首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria are the main source of energy in eukaryotic cells. They also play an important role in the number of other processes, such as regulation of calcium concentration and sequestration of apoptotic factors. Almost all functions of mitochondria depend on their ability to generate and maintain membrane potential by means of aerobic respiration. The level of mitochondrial potential is under the control of different inner and outer factors. However, mechanisms of this regulation are still poorly understood. In the present study we answer the question of how membrane potential of mitochondria depends on their motility. Using the potential-dependent dye MitoTracker Red, fluorescent microscopy of live cells, and the analysis of mitochondrial motility, two sub-populations of mitochondria were determined: (1) moving mitochondria transported along microtubules and (2) stationary mitochondria. We have shown that stationary mitochondria have higher membrane potential than moving mitochondria. It was also found that the level of potential of mitochondria is regulated by their interaction with vimentin intermediate filaments.  相似文献   

2.
Although natural and synthetic ionophores are widely exploited in cell studies, for example, to influence cytoplasmic free calcium concentrations and to depolarize in situ mitochondria, their inherent lack of membrane selectivity means that they affect the ion permeability of both plasma and mitochondrial membranes. A similar ambiguity affects the interpretation of signals from fluorescent membrane-permeant cations (usually termed "mitochondrial membrane potential indicators"), because the accumulation of these probes is influenced by both plasma and mitochondrial membrane potentials. To resolve some of these problems a technique is developed to allow simultaneous monitoring of plasma and mitochondrial membrane potentials at single-cell resolution using a cationic and anionic fluorescent probe. A computer program is described that transforms the fluorescence changes into dynamic estimates of changes in plasma and mitochondrial potentials. Exploiting this technique, primary cultures of rat cerebellar granule neurons display a concentration-dependent response to ionomycin: low concentrations mimic nigericin by hyperpolarizing the mitochondria while slowly depolarizing the plasma membrane and maintaining a stable elevated cytoplasmic calcium. Higher ionomycin concentrations induce a stochastic failure of calcium homeostasis that precedes both mitochondrial depolarization and an enhanced rate of plasma membrane depolarization. In addition, the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone only selectively depolarizes mitochondria at submicromolar concentrations. ATP synthase reversal following respiratory chain inhibition depolarizes the mitochondria by 26 mV.  相似文献   

3.
Permeant cationic fluorescent probes are shown to be selectively accumulated by the mitochondria of living cells. Mitochondria-specific interaction of such molecules is apparently dependent on the high trans- membrane potential (inside negative) maintained by functional mitochondria. Dissipation of the mitochondrial trans-membrane and potential by ionophores or inhibitors of electron transport eliminates the selective mitochondrial association of these compounds. The application of such potential-dependent probes in conjunction with fluorescence microscopy allows the monitoring of mitochondrial membrane potential in individual living cells. Marked elevations in mitochondria- associated probe fluorescence have been observed in cells engaged in active movement. This approach to the analysis of mitochondrial membrane potential should be of value in future investigations of the control of energy metabolism and energy requirements of specific biological functions at the cellular level.  相似文献   

4.
The relationship between the plasma membrane potential and activation of sperm motility and respiration, or induction of the acrosome reaction, was explored in sperm of the sea urchin Strongylocentrotus purpuratus. Plasma and mitochondrial membrane potentials were estimated by measuring the uptake of [14C]thiocyanate ( [14C]SCN-) and [3H]tetraphenylphosphonium ( [3H]TPP+) in intact sperm and sperm made permeant with digitonin. Mitochondrial potentials up to-185 mV were found, consistent with data for TPP+ uptake into mitochondria from other cell types. Values for TPP+ uptake corrected for mitochondrial accumulation and estimates of SCN- uptake both indicated that the plasma membrane potential was about -30 mV for actively respiring sperm in seawater and about -60 mV for quiescent sperm in Na+-free seawater. Activation of sperm motility and respiration induced by Na+ increased the intracellular pH and caused a depolarization of both the plasma membrane and mitochondrial potentials. However, membrane potential depolarization did not occur when the activation was induced by increased extracellular pH or by the peptide speract, although activation was always linked to increased intracellular pH. The acrosome reaction, on the other hand, was always associated with sperm plasma membrane potential depolarization, whether it was induced by the physiological effector from the egg surface or by several artificial triggering regimens. Thus, activation of respiration and motility is primarily controlled by increased intracellular pH (Christen, R., Schackmann, R. W., and Shapiro, B. M. (1982) J. Biol. Chem. 257, 14881-14890), whereas the acrosome reaction also requires depolarization of the plasma membrane potential.  相似文献   

