activity. Transmission electron microscopy and fluorescence microscopy showed both viable and nonviable cells, indicating bacterial membrane damage; crystal violet assay and scanning electron microscopy demonstrated that treatment strongly inhibited biofilm formation during 6 and 24 h and that matrix production remained impaired even after growth was restored, at 24 and 48 h of incubation. Herein, we propose that the identified (condensed and hydrolyzable) tannins are able to inhibit biofilm formation via bacteriostatic properties, damaging the bacterial membrane and hindering matrix production. Our findings demonstrate the importance of this abundant class of Natural Products in higher plants against one of the most challenging issues in the hospital setting: biofilm resilience.  相似文献   

17.
The aim of this study was to identify novel biofilm inhibitors from actinomycetes isolated from the Arctic against Vibrio cholerae, the causative agent of cholera. The biofilm inhibitory activity of actinomycetes was assessed using biofilm assay and was confirmed using air–liquid interphase coverslip assay. The potential isolates were identified using 16S rRNA gene sequencing. Of all, three isolates showed significant biofilm inhibition against V. cholerae. The results showed that 20% of the actinomycetes culture supernatant could inhibit up to 80% of the biofilm formation. When different extracted fractions were assessed, significant biofilm inhibition activity was only seen in the diethyl ether fraction of A745. At 200 μg ml−1 of diethyl ether fraction, 60% inhibition of V. cholerae biofilm was observed. The two potential isolates were found to be Streptomyces sp. and one isolate belonged to Nocardiopsis sp. This is the first report showing a Streptomyces sp. and Nocardiopsis sp. isolated from the Arctic having a biofilm inhibitory activity against V. cholerae. The spread of drug resistant V. cholerae strains is a major clinical problem and the ineffectiveness in antibiotic treatment necessitates finding new modes of prevention and containment of the disease, cholera. The formation of biofilms during the proliferation of V. cholerae is linked to its pathogenesis. Hence, the bioactive compound from the culture supernatant of the isolates identified in this study may be a promising source for the development of a potential quorum sensing inhibitors against V. cholerae.  相似文献   

18.
Biofilm formation by pathogenic bacteria is an important virulence factor in the development of numerous chronic infections, thereby causing a severe health burden. Many of these infections cannot be resolved, as bacteria in biofilms are resistant to the host’s immune defenses and antibiotic therapy. An urgent need for new strategies to treat biofilm-based infections is critically needed. Cyclic di-GMP (c-di-GMP) is a widely conserved second-messenger signal essential for biofilm formation. The absence of this signalling system in higher eukaryotes makes it an attractive target for the development of new anti-biofilm agents. In this study, the results of an in silico pharmacophore-based screen to identify small-molecule inhibitors of diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP are described. Four small molecules, LP 3134, LP 3145, LP 4010 and LP 1062 that antagonize these enzymes and inhibit biofilm formation by Pseudomonas aeruginosa and Acinetobacter baumannii in a continuous-flow system are reported. All four molecules dispersed P. aeruginosa biofilms and inhibited biofilm development on urinary catheters. One molecule dispersed A. baumannii biofilms. Two molecules displayed no toxic effects on eukaryotic cells. These molecules represent the first compounds identified from an in silico screen that are able to inhibit DGC activity to prevent biofilm formation.  相似文献   

19.
In order to discover novel probes that may help in the investigation and the control of bacterial biofilms, we have designed a library of triazole-based analogs of 2-aminoimidazole marine alkaloids: naamine A and isonaamine A. Twenty-two compounds were screened for their biofilm inhibitory activity against two strains of Gram-negative bacteria. Four compounds were shown to act as non-toxic inhibitors of biofilm development without effect on bacterial growth even at high concentrations (100 μM).  相似文献   

20.
Streptococcus pyogenes is the frequent cause of purulent infections in humans. Formation of a biofilm is one of the important aspects of its pathogenicity. Streptococcus pyogenes biofilm communities tend to exhibit significant tolerance to antimicrobial challenge during infections. Exploring novel targets against biofilm-forming pathogens is therefore an important alternative treatment measure. We attempted to screen marine bacteria, especially coral-associated bacteria (CAB), for antibiofilm activity against streptococcal biofilm formation. The bacterial biofilms were quantified by crystal violet staining. Of 43 CAB isolates, nine clearly demonstrated antibiofilm activity. At biofilm inhibitory concentrations (BIC), biofilm formation was reduced up to 80%, and sub-BIC (0.5 and 0.25 BIC) significantly reduced biofilm formation by up to 60% and 40–60%, respectively. Extracts of Bacillus horikoshii (E6) displayed efficient antibiofilm activity. As quorum sensing (QS) and cell surface hydrophobicity (CSH) are crucial factors for biofilm formation in S. pyogenes , the CAB were further screened for QS inhibition properties and CSH reduction properties. This study reveals the antibiofilm and QS inhibition property of CAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号