首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low‐latitude climatic conditions have no present‐day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo‐Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change.  相似文献   

2.
Arabica coffee (Coffea arabica) is a key crop in many tropical countries and globally provides an export value of over US$13 billion per year. Wild Arabica coffee is of fundamental importance for the global coffee sector and of direct importance within Ethiopia, as a source of harvestable income and planting stock. Published studies show that climate change is projected to have a substantial negative influence on the current suitable growing areas for indigenous Arabica in Ethiopia and South Sudan. Here we use all available future projections for the species based on multiple general circulation models (GCMs), emission scenarios, and migration scenarios, to predict changes in Extent of Occurrence (EOO), Area of Occupancy (AOO), and population numbers for wild Arabica coffee. Under climate change our results show that population numbers could reduce by 50% or more (with a few models showing over 80%) by 2088. EOO and AOO are projected to decline by around 30% in many cases. Furthermore, present‐day models compared to the near future (2038), show a reduction for EOO of over 40% (with a few cases over 50%), although EOO should be treated with caution due to its sensitivity to outlying occurrences. When applying these metrics to extinction risk, we show that the determination of generation length is critical. When applying the International Union for Conservation of Nature's Red list of Threatened Species (IUCN Red List) criteria, even with a very conservative generation length of 21 years, wild Arabica coffee is assessed as Threatened with extinction (placed in the Endangered category) under a broad range of climate change projections, if no interventions are made. Importantly, if we do not include climate change in our assessment, Arabica coffee is assessed as Least Concern (not threatened) when applying the IUCN Red List criteria.  相似文献   

3.
The production of agricultural commodities faces increased risk of pests, diseases and other stresses due to climate change and variability. This study assesses the potential distribution of agricultural pests under projected climatic scenarios using evidence from the African coffee white stem borer (CWB), Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae), an important pest of coffee in Zimbabwe. A species distribution modeling approach utilising Boosted Regression Trees (BRT) and Generalized Linear Models (GLM) was applied on current and projected climate data obtained from the WorldClim database and occurrence data (presence and absence) collected through on-farm biological surveys in Chipinge, Chimanimani, Mutare and Mutasa districts in Zimbabwe. Results from both the BRT and GLM indicate that precipitation-related variables are more important in determining species range for the CWB than temperature related variables. The CWB has extensive potential habitats in all coffee areas with Mutasa district having the largest model average area suitable for CWB under current and projected climatic conditions. Habitat ranges for CWB will increase under future climate scenarios for Chipinge, Chimanimani and Mutare districts while it will decrease in Mutasa district. The highest percentage change in area suitable for the CWB was for Chimanimani district with a model average of 49.1% (3 906 ha) increase in CWB range by 2080. The BRT and GLM predictions gave similar predicted ranges for Chipinge, Chimanimani and Mutasa districts compared to the high variation in current and projected habitat area for CWB in Mutare district. The study concludes that suitable area for CWB will increase significantly in Zimbabwe due to climate change and there is need to develop adaptation mechanisms.  相似文献   

4.
Evaluating the potential climatic suitability for premium wine production is crucial for adaptation planning in Europe. While new wine regions may emerge out of the traditional boundaries, most of the present-day renowned winemaking regions may be threatened by climate change. Here, we analyse the future evolution of the geography of wine production over Europe, through the definition of a novel climatic suitability indicator, which is calculated over the projected grapevine phenological phases to account for their possible contractions under global warming. Our approach consists in coupling six different de-biased downscaled climate projections under two different scenarios of global warming with four phenological models for different grapevine varieties. The resulting suitability indicator is based on fuzzy logic and is calculated over three main components measuring (i) the timing of the fruit physiological maturity, (ii) the risk of water stress and (iii) the risk of pests and diseases. The results demonstrate that the level of global warming largely determines the distribution of future wine regions. For a global temperature increase limited to 2°C above the pre-industrial level, the suitable areas over the traditional regions are reduced by about 4%/°C rise, while for higher levels of global warming, the rate of this loss increases up to 17%/°C. This is compensated by a gradual emergence of new wine regions out of the traditional boundaries. Moreover, we show that reallocating better-suited grapevine varieties to warmer conditions may be a viable adaptation measure to cope with the projected suitability loss over the traditional regions. However, the effectiveness of this strategy appears to decrease as the level of global warming increases. Overall, these findings suggest the existence of a safe limit below 2°C of global warming for the European winemaking sector, while adaptation might become far more challenging beyond this threshold.  相似文献   

