首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hantaviruses are important contributors to disease burden in the New World, yet many aspects of their distribution and dynamics remain uncharacterized. To examine the patterns and processes that influence the diversity and geographic distribution of hantaviruses in South America, we performed genetic and phylogeographic analyses of all available South American hantavirus sequences. We sequenced multiple novel and previously described viruses (Anajatuba, Laguna Negra-like, two genotypes of Castelo dos Sonhos, and two genotypes of Rio Mamore) from Brazilian Oligoryzomys rodents and hantavirus pulmonary syndrome cases and identified a previously uncharacterized species of Oligoryzomys associated with a new genotype of Rio Mamore virus. Our analysis indicates that the majority of South American hantaviruses fall into three phylogenetic clades, corresponding to Andes and Andes-like viruses, Laguna Negra and Laguna Negra-like viruses, and Rio Mamore and Rio Mamore-like viruses. In addition, the dynamics and distribution of these viruses appear to be shaped by both the geographic proximity and phylogenetic relatedness of their rodent hosts. The current system of nomenclature used in the hantavirus community is a significant impediment to understanding the ecology and evolutionary history of hantaviruses; here, we suggest strict adherence to a modified taxonomic system, with species and strain designations resembling the numerical system of the enterovirus genus.  相似文献   

2.
Nucleotide sequences were determined for the complete M genome segments of two distinct hantavirus genetic lineages which were detected in hantavirus antibody- and PCR-positive white-footed mice (Peromyscus leucopus) from Indiana and Oklahoma. Phylogenetic analyses indicated that although divergent from each other, the virus lineages in Indiana and Oklahoma were monophyletic and formed a newly identified unique ancestral branch within the clade of Sin Nombre-like viruses found in Peromyscus mice. Interestingly, P. leucopus-borne New York virus was found to be most closely related to the P. maniculatus-borne viruses, Sin Nombre and Monongahela, and monophyletic with Monongahela virus. In parallel, intraspecific phylogenetic relationships of P. leucopus were also determined, based on the amplification, sequencing, and analysis of the DNA fragment representing the replication control region of the rodent mitochondrial genome. P. leucopus mitochondrial DNA haplotypes were found to form four separate genetic clades, referred to here as Eastern, Central, Northwestern, and Southwestern groups. The distinct Indiana and Oklahoma virus lineages were detected in P. leucopus of the Eastern and Southwestern mitochondrial DNA haplotypes, respectively. Taken together, our current data suggests that both cospeciation of Peromyscus-borne hantaviruses with their specific rodent hosts and biogeographic factors (such as allopatric migrations, geographic separation, and isolation) have played important roles in establishment of the current genetic diversity and geographic distribution of Sin Nombre-like hantaviruses. In particular, the unusual position of New York virus on the virus phylogenetic tree is most consistent with an historically recent host-switching event.  相似文献   

3.
Hantaviruses: molecular biology, evolution and pathogenesis   总被引:14,自引:0,他引:14  
Hantaviruses are tri-segmented negative sense single stranded RNA viruses that belong to the family Bunyaviridae. In nature, hantaviruses are exclusively maintained in the populations of their specific rodent hosts. In their natural host species, hantaviruses usually develop a persistent infection with prolonged virus shedding in excreta. Humans become infected by inhaling virus contaminated aerosol. Unlike asymptomatic infection in rodents, hantaviruses cause two acute febrile diseases in humans: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). The mortality rate varies from 0.1% to 40% depending on the virus involved. Hantaviruses are distributed world wide, with over 150,000 HFRS and HPS cases being registered annually. In this review we summarize current knowledge on hantavirus molecular biology, epidemiology, genetic diversity and co-evolution with rodent hosts. In addition, special attention was given in this review to describing clinical manifestation of HFRS and HPS, and advances in our current understanding of the host immune response, treatment, and prevention.  相似文献   

