首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We confirmed that cholesterol esterase accelerated the incorporation of unesterified cholesterol solubilized in bile salt micelles into differentiated Caco-2 cells under various experimental conditions. Rat pancreatic juice and bovine cholesterol esterase increased the incorporation of micellar cholesterol into rat intestinal brush border membranes. The incorporation of micellar cholesterol was not changed in the brush border membranes enriched in and depleted of cholesterol esterase. The results suggest that the accelerated incorporation of micellar cholesterol by cholesterol esterase into absorptive cells is not mediated by the enzyme bound to the brush border membranes.  相似文献   

2.
Lymphatic recovery of cholesterol infused into the duodenum as bile salt micelles containing phosphatidylcholine (PC) was accelerated by the co-administration of phospholipase A2 in bile and pancreatic juice diverted rats. Previously we observed that cholesterol esterase, which has the ability to hydrolyze PC, caused the same effect under a similar experimental condition (Ikeda et al., Biochim. Biophys. Acta, 1571, 34-44 (2002)). Accelerated cholesterol absorption was also observed when a part of micellar PC was replaced by lysophosphatidylcholine (LysoPC) and oleic acid. Phospholipase A2 facilitated the incorporation of micellar cholesterol into Caco-2 cells in a dose-dependent manner. There was a highly negative correlation between the incorporation of cholesterol into Caco-2 cells and the content of micellar PC remaining in the culture medium. The release of cholesterol as a monomer from bile salt micelles was enhanced when a part of micellar PC was replaced with LysoPC and oleic acid. These results strongly suggest that the release of monomer cholesterol from bile salt micelles is accelerated by hydrolysis of PC in bile salt micelles and hence that cholesterol absorption is enhanced.  相似文献   

3.
Uptake of cholesterol by the intestinal absorptive epithelium can be selectively blocked by specific small molecules, like the sterol glycoside, L-166,143. Furthermore, (3)H-labeled L-166,143 administered orally to hamsters binds specifically to the intestinal mucosa, suggesting the existence of a cholesterol transporter. Using autoradiography, the binding site of (3)H-L-166,143 in the hamster small intestine was localized to the very apical aspect of the absorptive epithelial cells. Label was competed by non-radioactive L-166,143 and two structurally distinct cholesterol absorption inhibitors, suggesting a common site of action for these compounds. L-166,143 blocked uptake of (3)H-cholesterol into enterocytes in vivo, as demonstrated by autoradiography, suggesting that it inhibits a very early step of cholesterol absorption, incorporation into the brush border membrane. This conclusion was confirmed by studies in which intestinal brush borders were isolated from hamsters dosed with (3)H-cholesterol in the presence or absence of L-166,143. Uptake of (3)H-cholesterol into the membranes was substantially inhibited by the compound. In contrast, an inhibitor of acyl CoA:cholesterol acyltransferase, did not affect uptake of (3)H-cholesterol into the brush border membranes. These results strongly support the existence of a specific transporter that facilitates the movement of cholesterol from bile acid micelles into the brush border membranes of enterocytes.  相似文献   

