首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We confirmed that cholesterol esterase accelerated the incorporation of unesterified cholesterol solubilized in bile salt micelles into differentiated Caco-2 cells under various experimental conditions. Rat pancreatic juice and bovine cholesterol esterase increased the incorporation of micellar cholesterol into rat intestinal brush border membranes. The incorporation of micellar cholesterol was not changed in the brush border membranes enriched in and depleted of cholesterol esterase. The results suggest that the accelerated incorporation of micellar cholesterol by cholesterol esterase into absorptive cells is not mediated by the enzyme bound to the brush border membranes.  相似文献   

2.
We confirmed that cholesterol esterase accelerated the incorporation of unesterified cholesterol solubilized in bile salt micelles into differentiated Caco-2 cells under various experimental conditions. Rat pancreatic juice and bovine cholesterol esterase increased the incorporation of micellar cholesterol into rat intestinal brush border membranes. The incorporation of micellar cholesterol was not changed in the brush border membranes enriched in and depleted of cholesterol esterase. The results suggest that the accelerated incorporation of micellar cholesterol by cholesterol esterase into absorptive cells is not mediated by the enzyme bound to the brush border membranes.  相似文献   

3.
The maximal micellar solubility, distribution and apparent monomer activity of cholesterol in taurine-conjugated cholate and chenodeoxycholate micellar solutions were studied to clarify the different modulating effect of these bile salt species on cholesterol uptake in an intestinal lumen. The maximal micellar solubility was significantly greater in taurochenodeoxycholate. The intermicellar cholesterol monomer concentration was not significantly different between the two kinds of micellar solution. However, the apparent cholesterol monomer activity determined using an artificial organic phase (polyethylene disc) was significantly higher in taurocholate than that in taurochenodeoxycholate. A linear relationship between the intermicellar cholesterol concentration and the apparent cholesterol monomer activity was found, with the slope depending upon the bile salt species. It is concluded that the difference in partitioning of cholesterol from taurocholate and taurochenodeoxycholate micelles into a fixed organic phase may contribute in part to the different regulating effects of these bile salts on the uptake of cholesterol in the intraluminal phase.  相似文献   

4.
We reported previously that lysophosphatidylcholine remarkably enhanced β-carotene uptake from bile acid-mixed micelles by human intestinal Caco-2 cells. In the present study, we evaluated how mixed micelle components other than phospholipids, viz., fatty acids, monoolein, and cholesterol, affect carotenoid uptake by Caco-2 cells. Each component influenced the β-carotene uptake in a different way depending on micellar composition. Oleic acid at 200 μM significantly enhanced uptake in the absence of lysophosphatidylcholine. Cholesterol at 40 μM significantly reduced uptake in the presence of lysophosphatidylcholine, while no reduction was found in the presence of 200 μM oleic acid. Facilitated diffusion was suggested partly to mediate uptake in mixed micelles, except for mixed micelles containing 200 μM oleic acid. Uptake mediated by facilitated diffusion was approximately 20% of total uptake. Mixed micellar lipids have the potential to modify intestinal uptake.  相似文献   