5.
Several recent works show structurally and functionally dynamic contacts between mitochondria, the plasma membrane, the endoplasmic reticulum, and other subcellular organelles. Many cellular processes require proper cooperation between the plasma membrane, the nucleus and subcellular vesicular/tubular networks such as mitochondria and the endoplasmic reticulum. It has been suggested that such contacts are crucial for the synthesis and intracellular transport of phospholipids as well as for intracellular Ca2+ homeostasis, controlling fundamental processes like motility and contraction, secretion, cell growth, proliferation and apoptosis. Close contacts between smooth sub-domains of the endoplasmic reticulum and mitochondria have been shown to be required also for maintaining mitochondrial structure. The overall distance between the associating organelle membranes as quantified by electron microscopy is small enough to allow contact formation by proteins present on their surfaces, allowing and regulating their interactions. In this review we give a historical overview of studies on organelle interactions, and summarize the present knowledge and hypotheses concerning their regulation and (patho)physiological consequences.  相似文献   

6.
Dynamic subcompartmentalization of the mitochondrial inner membrane   总被引:1,自引:0,他引:1       下载免费PDF全文
The inner membrane of mitochondria is organized in two morphologically distinct domains, the inner boundary membrane (IBM) and the cristae membrane (CM), which are connected by narrow, tubular cristae junctions. The protein composition of these domains, their dynamics, and their biogenesis and maintenance are poorly understood at the molecular level. We have used quantitative immunoelectron microscopy to determine the distribution of a collection of representative proteins in yeast mitochondria belonging to seven major processes: oxidative phosphorylation, protein translocation, metabolite exchange, mitochondrial morphology, protein translation, iron-sulfur biogenesis, and protein degradation. We show that proteins are distributed in an uneven, yet not exclusive, manner between IBM and CM. The individual distributions reflect the physiological functions of proteins. Moreover, proteins can redistribute between the domains upon changes of the physiological state of the cell. Impairing assembly of complex III affects the distribution of partially assembled subunits. We propose a model for the generation of this dynamic subcompartmentalization of the mitochondrial inner membrane.  相似文献   

7.
Reactive oxygen species (ROS) are formed upon incomplete reduction of molecular oxygen (O2) as an inevitable consequence of mitochondrial metabolism. Because ROS can damage biomolecules, cells contain elaborate antioxidant defense systems to prevent oxidative stress. In addition to their damaging effect, ROS can also operate as intracellular signaling molecules. Given the fact that mitochondrial ROS appear to be only generated at specific sites and that particular ROS species display a unique chemistry and have specific molecular targets, mitochondria-derived ROS might constitute local regulatory signals. The latter would allow individual mitochondria to auto-regulate their metabolism, shape and motility, enabling them to respond autonomously to the metabolic requirements of the cell. In this review we first summarize how mitochondrial ROS can be generated and removed in the living cell. Then we discuss experimental strategies for (local) detection of ROS by combining chemical or proteinaceous reporter molecules with quantitative live cell microscopy. Finally, approaches involving targeted pro- and antioxidants are presented, which allow the local manipulation of ROS levels.  相似文献   

8.
Mitochondrial membrane potential in aging cells   总被引:8,自引:0,他引:8  
Decreased mitochondrial membrane potential (DeltaPsi(M)) has been found in a variety of aging cell types from several mammalian species. The physiological significance and mechanisms of the decreased DeltaPsi(M) in aging are not well understood. This review considers the generation of DeltaPsi(M) and its role in ATP generation together with factors that modify DeltaPsi(M) with emphasis on mitochondrial membrane permeability, particularly the role of a multiprotein membrane megapore, the mitochondrial permeability transition pore complex (PTPC). Previous data showing decreased DeltaPsi(M) in aged cells is considered in relation to the methods available to estimate DeltaPsi(M). In the past the majority of studies used whole cell rhodamine 123 fluorescence to estimate DeltaPsi(M) in lymphocytes from mice or rats. Imaging of DeltaPsi(M) in living, in situ mitochondria using laser confocal scanning microscopy offers advantages over whole cell measurements or those from isolated mitochondria, particularly if several different potentiometric dyes are employed. Furthermore, high resolution imaging of the newer fixable potentiometric dyes allows immunocytochemistry for specific proteins and DeltaPsi(M) to be examined in the same cells or even the same mitochondria. We found that decreased DeltaPsi(M) in p53 overexpression-induced or naturally occurring senescence is associated with decreased responsiveness of the PTPC to agents that induce either its opening or closing. The decreased PTPC responsiveness seems to reflect, at least in part, decreased levels of a key PTPC protein, the adenine nucleotide translocase. We also consider the possible basis for decreased DeltaPsi(M) in fibroblasts from patients with Parkinson's disease, an age-related neurodegenerative disease. Finally, we speculate on the mechanisms and functional significance of decreased DeltaPsi(M) in aging.  相似文献   