4.
The regulation of acylcoenzyme A:cholesterol acyltransferase (ACAT) activity by cholesterol was studied in an established enterocyte cell line. CaCo-2 cells were grown in culture to confluency and dome formation. They were characterized morphologically by light and transmission electron microscopy. During the culture period, ACAT activity remained stable while the activities of the brush border enzymes sucrase and alkaline phosphatase progressively increased with time and plateaued 12 days after plating. As determined by the rate of incorporation of oleic acid into the individual lipid classes, the rate of triglyceride synthesis was twice that of phospholipid and 15 times that of cholesteryl ester synthesis in these cells. Incubating CaCo-2 cells with cholesterol solubilized in taurocholate micelles resulted in a significant increase in ACAT activity (149 +/- 5 pmol/dish per 2 hr vs. 366 +/- 5, (P less than 0.001) without changing the rates of triglyceride or phospholipid synthesis. The stimulation of ACAT activity by micellar cholesterol was rapid, occurring within 5 min and reaching a maximal effect by 2 hr. The regulation of ACAT activity by cholesterol was directly dependent upon the concentration of cholesterol solubilized in the micelle and was independent of protein synthesis. Incubating CaCo-2 cells with micellar cholesterol did not increase the esterification of, nor did the cholesterol enter the pool of, newly synthesized or performed cholesterol within 2 hr. The micellar cholesterol that was taken up by the cells was esterified within 5 min after starting the incubation. Progesterone, a known ACAT inhibitor, significantly decreased the rate of esterification of intracellular micellar cholesterol proving that the cholesterol taken up by CaCo-2 cells was indeed entering the ACAT pool. Despite increasing amounts of unesterified cholesterol entering the cells via micelles, the percent of cholesterol that was esterified at any one time remained constant at 1%. The results suggest that ACAT activity in CaCo-2 cells is stimulated by cholesterol delivered to the cells by way of taurocholate micelles. The rapid entry of this sterol into the ACAT substrate pool suggests that ACAT activity in CaCo-2 cells is regulated by the expansion of the cholesterol substrate pool that is being utilized by an unsaturated ACAT enzyme.  相似文献   

5.
Summary Large differences in lipid composition of apical and basolateral membranes from epithelial cells exist. To determine the responsible mechanism(s), rat renal cortical brush border and basolateral membrane phospholipids were labeled using32P and either [3H]-glycerol or [2-3H] acetate for incorporation and degradation studies, respectively. Brush border and basolateral membrane fractions were isolated simultaneously from the same cortical homogenate. Different phospholipid classes were degraded at variable rates with phosphatidylcholine having the fastest decay rate. Decay rates for individual phospholipid classes were, however, similar in both brush border and basolateral membrane fractions. In phospholipid incorporation studies again, large variations existed between individual phospholipid classes with phosphatidylcholine and phosphatidylinositol showing the most rapid rates of incorporation. Sphingomyelin and phosphatidylserine showed extremely slow incorporation rates and did not enter into the isotopic decay phase for 48 hr. In contrast to degradation studies, however, the same phospholipid class labeled the two surface membrane domains at highly variable rates. The difference in these rates, with the exception of phosphatidylinositol, were identical to the differences in phospholipid compositions between the two membranes. For example, phosphatidylcholine was incorporated into the basolateral membrane 2.5 × faster than into the brush border membrane and its relative composition was 2.5 × greater in the basolateral membrane. The opposite was true for sphingomyelin. These results indicate incorporation and not degradation rates of individual phospholipids play a major role in regulating the differing phospholipid composition of brush border and basolateral membranes.  相似文献   