5.
The effect of bile salts and other surfactants on the rate of incorporation of cholesterol into isolated brush-border membranes was tested. At constant cholesterol concentration, a stimulatory effect of taurocholate was noticed which increased as the bile salt concentration was raised to 20 mM. Taurodeoxycholate was as effective as taurocholate at concentrations of up to 5 mM and inhibited at higher concentrations. Glycocholate was only moderately stimulatory whereas cholate was nearly as effective as taurocholate at concentrations above 5 mM. Other surfactants such as sodium lauryl sulfate and Triton X-100 were very inhibitory at all concentrations tried whereas cetyltrimethyl ammonium chloride was stimulatory only at a very low range of concentrations. These micellizing agents all caused some disruption of the membranes and the greater effectiveness of taurocholate in stimulating sterol uptake was partly relatable to the weaker membrane solubilizing action of this bile salt. Preincubation of membranes with 20 mM taurocholate followed by washing and exposure to cholesterol-containing lipid suspensions lacking bile salt, did not enhance the incorporation of the sterol. In the absence of bile salt the incorporation of cholesterol was unaffected by stirring of the incubation mixtures. Increasing the cholesterol concentration in the mixed micelle while keeping the concentration of bile salt constant caused an increase in rate of sterol incorporation. This increased rate was seen whether the cholesterol suspension was turbid, i.e., contained non-micellized cholesterol, or whether it was optically-clear and contained only monomers and micelles. When the concentration of taurocholate and cholesterol were increased simultaneously such that the concentration ratio of these two components was kept constant, there resulted a corresponding increase in rate of cholesterol uptake. The initial rates of cholesterol incorporation from suspensions containing micellar and monomer forms of cholesterol were much larger than from solutions containing only monomers of the same concentration. The rates of incorporation of cholesterol and phosphatidylethanolamine from mixed micelles containing these lipids in equimolar concentrations were very different. The results as a whole suggest at least for those experimental conditions specified in this study, that uptake of cholesterol by isolated brush-border membranes involves both the monomer and micellar phases of the bulk lipid and that the interaction of the micelles with membrane does not likely involve a fusion process.  相似文献   

6.
Both phosphatidylcholine (PC) and sphingomyelin (SM) are the major phospholipids in the outer leaflet of the hepatocyte canalicular membrane. Yet, the phospholipids secreted into bile consist principally (>95%) of PC. In order to understand the physical;-chemical basis for preferential biliary PC secretion, we compared interactions with bile salts (taurocholate) and cholesterol of egg yolk (EY)SM (mainly 16:0 acyl chains, similar to trace SM in bile), buttermilk (BM)SM (mainly saturated long (>20 C-atoms) acyl chains, similar to canalicular membrane SM) and egg yolk (EY)PC (mainly unsaturated acyl chains at sn-2 position, similar to bile PC). Main gel to liquid-crystalline transition temperatures were 33. 6 degrees C for BMSM and 36.6 degrees C for EYSM. There were no significant effects of varying phospholipid species on micellar sizes or intermixed-micellar/vesicular bile salt concentrations in taurocholate-phospholipid mixtures (3 g/dL, 37 degrees C, PL/BS + PL = 0.2 or 0.4). Various phases were separated from model systems containing both EYPC and (EY or BM)SM, taurocholate, and variable amounts of cholesterol, by ultracentrifugation with ultrafiltration and dialysis of the supernatant. At increasing cholesterol content, there was preferential distribution of lipids and enrichment with SM containing long saturated acyl chains in the detergent-insoluble pelletable fraction consisting of aggregated vesicles. In contrast, both micelles and small unilamellar vesicles in the supernatant were progressively enriched in PC. Although SM containing vesicles without cholesterol were very sensitive to micellar solubilization upon taurocholate addition, incorporation of the sterol rendered SM-containing vesicles highly resistant against the detergent effects of the bile salt. These findings may have important implications for canalicular bile formation.  相似文献   

7.
Intraluminal phospholipids affect micellar solubilization and absorption of cholesterol. We here study cholesterol transport from taurocholate-phospholipid-cholesterol micelles to CaCo2 cells, and associated effects on ABC-A1 mediated cholesterol efflux. Micellar incorporation of egg-yolk-phosphatidylcholine markedly increased apical retention of the sterol with decreased expression of ABC-A1, an effect that is prevented by synthetic liver X receptor (LXR) or retinoid X receptor (RXR) agonists. On the other hand, incorporation of lyso-phosphatidylcholine (LysoPC) increased ABC-A1-HDL-dependent basolateral cholesterol efflux, an effect that is abated when LXR is silenced. Thus, the modulation of cholesterol metabolism via intraluminal phospholipids is related to the activity of the oxysterol nuclear receptor LXR.  相似文献   