9.
An efficient isolation of mitochondria from cells under physiological conditions is crucial for many studies in life sciences but still challenging in many cases such as in metabolic characterization of mitochondria. In this work, four methods for the disruption of Chinese hamster ovary cells were evaluated regarding their influence on mitochondrial integrity and yield. After cell disruption, mitochondria released from cells were separated from the remaining cell homogenate by differential centrifugation. Sonication was shown to be a rapid and sensitive isolation method. Yields of 14.0 ± 0.3 mg raw mitochondrial protein per 108 cells were obtained. The mitochondria were morphologically intact, with membrane integrities of 67% (outer membrane) to 94% (inner membrane). Compared with the methods using Dounce homogenization, digitonin permeabilization, or electroporation for cell disruption the ultrasound method provided the highest yield of isolated mitochondria. Furthermore, this method is rapid (≈ 45 s for disruption), more robust than Dounce homogenization regarding their influence on mitochondrial integrity and especially suitable for preparing a relatively large amount of mitochondria. The results of this work can be helpful for quantitative and dynamic studies of molecular processes related to mitochondria under physiological conditions for many questions in both biomedicine and biotechnology.  相似文献   

10.
Heterogeneity of mitochondria has been reported for a number of various cell types. Distinct mitochondrial subpopulations may be present in the cell and may be differently involved in physiological and pathological processes. However, the origin and physiological roles of mitochondrial heterogeneity are still unknown. In mice skeletal muscle, a much higher oxidized state of subsarcolemmal mitochondria as compared with intermyofibrillar mitochondria has been demonstrated. Using confocal imaging technique, we present similar phenomenon for rat soleus and gastrocnemius muscles, where higher oxidative state of mitochondrial flavoproteins correlates also with elevated mitochondrial calcium. Moreover, subsarcolemmal mitochondria demonstrate distinct arrangement and organization. In HL-1 cardiomyocytes, long thread mitochondria and small grain mitochondria are observed irrespective of a particular cellular region, showing also heterogeneous membrane potential and ROS production. Possible physiological roles of intracellular mitochondrial heterogeneity and specializations are discussed.  相似文献   

11.
Tumour cells contain mitochondria with elevated membrane potentials compared with normal cells, and thus this feature provides a selective target for destroying tumour cells. To improve mitochondrial-based therapies, a better understanding of the factors involved in regulating mitochondria are required. Since v-fos overexpression has been shown to elevate mitochondrial membrane potentials in rat fibroblasts, we investigated whether the human homologue, c-fos, was also capable of regulating the mitochondrial membrane potential in cells. Rat fibroblasts transfected with the c-fos gene did not accumulate more rhodamine 123 (Rh123) nor did they retain this Rh123 for extended periods of time compared with their parental line. Moreover, there was no difference in survival following dequalinium chloride (Deca) treatment between transfectants and controls. Similarly, reduction of c-fos expression in rat fibroblasts did not significantly alter their mitochondrial membrane potential. In addition, human ovarian carcinoma cells, which overexpress the c-fos gene, did not accumulate more Rh123 nor were they hypersensitive to Deca compared with their parental line. In another human ovarian carcinoma cell line, selection of variants with lower mitochondrial membrane potential did not alter c-fos mRNA or protein levels. These data suggest that alterations in c-fos expression do not regulate the magnitude of the mitochondrial membrane potential.  相似文献   

12.
Assessing mitochondrial dysfunction requires definition of the dysfunction to be investigated. Usually, it is the ability of the mitochondria to make ATP appropriately in response to energy demands. Where other functions are of interest, tailored solutions are required. Dysfunction can be assessed in isolated mitochondria, in cells or in vivo, with different balances between precise experimental control and physiological relevance. There are many methods to measure mitochondrial function and dysfunction in these systems. Generally, measurements of fluxes give more information about the ability to make ATP than do measurements of intermediates and potentials. For isolated mitochondria, the best assay is mitochondrial respiratory control: the increase in respiration rate in response to ADP. For intact cells, the best assay is the equivalent measurement of cell respiratory control, which reports the rate of ATP production, the proton leak rate, the coupling efficiency, the maximum respiratory rate, the respiratory control ratio and the spare respiratory capacity. Measurements of membrane potential provide useful additional information. Measurement of both respiration and potential during appropriate titrations enables the identification of the primary sites of effectors and the distribution of control, allowing deeper quantitative analyses. Many other measurements in current use can be more problematic, as discussed in the present review.  相似文献   

