首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corn leafhopper, Dalbulus maidis DeLong & Wolcott (Hemiptera: Cicadellidae), is a specialist herbivore on the genus Zea (Poaceae). The genera Dalbulus and Zea evolved in central Mexico. We sought to determine whether population genetic structuring is prevalent in corn leafhoppers inhabiting three of its host plants: (1) the highland species perennial teosinte (Zea diploperennis Iltis, Doebley & Guzman), (2) the mid‐ to lowland‐species Balsas teosinte (Zea mays ssp. parviglumis Iltis & Doebley), and (3) the ubiquitous domesticated maize (Zea mays ssp. mays L.). We used amplified fragment length polymorphisms to detect population structuring and genetic differentiation among corn leafhoppers on the three host plants in western‐central and ‐northern Mexico. Our results showed that corn leafhopper in Mexico is composed of at least two genetically discrete populations: an ‘Itinerant’ population associated with the annual hosts maize and Balsas teosinte, which appears to be widely distributed in Mexico, and a ‘Las Joyas’ population restricted to perennial teosinte and confined to a small mountain range (Sierra de Manantlán) in western‐central Mexico. Our results further suggested that population structuring is not due to isolation by distance or landscape features: Las Joyas and Itinerant corn leafhopper populations are genetically distinct despite their geographic proximity (ca. 4 km), whereas Itinerant corn leafhoppers separated by hundreds of kilometers (>800 km), mountain ranges, and a maritime corridor (Sea of Cortez) are not genetically distinct. Based on our results and on published ethnohistorical and archaeological data, we propose pre‐Columbian and modern scenarios, including likely ecological and anthropogenic influences, in which the observed genetic population structuring of corn leafhopper could have originated and could be maintained. Also, we hypothesize that after evolving on the lowland Balsas teosinte, corn leafhopper expanded its host range to include maize and then the highland perennial teosinte, following the domestication and spread of maize within the last 9 000 years.  相似文献   

2.
Plant anti‐herbivore defenses are known to be affected by life‐history evolution, as well as by domestication and breeding in the case of crop species. A suite of plants from the maize genus Zea (Poaceae) and the specialist herbivore Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) were used to test the hypothesis that anti‐herbivore defenses are affected by plant life‐history evolution and human intervention through domestication and breeding for high yield. The suite of plants included a maize (Zea mays ssp. mays L.) commercial hybrid, a maize landrace, two populations of the annual Balsas teosinte (Z. mays ssp. parviglumis Iltis & Doebley), and perennial teosinte (Z. diploperennis Iltis, Doebley & Guzman). Leaf toughness, pubescence, and oviposition preference were compared among the suite of host plants looking for effects of transitions in life history (i.e., from perennial to annual life cycle), domestication (i.e., from wild annual to domesticated annual), and breeding (i.e., from landrace to hybrid maize) on defense against D. maidis. Results on leaf toughness suggested that the life‐history and domestication transitions weakened the plant's resistance to penetration by the mouthparts and ovipositor of D. maidis, whereas results on pubescence suggested that this putative defense was strengthened with the breeding transition, contrary to expectations. Results on oviposition preference of D. maidis coincided with the expectation that life‐history and domestication transitions would lead to preference for Balsas teosinte over perennial teosinte, and of landrace maize over Balsas teosinte. Also, a negative correlation suggested that oviposition preference is significantly influenced by leaf toughness. Overall, the results suggested that Zea defenses against the specialist herbivore D. maidis were variably affected by plant life‐history evolution, domestication, and breeding, and that chemical defense may play a role in Zea defense against D. maidis because leaf toughness and pubescence only partially explained its host preferences.  相似文献   

3.
A compromise classification of the genus Zea, reflecting both phylogeny and practical needs, recognizes six taxa, as follows: Section Luxuriantes : Zea perennis. Zea diploperennis, Zea luxurians. Section Zea : Zea mays ssp. mexicana (Neo-volcanic Plateau), Zea mays ssp. parviglumis Iltis & Doebley ssp. n. var. parviglumis (Rio Balsas drainage, Pacific slope from Guerrero to Jalisco), Zea mexicana ssp. parviglumis var. huehuetenangensis Iltis & Doebley var. n. (Pacific slope, western Guatemala, Prov. Huehuetenango), Zea mays ssp. mays. The new subspecies is distinguished by smaller spikelets and rachis joints, the varieties by different habitats, blooming dates and their genetic behavior in relation to cultivated Zea mays. Zea mays ssp. mexicana is the ancestor of corn.  相似文献   