8.
Caco-2 cells were used as a model for investigating and comparing the absorption of alpha-tocopherol (Tol) and alpha-tocopheryl acetate (Tac) solubilized in micelles based on a mixture of sodium taurocholate (NaTC) and oleic acid. Surprisingly, the uptake of Tac was found to be similar to that of Tol, and in both cases, the dose-response plots suggest that protein-mediated transport processes were involved. Moreover Tol or Tac were also secreted into the basolateral medium of Caco-2 cells but Tac was mainly hydrolyzed either prior to absorption or intracellularly. The solubilization of Tol or Tac by NaTC on the apical side of the cell monolayer is a prerequisite for the uptake process, although larger amounts of the bile salt are necessary to solubilize Tac than Tol. Caco-2 cells showed hydrolytic activity on Tac, and additional cholesterol esterase may be taken up by the cells, thus increasing the rates of intracellular hydrolysis of Tac. Based on our findings, a scheme is suggested accounting for the absorption of alpha-tocopheryl acetate by enterocytes.  相似文献   

9.
Despite the fact that a considerable amount of albumin is present in bile, little is known about the effect of albumin on micellar solubility of cholesterol. The effect of albumin on solubility of cholesterol in various micellar bile salt solutions was studied using Millipore filtration after equilibration. In addition, partitioning of cholesterol from micellar solution was studied using a polyethylene disc method. Decrease of the solubility of cholesterol by the presence of albumin was observed only in unconjugated bile salt solution. The lowering effect of albumin on the cholesterol solubility was found to be proportional to the hydrophobicity of bile salt. In contrast, albumin had almost no effect on cholesterol solubility, either in conjugated bile salt solution or in micellar bile salt solution containing phosphatidylcholine. Addition of albumin enhanced the partitioning of cholesterol out of the micelles in sodium chenodeoxycholate solution as a result of decreased micellar solubility and increased the aqueous solubility of cholesterol in the presence of albumin. Therefore, conjugated bile salt and phosphatidylcholine exert a buffering action on the albumin-induced adverse effect on cholesterol solubility, thus stabilising bile against inadvertent precipitation of cholesterol.  相似文献   

10.
Using the experimental model of the everted sac prepared from rat jejuna, kinetic studies on [14C]oleic acid uptake from bile salt micelles were conducted in the presence and absence of phosphatidylcholine. The concentration of oleic acid was varied between 0.625 and 5 mM. At every level of fatty acid concentration studied the addition of 2 mM phosphatidylcholine produced a significant inhibition of fatty acid uptake. It was further noted that the intact phospholipid molecule was required for this effect as lysophosphatidylcholine produced little, if any, inhibition of [14C]oleic acid uptake. The effect of varying the concentration of phosphatidylcholine on fatty acid uptake was also studied. The degree of inhibition was noted to be correlated grossly with media concentrations of this phospholipid although the decrease of fatty acid uptake was not strictly proportional to concentration of this material in the medium. Studies were also performed analyzing in vitro absorption of [14C]oleic acid and [3H]cholesterol simultaneously from mixed micelles composed of sodium taurocholate, oleic acid, monoolein and cholesterol. Control medium contained no phospholipid while experimental medium contained either diester or diether phosphatidylcholine, 2 mM. Both types of phosphatidylcholine caused significant inhibition of fatty acid and cholesterol uptake. In vivo absorption studies were also performed using the isolated jejunal segment technique. A mixed micellar solution containing [3H]cholesterol and [14C]oleic acid was used as the test dose. Phospholipid in the test dose for controls was supplied as lysophosphatidylcholine and for experimentals it was in the form of diether phosphatidylcholine. Significantly less radioactively labeled cholesterol and fatty acid was absorbed by experimentals as compared to controls over a 10-min period. It is concluded that the intact molecule of phosphatidylcholine inhibits intestinal uptake of cholesterol and fatty acid from mixed micellar solutions under both in vitro and in vivo conditions.  相似文献   