13.
Mitochondrial volume homeostasis is a housekeeping cellular function, thought to help regulate oxidative capacity, apoptosis, and mechanical signaling. The volume is mainly regulated by potassium flux into and out of the matrix and controlled by the electrochemical potential. Mitochondrial depolarization will therefore affect this flux but studies showing how have not been consistent, and it is unclear what mitochondrial volume changes also occur. The aim of the present study was to investigate mitochondrial volume changes in permeabilized neurons under various bioenergetic conditions using deconvolution confocal microscopy. Under control conditions, mitochondria in situ appeared rod-shaped with mean length, surface area, and volume values of 2.29+/-0.10 microm, 1.41+/-0.10 microm2, and 0.062+/-0.006 microm3, respectively (n=42). Valinomycin, a K+-selective ionophore, increased mitochondrial volume by 63+/-22%, although surface area was almost unchanged because mitochondrial shape became more spherical. Pinacidil, an opener of mitochondrial ATP-dependent channels, produced similar effects, although some mitochondria were insensitive to its action. Mitochondrial depolarization with the protonophore FCCP, or with respiratory chain inhibitors antimycin and sodium azide was associated with a considerable increase in mitochondrial volume (by 75%-140%). Effects of mitochondrial modulators were also studied in intact neurones. Tracking of single mitochondria showed that during 65+/-2% of their time, mitochondria were motile with an average velocity of 0.19+/-0.01 microm/s. Antimycin, azide, and FCCP induced mitochondrial swelling and significantly decreased mitochondrial motility. In the presence of pinacidil, swollen mitochondria had reduced their motility, although mitochondria with normal volume stayed motile. These data show that mitochondrial depolarization was followed by significant swelling, which, in turn, impaired mitochondrial trafficking.  相似文献   

14.
本文利用冷冻电子断层扫描成像技术研究了原代培养海马神经元中线粒体膜的动态变化. 线粒体的分裂与融合是线粒体膜动态变化的主要方式,也是维持线粒体功能正常的重要手段. 线粒体分裂的机制研究以往是基于荧光标记的光学显微成像,由于分辨率的限制并不能直接观察到线粒体分裂过程中的超微结构特征. 冷冻电子断层成像通过尽可能保持样品生理状态从而获得更真实的结构信息. 本文通过对原代海马神经元中的自发性线粒体膜动态变化的成像,发现中央分裂和外周分裂的线粒体都与内质网在空间上存在一定的相互作用,内质网通过缠绕在线粒体分裂位点来参与分裂过程. 值得注意的是,还发现部分线粒体会出现线粒体外膜与内膜分离的现象,形成“无基质”的特殊区域. 这些可能都表明了线粒体质量控制的方式.  相似文献   

15.
Tamoxifen at a dose of 400 microg/kg/day has been reported to reduce the fertility of adult male rats and alter the pattern of cauda sperm motility from forward progressive to circular yawing type. Since sperm motility is powered by mitochondria, the effect of tamoxifen on mitochondrial function was studied. Tamoxifen treatment significantly increased rhodamine 123 fluorescent dye uptake by sperm mitochondria, reflecting an altered mitochondrial membrane potential. ATP and DAG levels, activities of glycolytic enzymes, creatine kinase and PKC all remained unaffected by tamoxifen. This is also the first report describing the presence of PKC alpha and beta in rat sperm. Morphological and biochemical integrity of sperm membranes was determined by electron microscopy and malondialdehyde levels, which were unaltered after tamoxifen treatment. This study indicates that the altered sperm motility induced by tamoxifen is accompanied by changes in mitochondrial membrane potential, but in the absence of any detectable change in membrane integrity, lipid peroxidation, ATP levels and activities of glycolytic enzymes, creatine kinase and PKC.  相似文献   