4.
We studied hantavirus seroprevalence and virus variability in rodent populations in Diego Gaynor, northwest of Buenos Aires province, Argentina. Rodent samplings were conducted in railroads and cropfield borders in March and July 1999, September and December 2000, and March 2001. Antibody detection was performed by an enzyme link immunosorbent assay (ELISA), using the recombinant nucleoprotein of Andes (AND) virus as antigen. Tissue samples were taken from positive antibody individuals in order to confirm the presence of hantavirus genomic material and to identify virus genotypes. Akodon azarae was the most abundant species, followed by Oligoryzomys flavescens, while Calomys laucha and C. musculinus were rarely caught. We found a rate of seroprevalence of 9.3% for a total sample of 291 A. azarae and 13.5% for 37 O. flavescens. After molecular analyses of hantavirus, we confirmed the presence of hantavirus genomic material in 16 individuals with ELISA (+) results and two individuals with ELISA (-). Four amplimers for each species were sequenced and compared to the corresponding sequences of representative hantaviruses. We identified the AND Cent Lec from three O. flavescens, and the Pergamino virus from four A. azarae and from one O. flavescens. A. azarae males had higher seroprevalence than females, and heavier individuals showed higher seroprevalence than lighter ones. We did not find seroprevalence differences according to sex in O. flavescens, although this result may have been produced by the low sample size. The lowest seroprevalence was found in a period of high rodent density, when juveniles prevailed in the population. We found higher seroprevalences than those detected in previous studies for other localities of central Argentina where cases of hantavirus pulmonary syndrome (HPS) have been reported. The presence of AND Cent Lec virus in rodent populations of the study area, which is responsible of HPS cases in central Argentina, suggests that human populations are at risk of HPS disease, although there were not reported cases of this disease until today.  相似文献   

5.
The emerging viral diseases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) are a cause of global concern as they are increasingly reported from newer regions of the world. The hantavirus species causing HFRS include Hantaan virus, Seoul virus, Puumala virus, and Dobrava-Belgrade virus while Sin Nombre virus was responsible for the 1993 outbreak of HCPS in the Four Corners Region of the US. Humans are accidental hosts and get infected by aerosols generated from contaminated urine, feces and saliva of infected rodents. Rodents are the natural hosts of these viruses and develop persistent infection. Human to human infections are rare and the evolution of the virus depends largely on that of the rodent host. The first hantavirus isolate to be cultured, Thottapalayam virus, is the only indigenous isolate from India, isolated from an insectivore in 1964 in Vellore, South India. Research on hantaviruses in India has been slow but steady since 2005. Serological investigation of patients with pyrexic illness revealed presence of anti-hantavirus IgM antibodies in 14.7% of them. The seropositivity of hantavirus infections in the general population is about 4% and people who live and work in close proximity with rodents have a greater risk of acquiring hantavirus infections. Molecular and serological evidence of hantavirus infections in rodents and man has also been documented in this country. The present review on hantaviruses is to increase awareness of these emerging pathogens and the threats they pose to the public health system.  相似文献   

6.
Diverse species of rodents and shrews, which are abundant worldwide, harbor a variety of viruses;some of these are closely related to human viruses and possess zoonotic potential. Previously studies have demonstrated that the mammarenavirus and hantavirus carried by rodents or shrews could cause diseases in human population. To determine the distribution of zoonotic viruses in Shenzhen city, the major city in southern China with a high population density, we analyzed 225 rodents(Rattus norvegicus and Rattus flavipectus) and 196 shrews(Suncus murinus) from urban and rural districts for the presence of mammarenavirus, hantavirus, and hepatitis E virus(HEV) by RT-PCR targeting the conserved regions. The infection rates for mammarenavirus, hantaviruses,and HEV in rodents and shrews were 3.56%, 6.89%, and 1.66%, respectively. Partial genome fragment analysis indicated that mammarenavirus and hantavirus strains had more than 90% and 99% nucleic acid identity with Cardamones virus and Seoul virus, respectively, which cause diseases in humans. Although the present HEV strains identified are typically found worldwide,phylogenetic analysis demonstrated a divergence of 16%. To our knowledge, the present work is the first report of the prevalence of mammarenavirus, hantaviruses, and rat HEV strains in rodents and shrews from Shenzhen city, China. Our findings highlight the zoonotic potential of rodent-and shrew-borne mammarenavirus and hantavirus, and the biodiversity of rat HEV isolates in Shenzhen city. The present work suggests that utilization of good hygiene habits is important to minimize the risk of zoonosis.  相似文献   

7.

Background

The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary.

Methodology/Principal Findings

Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54–65% and 46–63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses.