11.
The purpose of the present study was to evaluate the possible interaction of bile salt monomer and cholesterol in the intermicellar aqueous phase. Cholesterol and taurocholate monomer concentrations in the intermicellar aqueous phase were determined using 0-20 mM taurocholate solutions saturated with cholesterol. Maximal solubilities of cholesterol in aqueous solutions having various concentrations of taurocholate, especially below its intermicellar monomer concentration (critical micellar concentration), were determined and compared with the intermicellar cholesterol concentration. The intermicellar monomer concentration of taurocholate was constant (6 mM) and independent of taurocholate concentrations. The cholesterol concentration in the intermicellar aqueous phase gradually increased, depending upon taurocholate concentrations, and became constant (1,3 microM) above 10 mM taurocholate. The solubility of cholesterol increased linearly with the taurocholate concentration even below the critical micellar concentration, and was 0.3 microM at 6 mM taurocholate, which was approx. 20-times higher than the aqueous solubility of cholesterol, but a fifth of the maximal intermicellar cholesterol concentration. The results indicate that the higher cholesterol concentration in the intermicellar aqueous phase compared to its aqueous solubility can be primarily ascribed to the interaction of cholesterol with bile salt monomers possibly forming bile salt-cholesterol dimers, and partly to the sustaining forces induced by numerous micelles.  相似文献   

12.
Unnatural bile salts have been synthesized with a cationic group at the side chain of natural bile acids. These cationic bile salts aggregate in water and aqueous salt solutions in a manner similar to their natural counterparts. The critical micellar concentrations of the cationic bile salts were measured using a fluorescence method. Cationic bile salts aggregated at a concentration lower than natural deoxycholic acid. Since dihydroxy bile salt micelles are well known for cholesterol dissolution/removal, the dissolution in the cationic micelles has been evaluated. The cationic analogs dissolve approximately 70 mg/dL of cholesterol, which is comparable to taurochenodeoxycholate micelle under identical bile salt concentrations. Cholesterol dissolution in cationic bile salt micelle enhanced upon adding various amounts of PC. Cholesterol crystallization was studied in model bile at various cationic bile salt concentrations. The addition of 5, 15 and 30 mM of the cationic bile salts attenuated the crystallization process, without influencing the crystal observation time or decreasing the final amount of crystals formed. All these effects were comparable to those observed with cholic acid. These findings suggest that cationic bile salts have physico-chemical properties analogous to those of natural anionic bile salts, and thus may have therapeutic potential.  相似文献   

13.
The maximal equilibrium solubility of cholesterol in mixtures of phosphatidylcholine (PC)1 and bile salts depends on the cholesterol/PC ratio (Rc) and on the effective ratio (Re) between nonmonomeric bile salts and the sum (CT) of PC and cholesterol concentrations (Carey and Small, 1978; Lichtenberg et al., 1984). By contrast, the concentration of bile salts required for solubilization of liposomes made of PC and cholesterol does not depend on Rc (Lichtenberg et al., 1984 and 1988). Thus, for Rc greater than 0.4, solubilization of the PC-cholesterol liposomes yields PC-cholesterol-bile salts mixed micellar systems which are supersaturated with cholesterol. In these metastable systems, the mixed micelles spontaneously undergo partial revesiculation followed by crystallization of cholesterol. The rate of the latter processes depends upon Rc, Re, and CT. For any given Rc and Re, the rate of revesiculation increases dramatically with increasing the lipid concentration CT, reflecting the involvement of many mixed micelles in the formation of each vesicle. The rate also increases, for any given CT and Re, upon increasing the cholesterol to PC ratio, Rc, probably due to the increasing degree of supersaturation. Increasing the cholate to lipid effective ratio, Re, by elevation of cholate concentration at constant Rc and CT has a complex effect on the rate of the revesiculation process. As expected, cholate concentration higher than that required for complete solubilization at equilibrium yields stable mixed micellar systems which do not undergo revesiculation, but for lower cholate concentrations decreasing the degree of supersaturation (by increasing [cholate]) results in faster revesiculation. We interpret these results in terms of the structure of the mixed micelles; micelles with two or more PC molecules per one molecule of cholesterol are relatively stable but increasing the bile salt concentration may cause dissociation of such 1:2 cholesterol:PC complexes, hence reducing the stability of the mixed micellar dispersions. The instability of PC-cholesterol-cholate mixed systems with intermediary range of cholate to lipids ratio may be significant to gallbladder stone formation as: (a) biliary bile contains PC-cholesterol vesicles which may be, at least partially, solubilized by bile salts during the process of bile concentration in the gallbladder, resulting in mixtures similar to our model systems; and (b) the bile composition of cholesterol gallstone patients is within an intermediary range of bile salts to lipids ratio.  相似文献   