5.
Aim:  Ecosystems face numerous well‐documented threats from climate change. The well‐being of people also is threatened by climate change, most prominently by reduced food security. Human adaptation to food scarcity, including shifting agricultural zones, will create new threats for natural ecosystems. We investigated how shifts in crop suitability because of climate change may overlap currently protected areas (PAs) and priority sites for PA expansion in South Africa. Predicting the locations of suitable climate conditions for crop growth will assist conservationists and decision‐makers in planning for climate change. Location:  South Africa. Methods:  We modelled climatic suitability in 2055 for maize and wheat cultivation, two extensively planted, staple crops, and overlaid projected changes with PAs and PA expansion priorities. Results:  Changes in winter climate could make an additional 2 million ha of land suitable for wheat cultivation, while changes in summer climate could expand maize suitability by up to 3.5 million ha. Conversely, 3 million ha of lands currently suitable for wheat production are predicted to become climatically unsuitable, along with 13 million ha for maize. At least 328 of 834 (39%) PAs are projected to be affected by altered wheat or maize suitability in their buffer zones. Main conclusions:  Reduced crop suitability and food scarcity in subsistence areas may lead to the exploitation of PAs for food and fuel. However, if reduced crop suitability leads to agricultural abandonment, this may afford opportunities for ecological restoration. Expanded crop suitability in PA buffer zones could lead to additional isolation of PAs if portions of newly suitable land are converted to agriculture. These results suggest that altered crop suitability will be widespread throughout South Africa, including within and around lands identified as conservation priorities. Assessing how climate change will affect crop suitability near PAs is a first step towards proactively identifying potential conflicts between human adaptation and conservation planning.  相似文献   

6.
A framework for identifying species that may become invasive under future climate conditions is presented, based on invader attributes and biogeography in combination with projections of future climate. We illustrate the framework using the CLIMEX niche model to identify future climate suitability for three species of Hawkweed that are currently present in the Australian Alps region and related species that are present in the neighbouring region. Potential source regions under future climate conditions are identified, and species from those emerging risk areas are identified. We use dynamically downscaled climate projections to complement global analyses and provide fine-scale projections of suitable climate for current and future (2070–2099) conditions at the regional scale. Changing climatic conditions may reduce the suitability for some invasive species and improve it for others. Invasive species with distributions strongly determined by climate, where the projected future climate is highly suitable, are those with the greatest potential to be future invasive species in the region. As the Alps region becomes warmer and drier, many more regions of the world become potential sources of invasive species, although only one additional species of Hawkweed is identified as an emerging risk. However, in the longer term, as the species in these areas respond to global climate change, the potential source areas contract again to match higher altitude regions. Knowledge of future climate suitability, based on species-specific climatic tolerances, is a useful step towards prioritising management responses such as targeted eradication and early intervention to prevent the spread of future invasive species.  相似文献   

7.
Precise modelling of the influence of climate change on Arabica coffee is limited; there are no data available for indigenous populations of this species. In this study we model the present and future predicted distribution of indigenous Arabica, and identify priorities in order to facilitate appropriate decision making for conservation, monitoring and future research. Using distribution data we perform bioclimatic modelling and examine future distribution with the HadCM3 climate model for three emission scenarios (A1B, A2A, B2A) over three time intervals (2020, 2050, 2080). The models show a profoundly negative influence on indigenous Arabica. In a locality analysis the most favourable outcome is a c. 65% reduction in the number of pre-existing bioclimatically suitable localities, and at worst an almost 100% reduction, by 2080. In an area analysis the most favourable outcome is a 38% reduction in suitable bioclimatic space, and the least favourable a c. 90% reduction, by 2080. Based on known occurrences and ecological tolerances of Arabica, bioclimatic unsuitability would place populations in peril, leading to severe stress and a high risk of extinction. This study establishes a fundamental baseline for assessing the consequences of climate change on wild populations of Arabica coffee. Specifically, it: (1) identifies and categorizes localities and areas that are predicted to be under threat from climate change now and in the short- to medium-term (2020–2050), representing assessment priorities for ex situ conservation; (2) identifies ‘core localities’ that could have the potential to withstand climate change until at least 2080, and therefore serve as long-term in situ storehouses for coffee genetic resources; (3) provides the location and characterization of target locations (populations) for on-the-ground monitoring of climate change influence. Arabica coffee is confimed as a climate sensitivite species, supporting data and inference that existing plantations will be neagtively impacted by climate change.  相似文献   