4.
Maize [Zea mays L. ssp. mays (Poaceae)] was domesticated from Balsas teosinte (Zea mays ssp. parviglumis Iltis & Doebley) in present‐day Mexico. Fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), is among the most important pests of maize in Mexico and Central America. We compared the strength of plant defenses against fall armyworm between micro‐sympatric landrace maize and Balsas teosinte in the field and laboratory. The field comparison, conducted in Mexico, consisted of comparing the frequency of fall armyworm infestation between young maize and Balsas teosinte plants in dryland agricultural fields in which Balsas teosinte grew as a weed. The laboratory comparison contrasted the performance of fall armyworm larvae provided a diet of leaf tissue excised from maize or Balsas teosinte plants that were intact or had been primed by larval feeding. In the field, maize plants were more frequently infested with fall armyworm than Balsas teosinte plants: over 3 years and three fields, maize was infested at a ca. 1.8‐fold greater rate than Balsas teosinte. In the laboratory, larval growth, but not survivorship, was differently affected by feeding on maize vs. Balsas teosinte, and on primed vs. intact plants. Specifically, survivorship was ca. 98%, and did not differ between maize and Balsas teosinte, nor between primed and intact plants. Larvae grew less on intact vs. primed maize, and similarly on intact vs. primed Balsas teosinte; overall, growth was 1.2‐fold greater on maize compared to Balsas teosinte, and on primed compared to intact plants. Parallel observations showed that the differences in growth could not be attributed to the amount of leaf tissue consumed by larvae. We discuss our results in relation to differences in the strength of plant defenses between crops and their ancestors, the relevance of unmanaged Balsas teosinte introgression in the context of fall armyworm defenses in maize, and whether greater growth of larvae on primed vs. intact plants signifies herbivore offense.  相似文献   

5.
C. A. Grant 《Grana》2013,52(3):177-184
Scanning electron microscopy was used to examine the wall sculpturing of pollen from Zea mays L. ssp. mays (maize), Zea mays ssp. mexicana (Schrad.) Iltis (teosinte), Zea perennis (Hitchc.) Reeves and Mangelsdorf (perennial teosinte), and two species of Tripsacum L. The Zea taxa are shown to possess similar pollen types, with spinules scattered regularly over the exine surface. Tripsacum exhibits a distinctly reticuloid pattern, with spinules clumped into isolated lacunae. Hybrids between Zea and Tripsacum are either intermediate in exine pattern or similar to Tripsacum, depending on the genome combination.  相似文献   

6.
The central abundance hypothesis predicts that local adaptation is a function of the distance to the centre of a species’ geographic range. To test this hypothesis, we gathered genomic diversity data from 49 populations, 646 individuals and 33,464 SNPs of two wild relatives of maize, the teosintes Zea mays ssp. parviglumis and Zea. mays. ssp. mexicana. We examined the association between the distance to their climatic and geographic centroids and the enrichment of SNPs bearing signals of adaptation. We identified candidate adaptive SNPs in each population by combining neutrality tests and cline analyses. By applying linear regression models, we found that the number of candidate SNPs is positively associated with niche suitability, while genetic diversity is reduced at the limits of the geographic distribution. Our results suggest that overall, populations located at the limit of the species’ niches are adapting locally. We argue that local adaptation to this limit could initiate ecological speciation processes and facilitate adaptation to global change.  相似文献   