6.
Discrimination between cholesterol and sitosterol for absorption in rats   总被引:3,自引:0,他引:3  
The intestinal absorption of cholesterol and sitosterol was compared in rats. The intragastric administration of a single emulsified lipid meal containing either 50 mg of [4-14C]cholesterol or [4-14C]sitosterol resulted in the lymphatic absorption of 18.2% and 0.42% of each sterol, respectively, in 6 hr. This difference was unaltered when the mucosal sterol load was equalized by reducing the cholesterol to 1 mg in the emulsified lipid meal while maintaining the same sitosterol load or when the physical state in the lumen was equalized by infusion of a micellar solution containing both sterols into bile-diverted intestine. Lymphatic cholesterol was 90% esterified compared to 12% for sitosterol. Both sterols were associated predominantly (greater than 70%) with the chylomicron fraction. Eighty percent of the chylomicron cholesterol was recovered as ester with the core lipids, while 77% of the sitosterol was recovered as free sterol with the chylomicron coat. In mucosal homogenates at 6 hr, sitosterol recovery was one-eleventh that of cholesterol. When [3H]cholesterol (10 mg) and [14C]sitosterol (10 mg) were co-administered in an emulsified intragastric lipid meal, sitosterol associated with the brush border isolated 2 hr later was one-fifth that of cholesterol. Similar differences were seen when brush border membranes were incubated in vitro with micellar solutions containing either 50 microM [3H]cholesterol or [14C]sitosterol and the relative uptake of each sterol was unaffected by micellar phospholipid type (egg yolk phospholipids, phosphatidylcholine, or phosphatidylethanolamine).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Inhibition of cholesterol absorption in rats by plant sterols   总被引:8,自引:0,他引:8  
The extent and site(s) of inhibition of cholesterol absorption by plant sterols, sitosterol and fucosterol, were studied in rats. The intragastric administration of a single emulsified lipid meal containing 25 mg [3H]cholesterol and 25 mg of either sitosterol or fucosterol inhibited the lymphatic absorption of cholesterol by 57% and 41%, respectively, in 24 hr. Less than 2% of each plant sterol was absorbed in the 24-hr period. In contrast, neither plant sterol (50 microM) inhibited cholesterol absorption when co-administered with equimolar amounts of cholesterol in phospholipid-bile salt micelles nor was either absorbed from the micellar solution. A series of in vitro studies was conducted to identify the site(s) of plant sterol inhibition of cholesterol absorption and to account for the difference in inhibitory effectiveness of sitosterol and fucosterol. A comparison of the micellar solubility of each sterol alone and in equimolar binary mixtures (to 2.0 mM) revealed that the solubility of individual sterols decreased in the following order: cholesterol, fucosterol, sitosterol, and that in binary mixtures cholesterol solubility was decreased by sitosterol and, to a lesser extent, by fucosterol relative to its solubility alone. A comparison between micellar-solubilized cholesterol and either sitosterol or fucosterol for binding to isolated brush border membranes, intestinal mucin, or for esterification by either cholesterol esterase or acyl coenzyme A:cholesterol acyltransferase revealed moderate to no competition. The data suggest that plant sterols displace cholesterol from bile salt (taurocholate) micelles and that sitosterol is more effective than fucosterol in this capacity.  相似文献   

8.
K M Rigtrup  D E Ong 《Biochemistry》1992,31(11):2920-2926
Retinol esterified with long-chain fatty acids is a common dietary source of vitamin A. Hydrolysis of these esters in the lumen of the small intestine is required prior to absorption. Bile salt-stimulated retinyl esterase activity was present with purified rat intestinal brush border membrane, with the maximum rate of ester hydrolysis at approximately pH 8, the physiological luminal pH. Taurocholate, a trihydroxy bile salt, stimulated hydrolysis of short-chain fatty acyl retinyl esters more than hydrolysis of long-chain fatty acyl esters. Deoxycholate, a dihydroxy bile salt, primarily stimulated hydrolysis of long-chain esters. Calculated Kms of 0.74 microM for retinyl palmitate (16:0) hydrolysis and 9.6 microM for retinyl caproate (6:0) hydrolysis suggested the presence of two separate activities. Consistent with that, the activity responsible for retinyl caproate hydrolysis could be inactivated to a greater degree than retinyl palmitate hydrolysis by preincubation of the brush border membrane at 37 degrees C for extended times. Brush border membrane from animals who had undergone common duct ligation 48 h prior to tissue collection showed little ability to hydrolyze retinyl caproate but retained 70% of retinyl palmitate hydrolytic activity, compared to sham-operated controls. Thus, two distinguishable retinyl esterase activities were recovered with purified brush border membranes. One apparently originated from the pancreas, was stimulated by trihydroxy bile salts, and preferentially hydrolyzed short-chain retinyl esters, properties similar to cholesterol ester hydrolase, known to bind to the brush border. The other was intrinsic to the brush border, stimulated by both trihydroxy and dihydroxy bile salts, and preferentially hydrolyzed long-chain retinyl esters, providing the majority of activity of the brush border against dietary retinyl esters.  相似文献   