Conclusions

Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts.  相似文献   

8.
We tested sera from 286 agricultural workers and 322 rodents in the department of Córdoba, northeastern Colombia, for antibodies against two hantaviruses. The sera were analysed by indirect ELISA using the lysate of Vero E6 cells infected with Maciel virus (MACV) or the N protein of Araraquara virus (ARAV) as antigens for the detection of antibodies against hantaviruses. Twenty-four human sera were IgG positive using one or both antigens. We detected anti-MACV IgG antibodies in 10 sera (3.5%) and anti-ARAV antibodies in 21 sera (7.34%). Of the 10 samples that were positive for MACV, seven (70%) were cross-reactive with ARAV; seven of the 21 ARAV-positive samples were cross-reactive with MACV. Using an ARAV IgM ELISA, two of the 24 human sera (8.4%) were positive. We captured 322 rodents, including 210 Cricetidae (181 Zygodontomys brevicauda, 28 Oligoryzomys fulvescens and 1 Oecomys trinitatis), six Heteromys anomalus (Heteromyidae), one Proechimys sp. (Echimyidae) and 105 Muridae (34 Rattus rattus and 71 Mus musculus). All rodent sera were negative for both antigens. The 8.4% detection rate of hantavirus antibodies in humans is much higher than previously found in serosurveys in North America, suggesting that rural agricultural workers in northeastern Colombia are frequently exposed to hantaviruses. Our results also indicate that tests conducted with South American hantavirus antigens could have predictive value and could represent a useful alternative for the diagnosis of hantavirus infection in Colombia.  相似文献   

9.
Discovery of genetically distinct hantaviruses in multiple species of shrews (order Soricomorpha, family Soricidae) and moles (family Talpidae) contests the conventional view that rodents (order Rodentia, families Muridae and Cricetidae) are the principal reservoir hosts and suggests that the evolutionary history of hantaviruses is far more complex than previously hypothesized. We now report on Rockport virus (RKPV), a hantavirus identified in archival tissues of the eastern mole (Scalopus aquaticus) collected in Rockport, TX, in 1986. Pairwise comparison of the full-length S, M, and L genomic segments indicated moderately low sequence similarity between RKPV and other soricomorph-borne hantaviruses. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that RKPV shared a most recent common ancestor with cricetid-rodent-borne hantaviruses. Distributed widely across the eastern United States, the fossorial eastern mole is sympatric and syntopic with cricetid rodents known to harbor hantaviruses, raising the possibility of host-switching events in the distant past. Our findings warrant more-detailed investigations on the dynamics of spillover and cross-species transmission of present-day hantaviruses within communities of rodents and moles.  相似文献   

10.
Pathogenic hantaviruses are a closely related group of rodent-borne viruses which are responsible for two distinct diseases in humans, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome (HPS, otherwise known as hantavirus cardiopulmonary syndrome, HCPS). The antiviral effect of ribavirin against Old World hantaviruses, most notably Hantaan virus, is well documented; however, only a few studies have addressed its inhibitory effect on New World hantaviruses. In the present study, we demonstrate that ribavirin is highly active against Andes virus (ANDV), an important etiological agent of HPS, both in vitro and in vivo using a lethal hamster model of HPS. Treatment of ANDV infected Vero E6 cells with ribavirin resulted in dose-dependent reductions in viral RNA and protein as well as virus yields with a half maximal inhibitory concentration between 5 and 12.5 μg ml(-1). In hamsters, treatment with as little as 5 mg kg(-1) day(-1) was 100% effective at preventing lethal HPS disease when therapy was administered by intraperitoneal injection from day 1 through day 10 post-infection. Significant reductions were observed in ANDV RNA and antigen positive cells in lung and liver tissues. Ribavirin remained completely protective when administered by intraperitoneal injections up to three days post-infection. In addition, we show that daily oral ribavirin therapy initiated 1 day post-infection and continuing for ten days is also protective against lethal ANDV disease, even at doses of 5 mg kg(-1) day(-1). Our results suggest ribavirin treatment is beneficial for postexposure prophylaxis against HPS-causing hantaviruses and should be considered in scenarios where exposure to the virus is probable. The similarities between the results obtained in this study and those from previous clinical evaluations of ribavirin against HPS, further validate the hamster model of lethal HPS and demonstrate its usefulness in screening antiviral agents against this disease.  相似文献   