14.
(1) Mixed bile salt micelle solubilized either cholesterol or β-sitosterol to a comparable extent. When added simultaneously, β-sitosterol restricted the micellar solubility of cholesterol. (2) β-Sitosterol also reduced the cholesterol content in the aqueous (micellar) phase of the intestinal contents of rats, the extent of reduction being comparable with that observed in vitro. The intestinal uptake of cholesterol in vivo was equivalent to the micellar incorporation of cholesterol both in vitro and in vivo. (3) β-Sitosterol had no inhibitory effect on cholesterol absorption from the micellar solution in jejunal loops in situ, whereas the rate of β-sitosterol uptake was only about one-fifth that of cholesterol. (4) The intestinal uptake of β-sitosterol intubated into the stomach of rats was about one-fifth that of cholesterol. The intestinal brush-border membrane discriminated these sterols. These results suggest that the restriction of the micellar solubility of cholesterol, rather than the inhibition of uptake from brush-border membrane, is the major determinant for the interference of β-sitosterol with cholesterol absorption.  相似文献   

15.
To examine physical-chemical aspects of bile salt-phospholipid interactions that could contribute to preferential phosphatidylcholine (PC) secretion into bile, we have compared transitions between vesicles and micelles in model systems containing taurocholate (TC) and either egg-yolk PC (EYPC), egg-yolk sphingomyelin (EYSM), buttermilk SM (BMSM) or dipalmitoyl PC (DPPC). Phase transitions from micelles to vesicles were observed at 4-fold dilution of serially diluted EYPC/TC systems, but not earlier than at 16-fold dilution of SM/TC or DPPC/TC systems, indicating lower concentrations of the detergent required for micellization in the case of SM or DPPC. Cryo-transmission electron microscopy of phase transitions initiated by addition of TC to phospholipid vesicles revealed extremely long SM-containing intermediate structures, but shorter EYPC-containing intermediate structures. Again, larger amounts of bile salt were required to induce phase transitions in the case of EYPC compared to SM. Sizes of TC-phospholipid micelles increased progressively upon increasing phospholipid contents in the rank order: DPPC-TC相似文献   

16.
Mixed bile salt micelle solubilized either cholesterol or beta-sitosterol to a comparable extent. When added simultaneously, beta-sitosterol restricted the micellar solubility of cholesterol. beta-Sitosterol also reduced the cholesterol content in the aqueous (micellar) phase of the intestinal contents of rats, the extent of reduction being comparable with that observed in vitro. The intestinal uptake of cholesterol in vivo was equivalent to the micellar incorporation of cholesterol both in vitro and in vivo. beta-Sitosterol had no inhibitory effect on cholesterol absorption from the micellar solution in jejunal loops in situ, whereas the rate of beta-sitosterol uptake was only about one-fifth that of cholesterol. The intestinal uptake of beta-sitosterol intubated into the stomach of rats was about one-fifth that of cholesterol. The intestinal brush-border membrane discriminated these sterols. These results suggest that the restriction of the micellar solubility of cholesterol, rather than the inhibition of uptake from brush-border membrane, is the major determinant for the interference of beta-sitosterol with cholesterol absorption.  相似文献   

