首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
For most plant hormones, biological activity is suppressed by reversible conjugation to sugars, amino acids and other small molecules. In contrast, the conjugation of jasmonic acid (JA) to isoleucine (Ile) is known to enhance the activity of JA. Whereas hydroxylation and carboxylation of JA‐Ile permanently inactivates JA‐Ile‐mediated signaling in plants, the alternative deactivation pathway of JA‐Ile by its direct hydrolysis to JA remains unstudied. We show that Nicotiana attenuata jasmonoyl‐l ‐isoleucine hydrolase 1 (JIH1), a close homologue of previously characterized indoleacetic acid alanine resistant 3 (IAR3) gene in Arabidopsis, hydrolyzes both JA‐Ile and IAA‐Ala in vitro. When the herbivory‐inducible NaJIH1 gene was silenced by RNA interference, JA‐Ile levels increased dramatically after simulated herbivory in irJIH1, compared with wild‐type (WT) plants. When specialist (Manduca sexta) or generalist (Spodoptera littoralis) herbivores fed on irJIH1 plants they gained significantly less mass compared with those feeding on wild‐type (WT) plants. The poor larval performance was strongly correlated with the higher accumulation of several JA‐Ile‐dependent direct defense metabolites in irJIH1 plants. In the field, irJIH1 plants attracted substantially more Geocoris predators to the experimentally attached M. sexta eggs on their leaves, compared with empty vector plants, which correlated with higher herbivory‐elicited emissions of volatiles known to function as indirect defenses. We conclude that NaJIH1 encodes a new homeostatic step in JA metabolism that, together with JA and JA‐Ile‐hydroxylation and carboxylation of JA‐Ile, rapidly attenuates the JA‐Ile burst, allowing plants to tailor the expression of direct and indirect defenses against herbivore attack in nature.  相似文献   

2.
3.
4.
Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant‐mediated indirect competitive interactions are well described, and the co‐existence of herbivores from different feeding guilds is common, the mechanisms of co‐existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. Tmucorea attack elicited jasmonic acid (JA) and jasmonoyl‐l ‐isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000‐fold to levels 6‐fold higher than leaf levels after Tmucorea attack; these increases in pith CGA levels, which did not occur in Msexta‐attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against Tmucorea attack, but not against leaf chewers or sucking insects. Tmucorea attack does not systemically activate JA signaling in leaves, while Msexta leaf‐attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue‐localized defense responses allow tissue‐specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant.  相似文献   

5.
  • Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown.
  • We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses.
  • Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations.
  • Feeding by multiple herbivores differentially activates plant defences, which has plant‐mediated negative consequences for a subsequently arriving herbivore. Plant population‐specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
  相似文献   

6.
Automated and manual annotation of the ATP binding cassette (ABC) superfamily in the Phytophthora ramorum and P. sojae genomes has identified 135 and 136 members, respectively, indicating that this family is comparable in size to the Arabidopsis thaliana and rice genomes, and significantly larger than that of two fungal pathogens, Fusarium graminearum and Magnaporthe grisea. The high level of synteny between these oomycete genomes extends to the ABC superfamily, where 108 orthologues were identified by phylogenetic analysis. The largest subfamilies include those most often associated with multidrug resistance. The P. ramorum genome contains 22 multidrug resistance-associated protein (MRP) genes and 49 pleiotropic drug resistance (PDR) genes, while P. sojae contains 20 MRP and 49 PDR genes. Tandem duplication events in the last common ancestor appear to account for much of the expansion of these subfamilies. Recent duplication events in the PDR and ABCG families in both the P. ramorum and the P. sojae genomes indicate that selective expansion of ABC transporters may still be occurring. In other kingdoms, subfamilies define both domain arrangements and proteins having a common phylogenetic origin, but this is not the case for several subfamilies in oomycetes. At least one ABCG type transporter is derived from a PDR transporter, while transporters in the ABCB-half family cluster with transporters from bacterial, plant, and metazoan genomes. Additional examples of transporters that appear to be derived from horizontal transfer events from bacterial genomes include components of transporters associated with iron uptake and DNA repair. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
9.
  • Mutualistic (e.g. pollination) and antagonistic (e.g. herbivory) plant–insect interactions shape levels of plant fitness and can have interactive effects.
  • By using experimental plots of Brassica rapa plants infested with generalist (Mamestra brassicae) and specialised (Pieris brassicae) native herbivores and with a generalist invasive (Spodoptera littoralis) herbivore, we estimated both pollen movement among treatments and the visiting behaviour of honeybees versus other wild pollinators.
  • Overall, we found that herbivory has weak effects on plant pollen export, either in terms of inter‐treatment movements or of dispersion distance. Plants infested with the native specialised herbivore tend to export less pollen to other plants with the same treatment. Other wild pollinators preferentially visit non‐infested plants that differ from those of honeybees, which showed no preferences. Honeybees and other wild pollinators also showed different behaviours on plants infested with different herbivores, with the former tending to avoid revisiting the same treatment and the latter showing no avoidance behaviour. When taking into account the whole pollinator community, i.e. the interactive effects of honeybees and other wild pollinators, we found an increased avoidance of plants infested by the native specialised herbivore and a decreased avoidance of plants infested by the invasive herbivore.
  • Taken together, our results suggest that herbivory may have an effect on B. rapa pollination, but this effect depends on the relative abundance of honeybees and other wild pollinators.
  相似文献   