16.
Studies were performed on ejaculated human spermatozoa (32 subjects with normal sperm motility and 25 subjects with low sperm motility). Morphology of sperm midpiece was evaluated in light, fluorescent and transmission or scanning electron microscope. Changes in mitochondrial membrane potential (delta(psi)m) and mass of mitochondria were analysed by flow cytometry using mitochondrial specific probes JC-1 and Mito Tracker Green FM. Moreover, oxidoreductive capability of sperm mitochondria was assessed using cytochemical reaction for NADH-dependent dehydrogenases. In flow cytometry analysis of JC-1-stained spermatozoa, two asthenozoospermic subpopulations were distinguished: patients with a high percentage (76 +/- 11%, 13 subjects) and patients with a low percentage (29 +/- 14%,12 subjects) of spermatozoa with functional-polarized mitochondria with high delta(psi)m. Our microscopic investigations of spermatozoa of seven asthenozoospermic patients reveal that the deformed and unusually thickened sperm midpieces (50-70% of cells), occasionally with persistent cytoplasmic droplet, contain supernumerary mitochondria with normal substructure, full oxidoreductive capability and high delta(psi)m. The midpiece deformations cause nonprogressive movement or immotility. They can also appear in smaller number of spermatozoa (5-35% of cells) in patients with normal sperm motility. Moreover, in three cases of asthenozoospermia midpiece malformations were accompanied by abnormal morphology of outer dense fibers and axoneme. The cytochemical, fluorescence and SEM studies showed the absence of midpieces in many (60-80%) spermatozoa in some other cases of asthenozoospermia. The morphological observations corresponded with flow cytometry analysis of Mito Tracker Green FM-stained spermatozoa. Our results suggest that in some cases of asthenozoospermia the sperm mitochondria can be functionally active and display high delta(psi)m in large number of cells. The results may suggest that asthenozoospermia does not necessarily result from energetic disturbances of sperm mitochondria. The low sperm motility may be associated with deformations of the mitochondrial sheath containing functional mitochondria. The combination of fluorescence microscopy and flow cytometry with electron microscopic investigations is a sensitive, precise and comprehensive examination which helps discover sperm abnormalities responsible for asthenozoospermia.  相似文献   

17.
Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function.  相似文献   

18.
The inner membrane of yeast and mammalian mitochondria has been studiedin situ with a patch clamp electrode. Anion channels were found in both cases, although their behavior and regulation are different. In mammalian mitochondria, the principal channel is of around 100 pS conductance and opens mainly under depolarized membrane potentials. As no physiological compound able to alter its peculiar voltage dependence has yet been found, it is proposed that this channel may serve as a safeguard mechanism for recharging the mitochondrial membrane potential. Two other anion channels, each with a distinct conductance (one of approx. 45 pS, the second of at least a tenfold higher value) and kinetics are harbored in the yeast inner membrane. Matrix ATP was found to interact with both, but with a different mechanism. It is proposed that the 45 pS channel may be involved in the homeostatic mechanism of mitochondrial volume.  相似文献   

19.
Mitochondrial structure in yeast cells under various physiological conditions has been studied by high voltage electron microscopy of sections that are 0-5 to 2-0 mum thick. Such thick sections of the yeast Candida utilis had a small number of long, branched tubular mitochondria per cell. The mitochondria extended into cell buds and unseparated daughter cells. It was apparent from parallel studies with thin sections that most of the rounded mitochondrial profiles viewed in thin sections should not be interpreted as being numerous small individual mitochondria. Attempts to study thick sections of the yeasts Saccharomyces cerevisiae and Schizossaccharomyces pombe were frustrated by poor contrast.  相似文献   

20.
During early stages of meiosis I, yeast mitochondria fuse to form a single continuous thread. Thereafter, portions of the mitochondrial thread are equally distributed to daughter cells. Using time-lapse fluorescence microscopy and a membrane potential sensing dye, mitochondria are resolved as small particles at the cell periphery in pre-meiotic, living yeast. These organelles display low levels of movement. During meiosis I, we observed a threefold increase in mitochondrial motility. Mitochondrial movements were linear, occurred at a maximum velocity of 25 +/- 6.7 nm/s, and resulted in organelle collision and fusion to form elongated tubular structures. Mitochondria do not co-localize with microtubules. Destabilization of microtubules by nocodazole treatment has no significant effect on the rate and extent of thread formation. In contrast, yeast bearing temperature-sensitive mutations in the actin-encoding ACT1 gene (act1-3 and act1-133) exhibit abnormal mitochondrial aggregation, fragmentation, and enlargement as well as loss of mitochondrial motility. In act1-3 cells, mitochondrial defects and actin delocalization occur only at restrictive temperatures. The act1-133 mutation, which perturbs the myosin-binding site of actin without significantly affecting actin cytoskeletal structure in meiotic yeast, results in mitochondrial morphology and motility defects at restrictive and permissive temperatures. These studies support a role for the actin cytoskeleton in the control of mitochondrial position and movements in meiotic yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号