9.
The effect of taurocholate and lecithincholesterol-taurocholate mixed micelles on the structure of isolated intestinal brush border membranes was investigated by nuclear magnetic resonance (NMR). Rabbit brush border membranes isolated by a Mg2+ precipitation step were chosen for this study because of their stability and integrity as revealed by 31P NMR. Incubation of taurocholate with the brush border membranes does not induce significant solubilization of these membranes even when the taurocholate/phospholipid ratio reaches 3.0 1H NMR studies indicate that taurocholate is included in the membrane bilayer at low concentration (3 mM). However this biliary salt produces a size diminution of the vesicles when its concentration increases. Incorporation of lecithin or lecithin-cholesterol in micelles of taurocholate and subsequent incubation with brush border membranes lead simultaneously to a decrease in the 31P NMR isotropic/bilayer line ratio, and to an increase in . These results indicate a protective effect of these compounds against lytic damage of taurocholate. Futhermore the equilibrium distribution of lecithin between mixed micelles and the membrane bilayer is strongly in favour of complete integration of micellar components in the bilayer. These data suggest that uptake of lipids from the micellar phase by isolated brush border membranes involves an interaction of the micelles with membranes followed by a fusion process.  相似文献   

10.
Bile salt-stimulated cholesterol esterase is synthesized in the pancreatic acinar cells and is released into the intestinal lumen where it catalyzes cholesterol absorption. In the current study, Caco-2 cells were used as an in vitro model to study the interaction between the pancreatic cholesterol esterase with intestinal cells. Results showed that addition of increasing concentrations of cholesterol esterase in the incubation medium increased the uptake of micellar cholesteryl oleate by Caco-2 cells. The cholesterol esterase also increased the cellular uptake of the nonhydrolyzable cholesteryl linoleoyl ether. However, maximum uptake of the cholesteryl ether analog was 50% of that for cholesteryl oleate. The initial interaction of cholesterol esterase with Caco-2 cells was mediated by binding of the protein to a low affinity and high capacity binding site on the cell surface. Cholesterol esterase bound to the cell surface could be internalized via a monensin-sensitive mechanism. The cholesterol esterase taken up by the cells had a short residence time and was either degraded or was rapidly re-secreted from the cells. Chloroquine had no effect on the degradation or re-secretion of cholesterol esterase by Caco-2 cells, indicating that lysosomes were not involved with these processes. The cholesterol esterase taken up by the cells was not available to mediate further cholesterol uptake. These results indicated that the bile salt-stimulated cholesterol esterase secreted from pancreas could facilitate intestinal lipid absorption only transiently. The data suggest that the regulation of cholesterol esterase synthesis and secretion by the pancreas may be important for regulation of cholesterol absorption.  相似文献   

11.
This study was performed to investigate the effect of cholesterol content, surface charge and sterical stabilization on the physico-chemical properties of liposomes prepared from the cancerostatic alkylphospholipid, octadecyl-1,1-dimethyl-piperidino-4-yl-phosphate (D21266), and their relationship to in vitro cytotoxicity. Stable incorporation of OPP into liposomes was found to be highly dependent on the cholesterol content. 31P-NMR spectroscopy as well as analysis of the lipid composition of OPP-containing liposome formulations revealed an increase in the amount of non-liposome-associated, micellar OPP as the cholesterol content decreased. The fraction of non-liposome-associated OPP constituted about 10% of total OPP when cholesterol was present in equimolar amounts (45.5/45.5 mol %) and increased to approximately 30% at a twofold excess of OPP over cholesterol (58.8/29.4 mol %). In monolayer incorporation studies it was shown that the existence of an increasing micellar pool of lipids leads to increased lipid transfer into the target monolayer. Liposome formulations containing more OPP than cholesterol were also found to display greater cytotoxicity. However, all liposome formulations were less cytotxic than pure (micellar) OPP. Cytotoxicity was not affected by the incorporation of N-methoxy-polyethyleneglycol2000-phosphoethanolamine, a lipid that is known to reduce liposome uptake into phagocytic cells. The results demonstrate that the increase in cell toxicity correlates with the increase in non-liposome-associated, micellar OPP, which can readily exchange into cellular membranes. Received: 4 October 2000/Revised: 29 March 2001  相似文献   