10.
Five asparagus cultivars, three breeding lines and the wild relative Asparagus amarus were tested for natural infection by Asparagus virus 1 (AV‐1) in experimental fields at two locations over 3 and 4 years, respectively. In the first year after re‐planting the annual crowns in the field, more than 90% of tested plants of cultivars were infected by AV‐1. In the third and fourth year, 100% of tested plants of cultivars were AV‐1 infected. In comparison, all plants of the wild relative A. amarus were completely free of AV‐1, suggesting a high level of resistance. Additionally, 1‐year‐old glasshouse‐cultivated plants of A. officinalis and A. amarus were placed in an AV‐1 provocation cabin under field conditions. Seven months later, 100% of the A. officinalis plants showed a high virus concentration in ELISA, whereas no AV‐1 was detectable in the A. amarus plants. This result was confirmed by highly sensitive AV‐1‐specific RT‐PCR. To exclude vector resistance, the feeding behaviour of green peach aphid Myzus persicae was tested over 12 h using the electrical penetration graph method. Both asparagus genotypes were accepted by the aphids as potential hosts, but the feeding time was significantly longer on A. amarus. A genetic distance analysis of the various cultivars of Asparagus officinalis and selected wild relatives of the JKI collection was carried out, resulting in a clear discrimination of cultivars and wild relatives, especially A. amarus. The potential breeding value of the putative resistance carrier is discussed.  相似文献   

11.
In order to obtain insights into the regulatory pathways controlling phloem development, we characterized three genes encoding membrane proteins from the G sub‐family of ABC transporters (ABCG9, ABCG11 and ABCG14), whose expression in the phloem has been confirmed. Mutations in the genes encoding these dimerizing ‘half transporters’ are semi‐dominant and result in vascular patterning defects in cotyledons and the floral stem. Co‐immunoprecipitation and bimolecular fluorescence complementation experiments demonstrated that these proteins dimerize, either by flexible pairing (ABCG11 and ABCG9) or by forming strict heterodimers (ABCG14). In addition, metabolome analyses and measurement of sterol ester contents in the mutants suggested that ABCG9, ABCG11 and ABCG14 are involved in lipid/sterol homeostasis regulation. Our results show that these three ABCG genes are required for proper vascular development in Arabidopsis thaliana.  相似文献   

12.
  • The effects of elevated glutathione levels on defence responses to powdery mildew (Euoidium longipes) were investigated in a salicylic acid‐deficient tobacco (Nicotiana tabacum cv. Xanthi NahG) and wild‐type cv. Xanthi plants, where salicylic acid (SA) contents are normal.
  • Aqueous solutions of reduced glutathione (GSH) and its synthetic precursor R‐2‐oxothiazolidine‐4‐carboxylic acid (OTC) were injected into leaves of tobacco plants 3 h before powdery mildew inoculation.
  • SA‐deficient NahG tobacco was hyper‐susceptible to E. longipes, as judged by significantly more severe powdery mildew symptoms and enhanced pathogen accumulation. Strikingly, elevation of GSH levels in SA‐deficient NahG tobacco restored susceptibility to E. longipes to the extent seen in wild‐type plants (i.e. enhanced basal resistance). However, expression of the SA‐mediated pathogenesis‐related gene (NtPR‐1a) did not increase significantly in GSH or OTC‐pretreated and powdery mildew‐inoculated NahG tobacco, suggesting that the induction of this PR gene may not be directly involved in the defence responses induced by GSH.
  • Our results demonstrate that artificial elevation of glutathione content can significantly reduce susceptibility to powdery mildew in SA‐deficient tobacco.
  相似文献   