7.
Background and AimsDomesticated maize (Zea mays ssp. mays) generally forms between two and six seminal roots, while its wild ancestor, Mexican annual teosinte (Zea mays ssp. parviglumis), typically lacks seminal roots. Maize also produces larger seeds than teosinte, and it generally has higher growth rates as a seedling. Maize was originally domesticated in the tropical soils of southern Mexico, but it was later brought to the Mexican highlands before spreading to other parts of the continent, where it experienced different soil resource constraints. The aims of this study were to understand the impacts of increased seminal root number on seedling nitrogen and phosphorus acquisition and to model how differences in maize and teosinte phenotypes might have contributed to increased seminal root number in domesticated maize.MethodsSeedling root system architectural models of a teosinte accession and a maize landrace were constructed by parameterizing the functional–structural plant model OpenSimRoot using plants grown in mesocosms. Seedling growth was simulated in a low-phosphorus environment, multiple low-nitrogen environments, and at variable planting densities. Models were also constructed to combine individual components of the maize and teosinte phenotypes.Key ResultsSeminal roots contributed ~35 % of the nitrogen and phosphorus acquired by maize landrace seedlings in the first 25 d after planting. Increased seminal root number improved plant nitrogen acquisition under low-nitrogen environments with varying precipitation patterns, fertilization rates, soil textures and planting densities. Models suggested that the optimal number of seminal roots for nutrient acquisition in teosinte is constrained by its limited seed carbohydrate reserves.ConclusionsSeminal roots can improve the acquisition of both nitrogen and phosphorus in maize seedlings, and the increase in seed size associated with maize domestication may have facilitated increased seminal root number.  相似文献   

8.
The genus Zea is here divided into the Sect. Luxuriantes Doebley & litis sect. n., including the perennials Z. diploperennis (2n = 20) and Z. perennis (2n = 40) and the annual Z. luxurians (2n = 20); and Sect. Zea , including the wild Z. mays ssp.parviglumis and Z. mays ssp. mexicana (both 2n = 20), and Z. mays ssp. mays (2n = 20), the highly domesticated and tremendously variable derivate of the latter. This division is verified by a multivariate analysis of a large number of morphological characters of the male inflorescence. Cytogenetic and chemotaxonomic evidence supports the morphological conclusions. A consideration of the phylogeny of Zea within the conceptual framework offered by this new sectioning of the genus points convincingly to annual teosinte (Z. mays ssp. mexicana) as the ancestor of cultivated maize.  相似文献   

9.
Genome structure exhibits remarkable plasticity within Zea mays. To examine how haplotype structure has evolved within the Andropogoneae tribe, we have analyzed the bz gene‐rich region of maize (Zea mays), the Zea teosintes mays ssp. mexicana, luxurians and diploperennis, Tripsacum dactyloides, Coix lacryma‐jobi and Sorghum propinquum. We sequenced and annotated BAC clones from these species and re‐annotated the orthologous Sorghum bicolor region. Gene colinearity in the region is well conserved within the genus Zea. However, the orthologous regions of Coix and Sorghum exhibited several micro‐rearrangements relative to Zea, including addition, truncation and deletion of genes. The stc1 gene, involved in the production of a terpenoid insect defense signal, is evolving particularly fast, and its progressive disappearance from some species is occurring by microhomology‐mediated recombination. LTR retrotransposons are the main contributors to the dynamic evolution of the bz region. Common transposon insertion sites occur among haplotypes from different Zea mays sub‐species, but not outside the species. As in Zea, different patterns of interspersion between genes and retrotransposons are observed in Sorghum. We estimate that the mean divergence times between maize and Tripsacum, Coix and Sorghum are 8.5, 12.1 and 12.4 million years ago, respectively, and that between Coix and Sorghum is 9.3 million years ago. A comparison of the bz orthologous regions of Zea, Sorghum and Coix with those of Brachypodium, Setaria and Oryza allows us to infer how the region has evolved by addition and deletion of genes in the approximately 50 million years since these genera diverged from a common progenitor.  相似文献   