17.
Tetrahydrolipstatin (THL) derived by hydrogenation from lipstatin, a lipase inhibitor produced by Streptomyces toxytricini, has been shown to inhibit in vitro the activity of all three lipases secreted to the gastro-intestinal tract; gastric lipase, pancreatic lipase and carboxylester lipase (cholesterol ester hydrolase). The effects of THL on intestinal absorption of fat (transport to the thoracic duct chyle) has now been investigated after intraduodenal infusion in a rat model. Absorption of label from oleic acid when administered with monoolein in micellar bile salt solution was not affected by THL in concentrations up to 10(-4) M calculated on the volume of the aqueous phase. Absorption of free cholesterol in micellar bile salt solution of the lipolytic products of triolein; oleic acid and monoolein, is not significantly affected at a concentration of THL of 10(-4) M. Absorption of cholesterol from cholesteryl oleate under the same conditions is almost completely inhibited. The results indicate that absorption of free cholesterol is not dependent on the activity of pancreatic cholesterol ester hydrolase. The absorption of emulsified triolein was not significantly affected by 10(-5) M THL but decreased to around 30% of the controls by a concentration 10-times higher. There was no significant decrease of cholesterol absorption when administered in emulsified triolein while absorption of cholesteryl oleate was reduced at both concentrations of THL and almost completely at 10(-4) M. Radioactivity from [2-14C]THL when administered emulsified in triolein was recovered in urine, bile and thoracic duct lymph to 10-14, 8-13 and 1-3%, respectively, largely independent on dose administered. Label from [1"-14C] THL was recovered in the same amounts in lymph but much less in bile and urine indicating that the amino acid moiety has been split off early in the absorption process.  相似文献   

18.
A nonmicellar, bile salt-independent mode of cholesterol transport in human bile involving phospholipid vesicles was recently reported by our group. In the present study, we have investigated the relative contribution of the phospholipid vesicles and mixed bile salt-phospholipid micelles to cholesterol transport in human hepatic and gallbladder biles. The vesicles (ca 800 A diameter) were demonstrated by quasi-elastic light scattering (QELS) in fresh bile and after chromatography. Gel filtration under conditions that preserved micellar integrity demonstrated that biliary cholesterol was associated with both vesicles and micelles. At low bile salt concentration, the vesicular phase was predominant and most of the cholesterol was transported by it. With increasing bile salt concentrations, a progressive solubilization of the vesicles occurred with a concomitant increase in the amount of cholesterol transported by micelles. The vesicular carrier may be of particular biological significance for cholesterol solubilization in supersaturated biles.  相似文献   

19.
The composition of the emulsified oil and of the micellar phases obtained when a glyceride-fatty acid mixture is dispersed in bile salt solution has been defined. The micellar phase in equilibrium with the emulsified oil phase was obtained by filtration through Millipore filters. The behavior of different lipids in such systems was defined as the partition ratio, micellar/emulsified oil phase (m/o). Partition of fatty acids was found to be strongly dependent on the chain length of the fatty acid and the pH of the dispersion. The curve for partition against pH for oleic acid was interpreted to show a pK(a) for oleic acid in bile salt solution of approximately 7. The partition between micellar and oil phases is given for a series of lipids of different polarity. No significant difference in behavior was found for cholesterol and sitosterol. A relationship was found between the partition m/o and filtration rates through a Millipore filter in micellar solution. The lower the partition coefficient the lower was the rate of filtration. The results obtained are discussed in relation to the mechanism of absorption of fat from the small intestine.  相似文献   

20.
In this study we analyzed functions of ATP-binding cassette (ABC) transporters involved in sterol transport from Caco-2 cells. Treatment with a synthetic liver x receptor ligand elevated both mRNA and protein levels of ABCG5, G8, and ABCA1. The ligand stimulated cholesterol efflux, suggesting that ABC transporters are involved in it. To identify the acceptors of cholesterol, potential molecules such as apolipoprotein A-I, glycocholic acid, phosphatidylcholine, and bile acid micelles were added to the medium. Apo A-I, a known acceptor of cholesterol transported by ABCA1, elevated cholesterol efflux on the basal side, whereas the others raised cholesterol efflux on the apical side. Moreover, bile acid micelles preferentially augmented plant sterol efflux rather than cholesterol. Finally, in HEK293 cells stably expressing ABCG5/G8, bile acid micelle-mediated sterol efflux was significantly accelerated. These results indicate that ABCG5/G8, unlike ABCA1, together with bile acids should participate in sterol efflux on the apical surface of Caco-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号