11.
我国汉坦病毒基因型和基因亚型的分布研究   总被引:55,自引:0,他引:55  
为了搞清全国汉坦病毒的基因型和亚型的分布情况,广泛收集了全国各地汉坦病毒毒株、阳性病人血清和阳性鼠肺,并应用RT-PCR的方法,应用汉坦病毒型特异性引物,对这些不同来源的阳性标本中汉坦病毒型特异性M和S片段进行扩增和测序,并与其它已知病毒序列进行比较,以明确其型别和亚型及其在全国的分布情况.结果表明:我国HFRS各疫区仍然为HTNV和SEOV两型病毒,但亚型分布差异较大,其中HTNV可分为9个亚型,SEOV则有4~6个亚型.Q32株的部分M和S片段分属于H9和H2亚型,是一个基因重排病毒,而Nc167株在系统发生上与其它HTNV明显不同,比较核苷酸序列发现,其M片段与其它HTNV的同源性在71.3%~76.7%之间,S片段与其它HTNV的同源性只有52.3%~57.8%,可能是一个新型病毒.  相似文献   

12.
A novel hantavirus has been discovered in European common voles, Microtus arvalis and Microtus rossiaemeridionalis. According to sequencing data for the genomic RNA S segment and nucleocapsid protein and data obtained by immunoblotting with a panel of monoclonal antibodies, the virus, designated Tula virus, is a distinct novel member of the genus Hantavirus. Phylogenetic analyses of Tula virus indicate that it is most closely related to Prospect Hill, Puumala, and Muerto Canyon viruses. The results support the view that the evolution of hantaviruses follows that of their primary carriers. Comparison of strains circulating within a local rodent population revealed a genetic drift via accumulation of base substitutions and deletions or insertions. The Tula virus population from individual animals is represented by quasispecies, indicating the potential for rapid evolution of the agent.  相似文献   

13.
New World hantaviruses can cause hantavirus cardiopulmonary syndrome with high mortality in humans. Distinct virus species are hosted by specific rodent reservoirs, which also serve as the vectors. Although regional spillover has been documented, it is unknown whether rodent reservoirs are competent for infection by hantaviruses that are geographically separated, and known to have related, but distinct rodent reservoir hosts. We show that Andes virus (ANDV) of South America, carried by the long tailed pygmy rice rat (Oligoryzomys longicaudatus), infects and replicates in vitro and in vivo in the deer mouse (Peromyscus maniculatus), the reservoir host of Sin Nombre virus (SNV), found in North America. In experimentally infected deer mice, viral RNA was detected in the blood, lung, heart and spleen, but virus was cleared by 56 days post inoculation (dpi). All of the inoculated deer mice mounted a humoral immune response by 14 dpi, and produced measurable amounts of neutralizing antibodies by 21 dpi. An up-regulation of Ccl3, Ccl4, Ccl5, and Tgfb, a strong CD4+ T-cell response, and down-regulation of Il17, Il21 and Il23 occurred during infection. Infection was transient with an absence of clinical signs or histopathological changes. This is the first evidence that ANDV asymptomatically infects, and is immunogenic in deer mice, a non-natural host species of ANDV. Comparing the immune response in this model to that of the immune response in the natural hosts upon infection with their co-adapted hantaviruses may help clarify the mechanisms governing persistent infection in the natural hosts of hantaviruses.  相似文献   

14.
Over the last decade, the recognized host range of hantaviruses has expanded considerably with the discovery of distinct hantaviruses in shrews, moles and bats. Unfortunately, in‐depth studies of these viruses have been limited. Here we describe a comprehensive analysis of the spatial distribution, genetic diversity and evolution of Nova virus, a hantavirus that has the European mole as its natural host. Our analysis demonstrated that Nova virus has a high prevalence and widespread distribution in Belgium. While Nova virus displayed relatively high nucleotide diversity in Belgium, amino acid changes were limited. The nucleocapsid protein was subjected to strong purifying selection, reflecting the strict evolutionary constraints placed upon Nova virus by its host. Spatio‐temporal analysis using Bayesian evolutionary inference techniques demonstrated that Nova virus had efficiently spread in the European mole population in Belgium, forming two distinct clades, representing east and west of Belgium. The influence of landscape barriers, in the form of the main waterways, on the dispersal velocity of Nova virus was assessed using an analytical framework for comparing Bayesian viral phylogenies with environmental landscape data. We demonstrated that waterways did not act as an environmental resistance factor slowing down Nova virus diffusion in the mole population. With this study, we provide information about the spatial diffusion of Nova virus and contribute sequence information that can be applied in further functional studies.  相似文献   