12.
We compared cholesterol uptake into brush border membrane vesicles (BBMV) made from the small intestines of either wild-type or Niemann-Pick C1-like 1 (NPC1L1) knockout mice to elucidate the contribution of NPC1L1 to facilitated uptake; this uptake involves cholesterol transport from lipid donor particles into the BBM of enterocytes. The lack of NPC1L1 in the BBM of the knockout mice had no effect on the rate of cholesterol uptake. It follows that NPC1L1 cannot be the putative high-affinity, ezetimibe-sensitive cholesterol transporter in the brush border membrane (BBM) as has been proposed by others. The following findings substantiate this conclusion: (I) NPC1L1 is not a brush border membrane protein but very likely localized to intracellular membranes; (II) the cholesterol absorption inhibitor ezetimibe and its analogues reduce cholesterol uptake to the same extent in wild-type and NPC1L1 knockout mouse BBMV. These findings indicate that the prevailing belief that NPC1L1 facilitates intestinal cholesterol uptake into the BBM and its interaction with ezetimibe is responsible for the inhibition of this process can no longer be sustained.  相似文献   

13.
Recent studies have documented the importance of Niemann-Pick C1-like 1 protein (NPC1L1), a putative physiological target of the drug ezetimibe, in mediating intestinal cholesterol absorption. However, whether NPC1L1 is the high affinity cholesterol binding protein on intestinal brush border membranes is still controversial. In this study, brush border membrane vesicles (BBMV) from wild type and NPC1L1-/- mice were isolated and assayed for micellar cholesterol binding in the presence or absence of ezetimibe. Results confirmed the loss of the high affinity component of cholesterol binding when wild type BBMV preparations were incubated with antiserum against the class B type 1 scavenger receptor (SR-BI) in the reaction mixture similar to previous studies. Subsequently, second order binding of cholesterol was observed with BBMV from wild type and NPC1L1-/- mice. The inclusion of ezetimibe in these in vitro reaction assays resulted in the loss of the high affinity component of cholesterol interaction. Surprisingly, BBMVs from NPC1L1-/- mice maintained active binding of cholesterol. These results documented that SR-BI, not NPC1L1, is the major protein responsible for the initial high affinity cholesterol ligand binding process in the cholesterol absorption pathway. Additionally, ezetimibe may inhibit BBM cholesterol binding through targets such as SR-BI in addition to its inhibition of NPC1L1.  相似文献   

14.
The effect of bile salts and other surfactants on the rate of incorporation of cholesterol into isolated brush-border membranes was tested. At constant cholesterol concentration, a stimulatory effect of taurocholate was noticed which increased as the bile salt concentration was raised to 20 mM. Taurodeoxycholate was as effective as taurocholate at concentrations of up to 5 mM and inhibited at higher concentrations. Glycocholate was only moderately stimulatory whereas cholate was nearly as effective as taurocholate at concentrations above 5 mM. Other surfactants such as sodium lauryl sulfate and Triton X-100 were very inhibitory at all concentrations tried whereas cetyltrimethyl ammonium chloride was stimulatory only at a very low range of concentrations. These micellizing agents all caused some disruption of the membranes and the greater effectiveness of taurocholate in stimulating sterol uptake was partly relatable to the weaker membrane solubilizing action of this bile salt. Preincubation of membranes with 20 mM taurocholate followed by washing and exposure to cholesterol-containing lipid suspensions lacking bile salt, did not enhance the incorporation of the sterol. In the absence of bile salt the incorporation of cholesterol was unaffected by stirring of the incubation mixtures. Increasing the cholesterol concentration in the mixed micelle while keeping the concentration of bile salt constant caused an increase in rate of sterol incorporation. This increased rate was seen whether the cholesterol suspension was turbid, i.e., contained non-micellized cholesterol, or whether it was optically-clear and contained only monomers and micelles. When the concentration of taurocholate and cholesterol were increased simultaneously such that the concentration ratio of these two components was kept constant, there resulted a corresponding increase in rate of cholesterol uptake. The initial rates of cholesterol incorporation from suspensions containing micellar and monomer forms of cholesterol were much larger than from solutions containing only monomers of the same concentration. The rates of incorporation of cholesterol and phosphatidylethanolamine from mixed micelles containing these lipids in equimolar concentrations were very different. The results as a whole suggest at least for those experimental conditions specified in this study, that uptake of cholesterol by isolated brush-border membranes involves both the monomer and micellar phases of the bulk lipid and that the interaction of the micelles with membrane does not likely involve a fusion process.  相似文献   

