首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis) is a protozoan organism that can infect the intestinal tract of many animal species including mammals. Genetic heterogeneity of G. duodenalis is well described but the zoonotic potential is still not clear. In this study, we analysed 100 Giardia DNA samples directly isolated from human stool specimens, to get more insight in the different G. duodenalis assemblages present in the Dutch human population. Results showed that these human isolates could be divided into two main Assemblages A and B within the G. duodenalis group on the basis of PCR assays specific for the Assemblages A and B and the DNA sequences of 18S ribosomal RNA and the glutamate dehydrogenase (gdh) genes. Genotyping results showed that G. duodenalis isolates originating from Dutch human patients belonged in 35% of the cases to Assemblage A (34/98) and in 65% of the cases to Assemblage B (64/98) whereas two human cases remained negative in all assays tested. In addition, we compared these human samples with animal samples from the Netherlands and human and animal samples from other countries. A phylogenetic analysis was carried out on the DNA sequences obtained from these Giardia and those available in GenBank. Using gdh DNA sequence analysis, human and animal Assemblage A and B Giardia isolates could be identified. However, phylogenetic analysis revealed different sub-clustering for human and animal isolates where host-species-specific assemblages (C, D, E, F and G) could be identified. The geographic origin of the human and animal samples was not a discriminating factor.  相似文献   

2.
Apart from a single record in a shark, there have been no published studies conducted on Giardia genotypes in fish. The present study investigated the prevalence of Giardia in cultured fingerlings (= 227), wild freshwater (n = 227) and wild marine/estuarine species (n = 255) of fish in Western Australia by PCR amplification at the 18S rRNA, glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi) and beta-giardin (bg) loci. Results revealed a low prevalence of Giardia, 3.8% (27/709), in fish hosts. The zoonotic Giardia species, Giardia duodenalis assemblages A, B as well as G. duodenalis assemblage E and Giardia microti were detected. The identification of zoonotic species of Giardia highlights the public health importance of investigating parasites within fish host species.  相似文献   

3.
ABSTRACT. Cysts of Giardia microti, isolated from feces and intestinal contents of Microtus ochrogaster, were examined by light and electron microscopy. These cysts differed morphologically from cysts of other G. duodenalis morphological types in that these cysts often contained two apparently differentiated trophozoites with mature ventral discs. Cysts more closely resembling those reported for G. lamblia and G. muris were in greater abundance in preparations made from intestinal contents and were interpreted as immature cysts. “Multiple fission” cysts, reported in G. muris and G. microti by earlier workers, were not observed; however, endosymbiotic bacteria were found in the cysts of G. microti and may have been responsible for reports of multiple fission in the cysts of Giardia.  相似文献   

4.
Here, we report a case of direct zoonotic transmission of giardiasis between a pet chinchilla and a human. Microscopic and molecular examinations of stool samples from a child and samples of chinchilla droppings revealed cysts/DNA of Giardia intestinalis. The transmission from the chinchilla to the child has been confirmed as coprophagous after the 1-year-old toddler ingested pet chinchilla droppings. Molecular analysis of the gdh gene from both hosts classified the G. intestinalis cysts into the assemblage B genetic group, which has been previously shown to be characteristic of both human and chinchilla giardiasis. Both Giardia sub-assemblages BIII and BIV were present in the chinchilla droppings, whereas only the sub-assemblage BIV was isolated from the child's stool sample. To the best of our knowledge, this is the first report of a true zoonotic transmission of giardiasis, supporting the zoonotic potential of assemblage B.  相似文献   

5.
A total of 421 fecal samples from a variety of captive and wild marsupial hosts in Western Australia, Victoria and South Australia were screened for the presence of Giardia species/genotypes using PCR and sequence analysis of a fragment of the 18S rRNA gene. Giardia spp. were identified in 13.4% (28/209) of samples from captive marsupials and 13.7% (29/212) of samples from wild marsupials. Sequence analysis at the 18S locus identified the zoonotic Giardia duodenalis Genotypes A and B in both captive and wild marsupials. Eight isolates were typed as genotype B3 and B4 at the gdh locus, although 7/8 were typed as genotype A at the 18S rRNA locus. The possible reasons for this discordance are discussed. This is the first report of genotype B and only the second report of genotype A in marsupials. As some of the genotype B isolates were identical to human-derived Giardia gdh sequences, these results suggest that marsupials in catchments may pose a public health risk and therefore warrant further investigation.  相似文献   