15.
16.
Wild ducks of the genus Anas represent the natural hosts for a large genetic diversity of influenza A viruses. In these hosts, co-infections with different virus genotypes are frequent and result in high rates of genetic reassortment. Recent genomic data have provided information regarding the pattern and frequency of these reassortant viruses in duck populations; however, potential consequences on viral shedding and maintenance in the environment have not been investigated. On the basis of full-genome sequencing, we identified five virus genotypes, in a wild duck population in northwestern Minnesota (USA), that naturally arose from genetic reassortments. We investigated the effects of influenza A virus genotype on the viral shedding pattern in Mallards (Anas platyrhynchos) and the duration of infectivity in water, under different temperature regimens. Overall, we found that variation in the viral genome composition of these isolates had limited effects on duration, extent and pattern of viral shedding, as well as on the reduction of infectivity in water over time. These results support that, in wild ducks, functionally equivalent gene segments could be maintained in virus populations with no fitness costs when genetic reassortments occur.  相似文献   

17.
Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease which is thought to result from a dysregulated immune response to infection with pathogenic hantaviruses, such as Sin Nombre virus or Andes virus (ANDV). Other New World hantaviruses, such as Prospect Hill virus (PHV), have not been associated with human disease. Activation of an antiviral state and cell signaling in response to hantavirus infection were examined using human primary lung endothelial cells, the main target cell infected in HPS patients. PHV, but not ANDV, was found to induce a robust beta interferon (IFN-beta) response early after infection of primary lung endothelial cells. The level of IFN induction correlated with IFN regulatory factor 3 (IRF-3) activation, in that IRF-3 dimerization and nuclear translocation were detected in PHV but not ANDV infection. In addition, phosphorylated Stat-1/2 levels were significantly lower in the ANDV-infected cells relative to PHV. Presumably, this reflects the lower level of IRF-3 activation and initial IFN induced by ANDV relative to PHV. To determine whether, in addition, ANDV interference with IFN signaling also contributed to the low Stat-1/2 activation seen in ANDV infection, the levels of exogenous IFN-beta-induced Stat-1/2 activation detectable in uninfected versus ANDV- or PHV-infected Vero-E6 cells were examined. Surprisingly, both viruses were found to downregulate IFN-induced Stat-1/2 activation. Analysis of cells transiently expressing only ANDV or PHV glycoproteins implicated these proteins in this downregulation. In conclusion, while both viruses can interfere with IFN signaling, there is a major difference in the initial interferon induction via IRF-3 activation between ANDV and PHV in infected primary endothelial cells, and this correlates with the reported differences in pathogenicity of these viruses.  相似文献   

18.
Sen N  Sen A  Mackow ER 《Journal of virology》2007,81(8):4323-4330
Pathogenic hantaviruses cause two human diseases: hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). The hantavirus G1 protein contains a long, 142-amino-acid cytoplasmic tail, which in NY-1 virus (NY-1V) is ubiquitinated and proteasomally degraded (E. Geimonen, I. Fernandez, I. N. Gavrilovskaya, and E. R. Mackow, J. Virol. 77: 10760-10768, 2003). Here we report that the G1 cytoplasmic tails of pathogenic Andes (HPS) and Hantaan (HFRS) viruses are also degraded by the proteasome and that, in contrast, the G1 tail of nonpathogenic Prospect Hill virus (PHV) is stable and not proteasomally degraded. We determined that the signals which direct NY-1V G1 tail degradation are present in a hydrophobic region within the C-terminal 30 residues of the protein. In contrast to that of PHV, the NY-1V hydrophobic domain directs the proteasomal degradation of green fluorescent protein and constitutes an autonomous degradation signal, or "degron," within the NY-1V G1 tail. Replacing 4 noncontiguous residues of the NY-1V G1 tail with residues present in the stable PHV G1 tail resulted in a NY-1V G1 tail that was not degraded by the proteasome. In contrast, changing a different but overlapping set of 4 PHV residues to corresponding NY-1V residues directed proteasomal degradation of the PHV G1 tail. The G1 tails of pathogenic, but not nonpathogenic, hantaviruses contain intervening hydrophilic residues within the C-terminal hydrophobic domain, and amino acid substitutions that alter the stability or degradation of NY-1V or PHV G1 tails result from removing or adding intervening hydrophilic residues. Our results identify residues that selectively direct the proteasomal degradation of pathogenic hantavirus G1 tails. Although a role for the proteasomal degradation of the G1 tail in HPS or HFRS is unclear, these findings link G1 tail degradation to viral pathogenesis and suggest that degrons within hantavirus G1 tails are potential virulence determinants.  相似文献   