10.
Population genetic structuring is common among herbivorous insects and frequently is associated with divergent host plants, such as crops and their wild relatives. Previous studies showed population genetic structuring in corn leafhopper Dulbulus maidis in Mexico, such that the species consists of two sympatric, host plant-associated populations: an abundant and widespread "pestiferous” population on maize (Zea mays mays), and a small and localized "wild" population on perennial teosinte (Zea diploperennis). a maize wild relative with a limited distribution. This study addressed whether assortative mating and immigrant inviability mediate genetic structuring of corn leafliopper by comparing the mating and reproductive successes of pestiferous and wild females that colonize their nonassociated host plants against the successes of females colonizing their associated host plants. Assortative mating was assessed by comparing mating frequencies and premating and mating times among females of each population on each host plant: immigrant inviability was assessed by comparing, across two generations, the fecundity, survival, development time, sex ratio, and population growth rate among leafhopper populations and host plants. Our results showed that on maize, and compared to resident, pestiferous females, wild females were more likely to mate, and greater proportions of their offspring survived to adult stage and were daughters;consequently, the per-generation population growth rate on maize was greater for immigrant, wild leafhoppers compared to resident, pestiferous leafhoppers. Our results suggested that wild leafhoppers emigrating to maize have a fitness advantage over resident, pestiferous leafhoppers, while immigrant pestiferous and resident wild leafhoppers on teosinte have similar fitnesses.  相似文献   

11.
We addressed whether Zea seedling morphology relevant to performance, defence hormone profiles and tolerance of a phloem‐feeding, specialist herbivore were affected by two processes, plant domestication and modern breeding. Domestication effects were inferred through comparisons between Balsas teosintes (Zea mays parviglumis) and landrace maizes (Z. mays mays), and modern breeding effects through comparisons between landrace maizes and inbred maize lines. Specifically, we compared seedling forms (a composite measure of leaf length, average stem diameter, shoot wet weight, shoot dry weight, total root length, root wet weight, and root dry weight), shapes (forms scaled by seedling dry weight, a proxy for seedling size), and defence hormone profiles among Balsas teosinte and landrace and inbred line maizes, exposed or unexposed to feeding by Dalbulus maidis. Our results suggested that domestication as well as modern breeding strongly mediated both seedling form and shape. Form was more similar between landrace and inbred maize than between Balsas teosinte and landrace maize, suggesting that domestication affected seedling form more than modern breeding. In contrast, shape was more similar between Balsas teosinte and landrace maize than between landrace and inbred maizes, suggesting that modern breeding affected seedling shape more than domestication. Additionally, seedling shoot : root ratios appeared to have been mediated by domestication, but not by modern breeding. In broad terms, individual seedling structures relevant to seedling ecology in wild or managed environments, such as leaf and root lengths, and shoot and root masses, were enlarged with domestication and reduced with modern breeding. Herbivory did not affect seedling shape, but had a weak effect on form so that seedlings were slightly larger in the absence versus presence of D. maidis. Also, both domestication and modern breeding seem to have mediated seedling hormone profiles, with breeding more strongly mediating profiles than domestication. Jasmonic acid isoleucine (JA‐Ile) and salicylic acid (SA) were induced by herbivory in both teosinte and maize. The hormone profiles assays collectively suggested that domestication and modern breeding altered constitutive levels of SA, abscisic acid and JA‐related (JA‐Ile and oxo‐phytodienoic acid) hormone levels in seedlings, particularly by increasing the levels of SA and decreasing those of JA‐related hormones. Altogether, our results suggested that maize domestication and modern breeding significantly altered seedling form, shape, ecologically relevant morphological traits (e.g. leaf and root lengths, and shoot and root masses) and hormonal defences, but not tolerance of D. maidis herbivory.  相似文献   

12.
Miller TA  Muslin EH  Dorweiler JE 《Planta》2008,227(6):1377-1388
Maize (Zea mays ssp. mays L.) was domesticated from teosinte (Z. mays L. ssp. parviglumis Iltis & Doebley), a plant requiring short day photoperiods to flower. While photoperiod sensitive landraces of maize exist, post-domestication breeding included efforts to grow maize in a broad range of latitudes. Thus, modern maize is often characterized as day-neutral because time to flower is relatively unaffected by photoperiod. We report the first identification of maize constans of Zea mays1 (conz1), a gene with extensive sequence homology to photoperiod genes CONSTANS (CO) in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) and Heading date1 (Hd1) in rice (Oryza sativa L.). conz1 maps to a syntenous chromosomal location relative to Hd1. Additionally, conz1 and two maize homologs of another photoperiod gene exhibit diurnal expression patterns notably similar to their Arabidopsis and rice homologs. The expression pattern of conz1 in long days is distinct from that observed in short days, suggesting that maize is able to discern variations in photoperiod and respond with differential expression of conz1. We offer models to reconcile the differential expression of conz1 with respect to the photoperiod insensitivity exhibited by temperate inbreds. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sequence data from this article can be found in the GenBank () data library under the following accession numbers: conz1 mRNA: EU098139, EU098140; gigz1A: BK006299; gigz1B: BK006298.  相似文献   