6.
Giardia duodenalis is an important protozoan parasite that is known to be zoonotic. To assess the potential zoonotic transmission of giardiasis from dogs and to identify genetic diversity of G. duodenalis in dog populations, we examined the infection rate and genotypes of G. duodenalis in both pet dogs (from pet dog farms, pet shops, pet hospitals, pet markets) and stray dogs of different ages in Henan Province, China. A total of 940 fresh fecal specimens were collected from 2007 to 2013 in Henan Province. The overall infection rate of G. duodenalis was 14.3% (134/940) as determined by microscopy, with the highest infection rate (17.3%) observed in dogs from shelters. Young dogs were more likely to be infected with G. duodenalis than adult dogs, and G. duodenalis cysts were found more frequently in diarrheic dogs. All G. duodenalis-positive isolates were characterized at the triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh), and β-giardin (bg) loci, and 37, 51, and 48 sequences were obtained, respectively. The dog-specific assemblages C and D were identified using multi-locus sequence analysis. Six novel sequences of the tpi locus, one novel sequence of the gdh locus and two novel sequences of the bg locus were detected among the G. duodenalis assemblage C isolates, while two novel sequences of the gdh locus were found among the G. duodenalis assemblage D isolates. Our data indicate that G. duodenalis is a common parasite and cause of diarrheal disease in dogs in Henan Province. However, there was no evidence for zoonotic G. duodenalis assemblages in the study population.  相似文献   

7.
Giardiasis is a notifiable disease of high prevalence in New Zealand, but there is limited knowledge about the sources of Giardia duodenalis genotypes that can potentially cause human infections. Dairy calves are one environmental source of Giardia isolates, but it is unknown whether they harbor genotypes that are potentially capable of causing infections in humans. To address these questions, 40 Giardia isolates from calves and 30 from humans, living in the same region and collected over a similar period, were genotyped using the β-giardin gene. The G. duodenalis genetic assemblages A and B were identified from both calves and humans, and genotype comparisons revealed a substantial overlap of identical genotypes from the two hosts for both assemblages. Significantly, no assemblage E (the genotype commonly found in cattle elsewhere in the world) has been detected in New Zealand livestock to date. Given recent and rapid land use conversions to dairy farming in many South Island regions of New Zealand, an increasingly large concentration of domestic cattle harboring genotypes potentially capable of causing infections in humans is particularly concerning.  相似文献   

8.

Background

Giardia duodenalis is a flagellate protozoan that parasitizes humans and several other mammals. Protozoan contamination has been regularly documented at important environmental sites, although most of these studies were performed at the species level. There is a lack of studies that correlate environmental contamination and clinical infections in the same region. The aim of this study is to evaluate the genetic diversity of a set of clinical and environmental samples and to use the obtained data to characterize the genetic profile of the distribution of G. duodenalis and the potential for zoonotic transmission in a metropolitan region of Brazil.

Methodology/Principal Findings

The genetic assemblages and subtypes of G. duodenalis isolates obtained from hospitals, a veterinary clinic, a day-care center and important environmental sites were determined via multilocus sequence-based genotyping using three unlinked gene loci. Cysts of Giardia were detected at all of the environmental sites. Mixed assemblages were detected in 25% of the total samples, and an elevated number of haplotypes was identified. The main haplotypes were shared among the groups, and new subtypes were identified at all loci. Ten multilocus genotypes were identified: 7 for assemblage A and 3 for assemblage B.

Conclusions/Significance

There is persistent G. duodenalis contamination at important environmental sites in the city. The identified mixed assemblages likely represent mixed infections, suggesting high endemicity of Giardia in these hosts. Most Giardia isolates obtained in this study displayed zoonotic potential. The high degree of genetic diversity in the isolates obtained from both clinical and environmental samples suggests that multiple sources of infection are likely responsible for the detected contamination events. The finding that many multilocus genotypes (MLGs) and haplotypes are shared by different groups suggests that these sources of infection may be related and indicates that there is a notable risk of human infection caused by Giardia in this region.  相似文献   

9.
Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs) are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn’s disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time that certain Giardia infections may attenuate PMN accumulation by decreasing the expression of the mediators responsible for their recruitment.  相似文献   

10.
BackgroundThe protozoan parasite Giardia intestinalis and the pathogenic bacterium Helicobacter pylori are well known for their high prevalences in human hosts worldwide. The prevalence of both organisms is known to peak in densely populated, low resource settings and children are infected early in life. Different Giardia genotypes/assemblages have been associated with different symptoms and H. pylori with induction of cancer. Despite this, not much data are available from sub-Saharan Africa with regards to the prevalence of different G. intestinalis assemblages and their potential association with H. pylori infections.Conclusions/SignificanceThis study shows that Giardia assemblage B dominates in children in Kampala, Uganda and that the presence of H. pylori is an associated risk factor for G. intestinalis infection.  相似文献   