15.
The transport of d-glucose by brush border membranes isolated from the rabbit renal cortex was studied. At concentrations less than 2 mM, the rate of d-glucose uptake increased linearly with the concentration of the sugar. No evidence was found for a “high-affinity” (μM) saturable site. Saturation was indicated at concentrations of d-glucose greater than 5 mM. The uptake of d-glucose was stereospecific and selectively inhibited by d-galactose and other sugars. Phlorizin inhibited the uptake of d-glucose in the presence and absence of Na+. The glycoside was a potent inhibitor of the efflux of d-glucose. Preloading the brush border membrane vesicles with d-glucose, but not with l-glucose, accelerated exchange diffusion of d-glucose. These results demonstrate that the uptake of d-glucose by renal brush borders represents transport into an intravesicular space rather than solely binding. The rate of d-glucose uptake was increased when the Na+ in the extravesicular medium was high and the membranes were preloaded with a Na+-free medium. The rate of d-glucose uptake was inhibited by preloading the brush border membranes with Na+. These results are consistent with the Na+ gradient hypothesis for d-glucose transport in the kidney. Thus, the presence of a Na+-dependent facilitated transport of d-glucose in isolated renal brush border membranes is indicated. This finding is consistent with what is known of the transport of the sugar in more physiologically intact preparations and suggests that the membranes serve as an effective model system in examining the mechanism of d-glucose transport in the kidney.  相似文献   

16.
A procedure was developed for the analytical isolation of brush border and basal lateral plasma membranes of intestinal epithelial cells. Brush border fragments were collected by low speed centrifugation, disrupted in hypertonic sorbitol, and subjected to density gradient centrifugation for separation of plasma membranes from nuclei and core material. Sucrase specific activity in the purified brush border plasma membranes was increased fortyfold with respect to the initial homogenate. Basal lateral membrane were harvested from the low speed supernatant and resolved from other subcellular components by equilibrium density gradient centrifugation. Recovery of Na, K-ATPase activity was 94%, and 61% of the recovered activity was present in a single symmetrical peak. The specific activity of Na, K-ATPase was increased twelvefold, and it was purified with respect to sucrase, succinic dehydrogenase, NADPH-cytochrome c reductase, nonspecific esterase, beta-glucuronidase, DNA, and RNA. The observed purification factors are comparable to results reported for other purification procedures, and the yield of Na, K-ATPase is greater by a factor of two than those reported for other procedures which produce no net increase in the Na, K-ATPase activity. Na, K-ATPase rich membranes are shown to originate from the basal lateral plasma membranes by the patterns of labeling that were produced when either isolated cells or everted gut sacs were incubated with the slowly permeating reagent 35S-p-(diazonium)-benzenesulfonic acid. In the former case subsequently purified Na, K-ATPase rich and sucrase rich membranes are labeled to the same extent, while in the latter there is a tenfold excess of label in the sucrase rich membranes. The plasma membrane fractions were in both cases more heavily labeled than intracellular protein. Alkaline phosphatase and calcium-stimulated ATPase were present at comparable levels on the two aspects of the epithelial cell plasma membrane, and 25% of the acid phosphatase activity was present on the basal lateral membrane, while it was absent from the brush border membrane. Less than 6% of the total Na, K-ATPase was present in brush border membranes.  相似文献   

17.
The physical state of the membrane lipid of brush border membranes, prepared from rat small intestinal villus and crypt cells, was examined by steady-state fluorescence polarization using three lipid-soluble fluorophors. Membranes prepared from crypt cells were found to possess a higher lipid fluidity than those of villus cells with each probe. Analysis of the composition of these membranes revealed that those from crypt cells had lower ratios of cholesterol/phospholipid (mol/mol), protein/lipid (w/w), and saturated fatty acyl chains/unsaturated chains (w/w). Alterations in the levels of stearic (18:0) and oleic (18:1) acids were responsible for differences in the latter ratio. The results, therefore, demonstrate that alterations in the lipid composition and fluidity of brush border membranes of enterocytes occur during the process of differentiation.  相似文献   