8.
Cultivation of Coffea arabica is highly sensitive to and has been shown to be negatively impacted by progressive climatic changes. Previous research contributed little to support forward-looking adaptation. Agro-ecological zoning is a common tool to identify homologous environments and prioritize research. We demonstrate here a pragmatic approach to describe spatial changes in agro-climatic zones suitable for coffee under current and future climates. We defined agro-ecological zones suitable to produce arabica coffee by clustering geo-referenced coffee occurrence locations based on bio-climatic variables. We used random forest classification of climate data layers to model the spatial distribution of these agro-ecological zones. We used these zones to identify spatially explicit impact scenarios and to choose locations for the long-term evaluation of adaptation measures as climate changes. We found that in zones currently classified as hot and dry, climate change will impact arabica more than those that are better suited to it. Research in these zones should therefore focus on expanding arabica''s environmental limits. Zones that currently have climates better suited for arabica will migrate upwards by about 500m in elevation. In these zones the up-slope migration will be gradual, but will likely have negative ecosystem impacts. Additionally, we identified locations that with high probability will not change their climatic characteristics and are suitable to evaluate C. arabica germplasm in the face of climate change. These locations should be used to investigate long term adaptation strategies to production systems.  相似文献   

9.
Changing natural conditions determine the land''s suitability for agriculture. The growing demand for food, feed, fiber and bioenergy increases pressure on land and causes trade-offs between different uses of land and ecosystem services. Accordingly, an inventory is required on the changing potentially suitable areas for agriculture under changing climate conditions. We applied a fuzzy logic approach to compute global agricultural suitability to grow the 16 most important food and energy crops according to the climatic, soil and topographic conditions at a spatial resolution of 30 arc seconds. We present our results for current climate conditions (1981–2010), considering today''s irrigated areas and separately investigate the suitability of densely forested as well as protected areas, in order to investigate their potentials for agriculture. The impact of climate change under SRES A1B conditions, as simulated by the global climate model ECHAM5, on agricultural suitability is shown by comparing the time-period 2071–2100 with 1981–2010. Our results show that climate change will expand suitable cropland by additionally 5.6 million km2, particularly in the Northern high latitudes (mainly in Canada, China and Russia). Most sensitive regions with decreasing suitability are found in the Global South, mainly in tropical regions, where also the suitability for multiple cropping decreases.  相似文献   

10.
Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany – the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971–2000, particularly for the warm period of the year, defined here as the months of March–November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative trend, which is in line with the trend of a decrease in physiologically equivalent temperature as well as in thermal comfort conditions. Due to the rising air temperature, heat stress as well as sultry conditions are projected to become more frequent, affecting human health and recreation, especially at lower lying altitudes. The tops of the mountains and higher elevated areas still have the advantage of offering comfortable climatic conditions.  相似文献   

11.
茶是对气候变化敏感的重要经济作物, 评价全球气候变化对茶分布和生产的影响对相关国家经济发展和茶农的生计至关重要。本研究基于全球858个茶分布点和6个气候因子数据, 利用物种分布模型预测全球茶的潜在适宜分布区及其在2070年的不同温室气体排放情景(RCP2.6和RCP8.5)下的变化。结果表明: 当前茶在五大洲均有适宜分布区, 主要集中在亚洲、非洲和南美洲, 并且最冷季平均温和最暖季降水量主导了茶的分布。预计2070年, 茶的适宜分布区变化在不同的大洲、国家和气候情景间将存在差异。具体来说, 茶的适宜分布区总面积将会减少, 减少的区域主要位于低纬度地区, 而中高纬度地区的适宜分布区将扩张, 由此可能导致茶的适宜分布区向北移动; 重要的产茶国中, 阿根廷、缅甸、越南等茶适宜分布区面积会减少57.8%-95.8%, 而中国和日本的适宜分布面积则会增加2.7%-31.5%。未来全球新增的适宜分布区中, 约有68%的地区土地覆盖类型为自然植被, 因此可能导致新茶树种植园的开垦和自然植被及生物多样性保护产生冲突。  相似文献   

12.
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high‐elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high‐elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high‐elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high‐elevation species to climatic changes.  相似文献   