13.
The inward‐rectifying K+ channel AKT1 constitutes an important pathway for K+ acquisition in plant roots. In glycophytes, excessive accumulation of Na+ is accompanied by K+ deficiency under salt stress. However, in the succulent xerophyte Zygophyllum xanthoxylum, which exhibits excellent adaptability to adverse environments, K+ concentration remains at a relatively constant level despite increased levels of Na+ under salinity and drought conditions. In this study, the contribution of ZxAKT1 to maintaining K+ and Na+ homeostasis in Z. xanthoxylum was investigated. Expression of ZxAKT1 rescued the K+‐uptake‐defective phenotype of yeast strain CY162, suppressed the salt‐sensitive phenotype of yeast strain G19, and complemented the low‐K+‐sensitive phenotype of Arabidopsis akt1 mutant, indicating that ZxAKT1 functions as an inward‐rectifying K+ channel. ZxAKT1 was predominantly expressed in roots, and was induced under high concentrations of either KCl or NaCl. By using RNA interference technique, we found that ZxAKT1‐silenced plants exhibited stunted growth compared to wild‐type Z. xanthoxylum. Further experiments showed that ZxAKT1‐silenced plants exhibited a significant decline in net uptake of K+ and Na+, resulting in decreased concentrations of K+ and Na+, as compared to wild‐type Z. xanthoxylum grown under 50 mm NaCl. Compared with wild‐type, the expression levels of genes encoding several transporters/channels related to K+/Na+ homeostasis, including ZxSKOR, ZxNHX, ZxSOS1 and ZxHKT1;1, were reduced in various tissues of a ZxAKT1‐silenced line. These findings suggest that ZxAKT1 not only plays a crucial role in K+ uptake but also functions in modulating Na+ uptake and transport systems in Z. xanthoxylum, thereby affecting its normal growth.  相似文献   

14.
Nicotiana species carry cellular T‐DNA sequences (cT‐DNAs), acquired by Agrobacterium‐mediated transformation. We characterized the cT‐DNA sequences of the ancestral Nicotiana tabacum species Nicotiana tomentosiformis by deep sequencing. N. tomentosiformis contains four cT‐DNA inserts derived from different Agrobacterium strains. Each has an incomplete inverted‐repeat structure. TA is similar to part of the Agrobacterium rhizogenes 1724 mikimopine‐type T‐DNA, but has unusual orf14 and mis genes. TB carries a 1724 mikimopine‐type orf14‐mis fragment and a mannopine‐agropine synthesis region (mas2‐mas1‐ags). The mas2′ gene codes for an active enzyme. TC is similar to the left part of the A. rhizogenes A4 T‐DNA, but also carries octopine synthase‐like (ocl) and c‐like genes normally found in A. tumefaciens. TD shows a complex rearrangement of T‐DNA fragments similar to the right end of the A4 TL‐DNA, and including an orf14‐like gene and a gene with unknown function, orf511. The TA, TB, TC and TD insertion sites were identified by alignment with N. tabacum and Nicotiana sylvestris sequences. The divergence values for the TA, TB, TC and TD repeats provide an estimate for their relative introduction times. A large deletion has occurred in the central part of the N. tabacum cv. Basma/Xanthi TA region, and another deletion removed the complete TC region in N. tabacum. Nicotiana otophora lacks TA, TB and TD, but contains TC and another cT‐DNA, TE. This analysis, together with that of Nicotiana glauca and other Nicotiana species, indicates multiple sequential insertions of cT‐DNAs during the evolution of the genus Nicotiana.  相似文献   

15.
Reactive oxygen species (ROS) play fundamental roles in plant responses to pathogen infection, including modulation of cell death processes and defense‐related gene expression. Cell death triggered as part of the hypersensitive response enhances resistance to biotrophic pathogens, but favors the virulence of necrotrophs. Even though the involvement of ROS in the orchestration of defense responses is well established, the relative contribution of specific subcellular ROS sources to plant resistance against microorganisms with different pathogenesis strategies is not completely known. The aim of this work was to investigate the role of chloroplastic ROS in plant defense against a typical necrotrophic fungus, Botrytis cinerea. For this purpose, we used transgenic Nicotiana tabacum (tobacco) lines expressing a plastid‐targeted cyanobacterial flavodoxin (pfld lines), which accumulate lower chloroplastic ROS in response to different stresses. Tissue damage and fungal growth were significantly reduced in infected leaves of pfld plants, as compared with infected wild‐type (WT) counterparts. ROS build‐up triggered by Botrytis infection and associated with chloroplasts was significantly decreased (70–80%) in pfld leaves relative to the wild type. Phytoalexin accumulation and expression of pathogenesis‐related genes were induced to a lower degree in pfld plants than in WT siblings. The impact of fungal infection on photosynthetic activity was also lower in pfld leaves. The results indicate that chloroplast‐generated ROS play a major role in lesion development during Botrytis infection. This work demonstrates that the modulation of chloroplastic ROS levels by the expression of a heterologous antioxidant protein can provide a significant degree of protection against a canonical necrotrophic fungus.  相似文献   