18.
Pretreatment of the D-deficient chick with 1,25-dihydroxyvitamin D3 increases de novo synthesis of phosphatidylcholine by a stimulation of CDP-choline: sn-1,2-diacylglycerol choline-phosphotransferase reaction. The time course of change in the incorporation of [3H]choline and [14C]ethanolamine into the brush border lipid fraction after 1,25-dihydroxyvitamin D3 treatment correlates closely with the time course of change in calcium uptake into the brush border membrane vesicles. Prior treatment with cycloheximide does not block this increase in phosphatidylcholine synthesis. In addition, 1,25-dihydroxyvitamin D3 administration increases the incorporation of [3H]arachidonic acid into the phosphatidylcholine fraction of the brush border to a great extent but does not increase the incorporation of [3H]palmitic acid into the phosphatidylcholine fraction. The incorporation of these 3H labeled fatty acids into diacylglycerol is not changed by 1,25-dihydroxyvitamin D3. These data indicate that 1,25-dihydroxyvitamin D3 enhances the synthesis of phosphatidylcholine independent of new protein synthesis, and also increases the incorporation of unsaturated fatty acids into phosphatidylcholine. From these results we suggest that changes in phospholipid metabolism in the enterocyte are the mechanisms by which 1,25-dihydroxyvitamin D3 acts to enhance calcium entry across the brush border membrane.  相似文献   

19.
The distribution of cholesterol in the plasma membrane of epithelial cells has been determined using renal brush border vesicles as a model. In brush borders treated with Brevibacterium sp. or Nocardia erythropolis cholesterol oxidases, a significant fraction of the free cholesterol was oxidized rapidly, without glutaraldehyde fixation, and the remaining cholesterol was oxidized at a slower rate. The size of the readily accessible cholesterol pool, however, depended on the enzyme used, varying from 16% of the total in membranes treated with N. erythropolis oxidase, to 27% using the Brevibacterium sp. enzyme. The slowly accessible pool detected by the Brevibacterium oxidase was suppressed upon sphingomyelinase addition. On the other hand, the restricted activity of the Nocardia oxidase might depend on phosphatidylcholine/cholesterol interactions. These results indicate that cholesterol distribution is heterogeneous in intact renal brush border vesicles. They suggest that, as proposed for model system [Demel, R.A. Jansen, J.W.C.M., van Dijck, P.W.M., & van Deenen, L.L.M. (1977) Biochim. Biophys. Acta 465, 1-10], preferential interactions between some classes of phospholipids and cholesterol define cholesterol pools in the plasma membrane of epithelial cells.  相似文献   

20.
The mechanisms by which the duodenal mucosa absorbs iron are unknown. Insorption into absorptive cells of luminal iron bound to transferrin via receptor-mediated endocytosis has been hypothesized, but transferrin and transferrin receptor are absent in apical microvillous brush borders of small bowel biopsies taken from fasted patients and normal volunteers. We hypothesized that a normal iron-containing diet might induce the transient appearance of transferrin and transferrin receptor in apical brush borders of small intestinal absorptive cells in a normal mouse that was provided iron-containing chow until the moment of sacrifice. Light and electron microscopic immunolocalization of transferrin and transferrin receptor in proximal small intestinal absorptive cells was limited to basolateral membranes and coated pits of cells predominantly in the crypts and basal regions of the villi. Transferrin and transferrin receptor were not detected in apical microvillous brush border membranes of these enterocytes. In parallel immunolocalization protocols designed to show the ability to immunodetect other antigens at these locations, maltase and proteoglycan were demonstrated in apical microvillous brush border membranes and in basolateral membranes, respectively, in absorptive cells of small intestinal villous tip, base, and crypt regions. Furthermore, transferrin and transferrin receptor were immunolocalized in hepatocyte sinusoidal microvillus membranes. We conclude that food does not induce the appearance of immunodetectable transferrin and transferrin receptor in the apical microvilli of small intestinal absorptive cells and, therefore, that these iron transport proteins are not involved in the apical microvillous membrane transport of luminal dietary iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号