13.
Plant defenses against herbivores are predicted to change as plant lineages diversify, and with domestication and subsequent selection and breeding in the case of crop plants. We addressed whether defense against a specialist herbivore declined coincidently with life history evolution, domestication, and breeding within the grass genus Zea (Poaceae). For this, we assessed performance of corn leafhopper (Dalbulus maidis) following colonization of one of four Zea species containing three successive transitions: the evolutionary transition from perennial to annual life cycle, the agricultural transition from wild annual grass to primitive crop cultivar, and the agronomic transition from primitive to modern crop cultivar. Performance of corn leafhopper was measured through seven variables relevant to development speed, survivorship, fecundity, and body size. The plants included in our study were perennial teosinte (Zea diploperennis), Balsas teosinte (Zea mays parviglumis), a landrace maize (Zea mays mays), and a hybrid maize. Perennial teosinte is a perennial, iteroparous species, and is basal in Zea; Balsas teosinte is an annual species, and the progenitor of maize; the landrace maize is a primitive, genetically diverse cultivar, and is ancestral to the hybrid maize; and, the hybrid maize is a highly inbred, modern cultivar. Performance of corn leafhopper was poorest on perennial teosinte, intermediate on Balsas teosinte and landrace maize, and best on hybrid maize, consistent with our expectation of declining defense from perennial teosinte to hybrid maize. Overall, our results indicated that corn leafhopper performance increased most with the agronomic transition, followed by the life history transition, and least with the domestication transition.  相似文献   

14.
Heterosis has been extensively exploited for yield gain in maize (Zea mays L.). Here we conducted a comparative metabolomics‐based analysis of young roots from in vitro germinating seedlings and from leaves of field‐grown plants in a panel of inbred lines from the Dent and Flint heterotic patterns as well as selected F1 hybrids. We found that metabolite levels in hybrids were more robust than in inbred lines. Using state‐of‐the‐art modeling techniques, the most robust metabolites from roots and leaves explained up to 37 and 44% of the variance in the biomass from plants grown in two distinct field trials. In addition, a correlation‐based analysis highlighted the trade‐off between defense‐related metabolites and hybrid performance. Therefore, our findings demonstrated the potential of metabolic profiles from young maize roots grown under tightly controlled conditions to predict hybrid performance in multiple field trials, thus bridging the greenhouse–field gap.  相似文献   

15.
Although there is growing evidence that silicon (Si)‐based plant defenses effectively reduce both the palatability and digestibility of leaves, and thus impact nutrient assimilation by insect herbivores, much less is known about how this is affected by extrinsic and intrinsic factors. For example, do herbivores exhibit compensatory feeding on poor‐quality diets with Si or are Si defenses less effective in agroecosystems where high N availability increases plant quality? To investigate the interactive effects of N and Si on insect feeding, we conducted insect performance and compensatory feeding bioassays using maize, Zea mays L. (Poaceae), and the true armyworm, Pseudeletia unipuncta Haworth (Lepidoptera: Noctuidae). In the performance assay, the addition of Si alone resulted in increased larval mortality compared with the controls, likely because early instars with poorly developed mandibles could not feed effectively. However, larvae fed on plants treated with both Si and N survived better than on plants treated with Si only, although pupal mass did not differ between treatments. In our compensatory assay, Si addition reduced maize consumption, but increased both armyworm approximate digestibility and N assimilation efficiency, suggesting that enhanced post‐ingestion feeding physiology, rather than compensatory food intake, could have accounted for the lack of Si effects on pupal weight. Overall, our results demonstrate that, similar to other chemical and mechanical defenses, the effectiveness of plant Si defense is influenced by plant nutrient status and consumer compensatory ability.  相似文献   