16.
Selection for plant traits important for agriculture can come at a high cost to plant defenses. While selecting for increased growth rate and yield, domestication and subsequent breeding may lead to weakened defenses and greater susceptibility of plants to herbivores. We tested whether expression of defense genes differed among maize, Zea mays ssp. mays L. (Poaceae), and its wild relatives Zea mays ssp. parviglumis Iltis & Doebley and Zea diploperennis Iltis et al. We used two populations of Z. mays ssp. parviglumis: one expected to express high levels of an herbivore resistance gene, wound‐inducible protein (wip1), and another expected to have low expression of wip1. To test whether maize and wild Zea differed in induction of defenses against Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), we quantified expression of several genes involved in plant defense: wip1, maize protease inhibitor (mpi), pathogenesis‐related protein (PR‐1), and chitinase. Moreover, we compared growth, development, and survival of caterpillars on maize and wild Zea plants. We found that maize expressed low levels of all but one of the genes when attacked by caterpillars, whereas the wild relatives of maize expressed induced defense genes at high levels. Expression of wip1, in particular, was much greater in the Z. mays ssp. parviglumis population that we expected to naturally express high levels of wip1, with expression levels 29‐fold higher than in herbivore‐free plants. Elevated expression of defenses in wild plants was correlated with higher resistance to caterpillars. Larvae were 15–20% smaller on wild Zea compared with maize, developed 20% slower, and only 22% of them survived to pupation on Z. mays ssp. parviglumis with high levels of wip1. Our results suggest that domestication has inadvertently reduced the resistance of maize, and it is likely that expression of wip1 and other genes associated with defenses play an important role in this reduction in resistance.  相似文献   

17.
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with a majority of terrestrial plants to form underground common mycorrhizal networks (CMNs) that connect neighbouring plants. Because Nicotiana attenuata plants do not respond to herbivory‐elicited volatiles from neighbours, we used this ecological model system to evaluate if CMNs function in interplant transmission of herbivory‐elicited responses. A mesocosm system was designed to establish and remove CMNs linking N. attenuata plants to examine the herbivory‐elicited metabolic and hormone responses in CMNs‐connected “receiver” plants after the elicitation of “donor” plants by wounding (W) treated with Manduca sexta larval oral secretions (OS). AMF colonization increased constitutive jasmonate (JA and JA‐Ile) levels in N. attenuata roots but did not affect well‐characterized JAs‐regulated defensive metabolites in systemic leaves. Interestingly, larger JAs bursts, and higher levels of several amino acids and particular sectors of hydroxygeranyllinalool diterpene glycoside metabolism were elevated in the leaves of W + OS‐elicited “receivers” with CMN connections with “donors” that had been W + OS‐elicited 6 hr previously. Our results demonstrate that AMF colonization alone does not enhance systemic defence responses but that sectors of systemic responses in leaves can be primed by CMNs, suggesting that CMNs can transmit and even filter defence signalling among connected plants.  相似文献   

18.
Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self‐immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli. Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward‐occluded and a new nucleotide‐bound state, high‐energy outward‐occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross‐linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi‐drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic‐level build‐up.  相似文献   

19.
20.
To study how the P19 suppressor of gene‐silencing protein can be used effectively for the production of therapeutic glycoproteins, the following factors were examined: the genetic elements used for expressing recombinant proteins; the effect of different P19 concentrations; compatibility of P19 with various Nicotiana tabacum cultivars for transgenic expression; the glycan profile of a recombinant therapeutic glycoprotein co‐expressed with P19 in an RNAi‐based glycomodified Nicotiana benthamiana expression host. The coding sequences for the heavy and light chains of trastuzumab were cloned into five plant expression vectors (102–106) containing different 5′ and 3′ UTRs, designated as vector sets 102–106 mAb. The P19 protein of Tomato bushy stunt virus (TBSV) was also cloned into vector 103, which contained the Cauliflower mosaic virus (CaMV) 35S promoter and 5′UTR together with the terminator region of the nopaline synthase gene of Agrobacterium. Transient expression of the antibody vectors resulted in different levels of trastuzumab accumulation, the highest being 105 and 106 mAb at about 1% of TSP. P19 increased the concentration of trastuzumab approximately 15‐fold (to about 2.3% of TSP) when co‐expressed with 103 mAb but did not affect antibody levels with vectors 102 and 106 mAb. When 103 mAb was expressed together with P19 in different N. tabacum cultivars, all except Little Crittenden showed a marked discolouring of the infiltrated areas of the leaf and decreased antibody expression. Co‐expression of P19 also abolished antibody accumulation in crosses between N. tabacum cv. I‐64 and Little Crittenden, indicating a dominant mode of inheritance for the observed P19‐induced responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号