13.
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.  相似文献   

14.
AimCoffee is an important export for many developing countries, with a global annual trade value of $100 billion, but it is threatened by a warming climate. Shade trees may mitigate the effects of climate change through temperature regulation that can aid in coffee growth, slow pest reproduction, and sustain avian insectivore diversity. The impact of shade on bird diversity and microclimate on coffee farms has been studied extensively in the Neotropics, but there is a dearth of research in the Paleotropics.LocationEast Africa.MethodsWe created current and future regional Maxent models for avian insectivores in East Africa using Worldclim temperature data and observations from the Global Biodiversity Information Database. We then adjusted current and future bioclimatic layers based on mean differences in temperature between shade and sun coffee farms and projected the models using these adjusted layers to predict the impact of shade tree removal on climatic suitability for avian insectivores.ResultsExisting Worldclim temperature layers more closely matched temperatures under shade trees than temperatures in the open. Removal of shade trees, through warmer temperatures alone, would result in reduction of avian insectivore species by over 25%, a loss equivalent to 50 years of climate change under the most optimistic emissions scenario. Under the most extreme climate scenario and removal of shade trees, insectivore richness is projected to decline from a mean of 38 to fewer than 8 avian insectivore species.Main conclusionsWe found that shade trees on coffee farms already provide important cooler microclimates for avian insectivores. Future temperatures will become a regionally limiting factor for bird distribution in East Africa, which could negatively impact control of coffee pests, but the effect of climate change can be potentially mediated through planting and maintaining shade trees on coffee farms.  相似文献   

15.
This study evaluated the hydrologic sensitivity of vernal pool ecosystems in the Central Valley of California to climatic changes projected for 2100. A vernal pool water-balance model was used to evaluate rain-fed vernal pools at four locations under future conditions projected by two contrasting global climate models. The potential for change in the duration of continuous inundation, frequency of reproductively suitable inundation events, and the seasonal distribution of inundation was quantified. The potential impact of hydrologic changes varied by species and by location. Three scales of response were identified: (a) At the regional scale, pools in the middle of the Central Valley near Merced were the most responsive to climatic changes. (b) At the local scale, smaller, shallower pools had the greatest potential to change the distribution of reproductively suitable habitat available to branchiopods. (c) At the individual pool scale, changes in precipitation will dominate changes in temperature, resulting in relatively linear responses in the duration of inundation. The ecological impact of these changes will be determined by a balance between the increasing suitability of vernal pools for branchiopod predators and the hydrologic improvement of currently marginal habitats.  相似文献   

16.
Climate change presents a new challenge for the management of invasive exotic species that threaten both biodiversity and agricultural productivity. The invasion of exotic perennial grasses throughout the globe is particularly problematic given their impacts on a broad range of native plant communities and livelihoods. As the climate continues to change, pre-emptive long-term management strategies for exotic grasses will become increasingly important. Using species distribution modelling we investigated potential changes to the location of climatically suitable habitat for some exotic perennial grass species currently in Australia, under a range of future climate scenarios for the decade centred around 2050. We focus on eleven species shortlisted or declared as the Weeds of National Significance or Alert List species in Australia, which have also become successful invaders in other parts of the world. Our results indicate that the extent of climatically suitable habitat available for all of the exotic grasses modelled is projected to decrease under climate scenarios for 2050. This reduction is most severe for the three species of Needle Grass (genus Nassella) that currently have infestations in the south-east of the continent. Combined with information on other aspects of establishment risk (e.g. demographic rates, human-use, propagule pressure), predictions of reduced climatic suitability provide justification for re-assessing which weeds are prioritised for intensive management as the climate changes.  相似文献   

17.
We apply the concept of biodiversity hotspot analysis (the identification of biogeographical regions of high species diversity) to identify invasion hotspots – areas of potentially suitable climate for multiple non‐native plant species – in Australia under current and future climates. We used the species distribution model Maxent to model climate suitability surfaces for 72 taxa, recognized as ‘Weeds of National Significance’ (WoNS) in Australia, under current and projected climate for 2020 and 2050. Current climate suitability layers were summed across all 72 species, and we observed two regions of high climatic suitability corresponding to the top 25th percentile of combined climatic suitability values across Australia. We defined these as potential invasion hotspots. Areas of climatic suitability equivalent to the hotspot regions were identified in the composite maps for 2020 and 2050, to track spatial changes in the hotspots over the two time steps. Two potential invasion hotspot regions were identified under current and projected climates: the south west corner of Western Australia (SW), and south eastern Australia (SE). Herbarium data confirmed the presence of 73% and 99% of those species predicted to be in each hotspot respectively, suggesting that the SE has greater invasion potential. The area of both hotspots was predicted to retract southward and towards the coast under future climate scenarios, reducing in size by 81% (SW) and 71% (SE) by 2050. This reduction was driven by the dominance of southern temperate invasive plant species in the WoNS list (47 of the 72), of which 44 were predicted to experience reductions in their bioclimatic range by 2050. While climate is likely to become less suitable for the majority of WoNS in the future, potential invasion hotspots based on climate suitability are likely to remain in the far south of eastern Australia, and in the far south west of Western Australia by 2050.  相似文献   