16.
17.
Although considerable evidence has accumulated on the defensive activity of plant volatile organic compounds against pathogens and insect herbivores, less is known about the significance of volatile organic compounds emitted by plants under abiotic stress. Here, we report that green leaf volatiles (GLVs), which were previously shown to prime plant defences against insect herbivore attack, also protect plants against cold stress (4 °C). We show that the expression levels of several cold stress‐related genes are significantly up‐regulated in maize (Zea mays) seedlings treated with physiological concentrations of the GLV, (Z)‐3‐hexen‐1‐yl acetate (Z‐3‐HAC), and that seedlings primed with Z‐3‐HAC exhibit increased growth and reduced damage after cold stress relative to unprimed seedlings. Together, these data demonstrate the protective and priming effect of GLVs against cold stress and suggest an activity of GLVs beyond the activation of typical plant defence responses against herbivores and pathogens.  相似文献   

18.
Plants in nature have inducible defences that sometimes lead to targeted resistance against particular herbivores, but susceptibility to others. The metabolic diversity and genetic resources available for maize (Zea mays) make this a suitable system for a mechanistic study of within‐species variation in such plant‐mediated interactions between herbivores. Beet armyworms (Spodoptera exigua) and corn leaf aphids (Rhopalosiphum maidis) are two naturally occurring maize herbivores with different feeding habits. Whereas chewing herbivore‐induced methylation of 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one glucoside (DIMBOA‐Glc) to form 2‐hydroxy‐4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one glucoside (HDMBOA‐Glc) promotes caterpillar resistance, lower DIMBOA‐Glc levels favour aphid reproduction. Thus, caterpillar‐induced DIMBOA‐Glc methyltransferase activity in maize is predicted to promote aphid growth. To test this hypothesis, the impact of S. exigua feeding on R. maidis progeny production was assessed using seventeen genetically diverse maize inbred lines. Whereas aphid progeny production was increased by prior caterpillar feeding on lines B73, Ki11, Ki3 and Tx303, it decreased on lines Ky21, CML103, Mo18W and W22. Genetic mapping of this trait in a population of B73 × Ky21 recombinant inbred lines identified significant quantitative trait loci on maize chromosomes 1, 7 and 10. There is a transgressive segregation for aphid resistance, with the Ky21 alleles on chromosomes 1 and 7 and the B73 allele on chromosome 10 increasing aphid progeny production. The chromosome 1 QTL coincides with a cluster of three maize genes encoding benzoxazinoid O‐methyltransferases that convert DIMBOA‐Glc to HDMBOA‐Glc. Gene expression studies and benzoxazinoid measurements indicate that S. exigua ‐induced responses in this pathway differentially affect R. maidis resistance in B73 and Ky21.  相似文献   

19.
The domestication of diverse grain crops from wild grasses was a result of artificial selection for a suite of overlapping traits producing changes referred to in aggregate as ‘domestication syndrome’. Parallel phenotypic change can be accomplished by either selection on orthologous genes or selection on non‐orthologous genes with parallel phenotypic effects. To determine how often artificial selection for domestication traits in the grasses targeted orthologous genes, we employed resequencing data from wild and domesticated accessions of Zea (maize) and Sorghum (sorghum). Many ‘classic’ domestication genes identified through quantitative trait locus mapping in populations resulting from wild/domesticated crosses indeed show signatures of parallel selection in both maize and sorghum. However, the overall number of genes showing signatures of parallel selection in both species is not significantly different from that expected by chance. This suggests that while a small number of genes will extremely large phenotypic effects have been targeted repeatedly by artificial selection during domestication, the optimization part of domestication targeted small and largely non‐overlapping subsets of all possible genes which could produce equivalent phenotypic alterations.  相似文献   

20.
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro‐economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13‐LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10‐derived signaling is required for LOX8‐mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound‐induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore‐induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV‐, JA‐ and HIPV‐deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10‐dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro‐ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号