19.
Hantaviruses infect human endothelial cells and cause two vascular permeability-based diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Hantavirus infection alone does not permeabilize endothelial cell monolayers. However, pathogenic hantaviruses inhibit the function of alphav beta3 integrins on endothelial cells, and hemorrhagic disease and vascular permeability deficits are consequences of dysfunctional beta3 integrins that normally regulate permeabilizing vascular endothelial growth factor (VEGF) responses. Here we show that pathogenic Hantaan, Andes, and New York-1 hantaviruses dramatically enhance the permeability of endothelial cells in response to VEGF, while the nonpathogenic hantaviruses Prospect Hill and Tula have no effect on endothelial cell permeability. Pathogenic hantaviruses directed endothelial cell permeability 2 to 3 days postinfection, coincident with pathogenic hantavirus inhibition of alphav beta3 integrin functions, and hantavirus-directed permeability was inhibited by antibodies to VEGF receptor 2 (VEGFR2). These studies demonstrate that pathogenic hantaviruses, similar to alphav beta3 integrin-deficient cells, specifically enhance VEGF-directed permeabilizing responses. Using the hantavirus permeability assay we further demonstrate that the endothelial-cell-specific growth factor angiopoietin 1 (Ang-1) and the platelet-derived lipid mediator sphingosine 1-phosphate (S1P) inhibit hantavirus directed endothelial cell permeability at physiologic concentrations. These results demonstrate the utility of a hantavirus permeability assay and rationalize the testing of Ang-1, S1P, and antibodies to VEGFR2 as potential hantavirus therapeutics. The central importance of beta3 integrins and VEGF responses in vascular leak and hemorrhagic disease further suggest that altering beta3 or VEGF responses may be a common feature of additional viral hemorrhagic diseases. As a result, our findings provide a potential mechanism for vascular leakage after infection by pathogenic hantaviruses and the means to inhibit hantavirus-directed endothelial cell permeability that may be applicable to additional vascular leak syndromes.  相似文献   

20.
Recently, the high-level expression of authentic and hexahistidine (His)-tagged Puumala (strain Vranica/H?lln?s) hantavirus nucleocapsid protein derivatives in the yeast Saccharomyces cerevisiae has been reported [Dargeviciute et al., Vaccine, 20 (2002) 3523-3531]. Here we describe the expression of His-tagged nucleocapsid proteins of other Puumala virus strains (Sotkamo, Kazan) as well as Dobrava (strains Slovenia and Slovakia) and Hantaan (strain Fojnica) hantaviruses using the same system. All nucleocapsid proteins were expressed in the yeast S. cerevisiae at high levels. The nucleocapsid proteins can be easily purified by nickel chelate chromatography; the yield for all nucleocapsid proteins ranged from 0.5 to 1.5 mg per g wet weight of yeast cells. In general, long-term storage of all nucleocapsid proteins without degradation can be obtained by storage in PBS at -20 degrees C or lyophilization. The nucleocapsid protein of Puumala virus (strain Vranica/H?lln?s) was demonstrated to contain only traces of less than 10 pg nucleic acid contamination per 100 microg of protein. The yeast-expressed nucleocapsid proteins of Hantaan, Puumala and Dobrava viruses described here represent useful tools for serological hantavirus diagnostics and for vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号