18.
With changing climate, many species are projected to move poleward or to higher elevations to track suitable climates. The prediction that species will move poleward assumes that geographically marginal populations are at the edge of the species' climatic range. We studied Pinus coulteri from the center to the northern (poleward) edge of its range, and examined three scenarios regarding the relationship between the geographic and climatic margins of a species' range. We used herbarium and iNaturalist.org records to identify P. coulteri sites, generated a species distribution model based on temperature, precipitation, climatic water deficit, and actual evapotranspiration, and projected suitability under future climate scenarios. In fourteen populations from the central to northern portions of the range, we conducted field studies and recorded elevation, slope and aspect (to estimate solar insolation) to examine relationships between local and regional distributions. We found that northern populations of P. coulteri do not occupy the cold or wet edge of the species' climatic range; mid‐latitude, high elevation populations occupy the cold margin. Aspect and insolation of P. coulteri populations changed significantly across latitudes and elevations. Unexpectedly, northern, low‐elevation stands occupy north‐facing aspects and receive low insolation, while central, high‐elevation stands grow on more south‐facing aspects that receive higher insolation. Modeled future climate suitability is projected to be highest in the central, high elevation portion of the species range, and in low‐lying coastal regions under some scenarios, with declining suitability in northern areas under most future scenarios. For P. coulteri, the lack of high elevation habitat combined with a major dispersal barrier may limit northward movement in response to a warming climate. Our analyses demonstrate the importance of distinguishing geographically vs. climatically marginal populations, and the importance of quantitative analysis of the realized climate space to understand species range limits.  相似文献   

19.
Climate is changing and, as a consequence, some areas that are climatically suitable for date palm (Phoenix dactylifera L.) cultivation at the present time will become unsuitable in the future. In contrast, some areas that are unsuitable under the current climate will become suitable in the future. Consequently, countries that are dependent on date fruit export will experience economic decline, while other countries’ economies could improve. Knowledge of the likely potential distribution of this economically important crop under current and future climate scenarios will be useful in planning better strategies to manage such issues. This study used CLIMEX to estimate potential date palm distribution under current and future climate models by using one emission scenario (A2) with two different global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR). The results indicate that in North Africa, many areas with a suitable climate for this species are projected to become climatically unsuitable by 2100. In North and South America, locations such as south-eastern Bolivia and northern Venezuela will become climatically more suitable. By 2070, Saudi Arabia, Iraq and western Iran are projected to have a reduction in climate suitability. The results indicate that cold and dry stresses will play an important role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations by identifying new areas in which to cultivate this economically important crop in the future and those areas that will need greater attention due to becoming marginal regions for continued date palm cultivation.  相似文献   

20.
Most agricultural pests are poikilothermic species expected to respond to climate change. Currently, they are a tremendous burden because of the high losses they inflict on crops and livestock. Smallholder farmers in developing countries of Africa are likely to suffer more under these changes than farmers in the developed world because more severe climatic changes are projected in these areas. African countries further have a lower ability to cope with impacts of climate change through the lack of suitable adapted management strategies and financial constraints. In this study we are predicting current and future habitat suitability under changing climatic conditions for Tuta absoluta, Ceratitis cosyra, and Bactrocera invadens, three important insect pests that are common across some parts of Africa and responsible for immense agricultural losses. We use presence records from different sources and bioclimatic variables to predict their habitat suitability using the maximum entropy modelling approach. We find that habitat suitability for B. invadens, C. cosyra and T. absoluta is partially increasing across the continent, especially in those areas already overlapping with or close to most suitable sites under current climate conditions. Assuming a habitat suitability at three different threshold levels we assessed where each species is likely to be present under future climatic conditions and if this is likely to have an impact on productive agricultural areas. Our results can be used by African policy makers, extensionists and farmers for agricultural adaptation measures to cope with the impacts of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号