11.
Giardia duodenalis is a widespread parasite of mammalian species, including humans. Fecal samples from sporadic human clinical cases of giardiasis in Western Australia were analysed at two loci; 18S rRNA and glutamate dehydrogenase (gdh), and G. duodenalis assemblage B isolates were identified in 75% of isolates. Sequence analyses of 124 isolates at the 18S rRNA locus identified 93 isolates as assemblage B and 31 as assemblage A. Analyses of 109 isolates at the gdh locus identified 44 as B3, 38 as B4 and 27 were A2. Infection with Giardia was highest amongst children <5 years of age, with >56% of infections in this age group. The majority of the isolates were from rural areas (91/124) compared with urban areas (33/124). The assemblage A isolates were completely homogenous genetically at the gdh locus, while assemblage B isolates showed variability at the nucleotide but not at the amino acid level at this locus. Some of the assemblage B3 and B4 subtypes identified in humans were previously identified in marsupials in Australia and in a fox, indicating potential zoonotic transmission.  相似文献   

12.
ABSTRACT. Complete nucleotide sequences have been established for two genes (gap1 and gap2) coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) homologs in the diplomonad Giardia lamblia. In addition, almost complete sequences of the GAPDH open reading frames were obtained from PCR products for two free-living diplomonad species, Trepomonas agilis and Hexamita inflata, and a parasite of Atlantic salmon, an as yet unnamed species with morphological affinities to Spironucleus. Giardia lamblia gap 1 and the genes from the three other diplomonad species show high similarity to each other and to other glycolytic GAPDH genes. All amino-acyl residues known to be highly conserved in this enzyme are also conserved in these sequences. Giardia lamblia gap2 gene is more divergent and its putative translation reveals the presence of a cysteine and serine-rich insertion resembling a metal binding finger. This motif has not yet been noted in other GAPDH molecules. All sequences contain an S-loop signature with characteristics close to those of eukaryotes. In phylogenetic reconstructions based on the derived amino acid sequences with neighborjoining, parsimony and maximum-likelihood methods the four typical GAPDH sequences of diplomonads cluster into a single clade. Within this clade, G. lamblia gap1 shares a common ancestor with the rest of the genes. The latter are more closely related to each other, indicating an early separation of the lineage leading to the genus Giardia from the lineage encompassing the morphologically less differentiated genera, Trepomonas, Hexamita and that of the unnamed species. This result is discordant with the orthogonal evolution of diplomonads suggested on the basis of comparative morphology. In neighbor-joining reconstructions G. lamblia gap2 occupies a variable position, due to its great divergence. In parsimony and maximum likelihood analysis however, it shares a most recent common ancestor with the typical G. lamblia gap1 gene, suggesting that it diverged after the separation of the Giardia lineage. The position of the diplomonad clade in broader phylogenetic reconstructions is firmly within the typical cytosolic glycolytic representatives of GAPDH of eukaryotes.  相似文献   

13.
Giardia duodenalis, originally regarded as a commensal organism, is the etiologic agent of giardiasis, a gastrointestinal disease of humans and animals. Giardiasis causes major public and veterinary health concerns worldwide. Transmission is either direct, through the faecal-oral route, or indirect, through ingestion of contaminated water or food. Genetic characterization of G. duodenalis isolates has revealed the existence of seven groups (assemblages A to G) which differ in their host distribution. Assemblages A and B are found in humans and in many other mammals, but the role of animals in the epidemiology of human infection is still unclear, despite the fact that the zoonotic potential of Giardia was recognised by the WHO some 30 years ago. Here, we performed an extensive genetic characterization of 978 human and 1440 animal isolates, which together comprise 3886 sequences from 4 genetic loci. The data were assembled into a molecular epidemiological database developed by a European network of public and veterinary health Institutions. Genotyping was performed at different levels of resolution (single and multiple loci on the same dataset). The zoonotic potential of both assemblages A and B is evident when studied at the level of assemblages, sub-assemblages, and even at each single locus. However, when genotypes are defined using a multi-locus sequence typing scheme, only 2 multi-locus genotypes (MLG) of assemblage A and none of assemblage B appear to have a zoonotic potential. Surprisingly, mixtures of genotypes in individual isolates were repeatedly observed. Possible explanations are the uptake of genetically different Giardia cysts by a host, or subsequent infection of an already infected host, likely without overt symptoms, with a different Giardia species, which may cause disease. Other explanations for mixed genotypes, particularly for assemblage B, are substantial allelic sequence heterogeneity and/or genetic recombination. Although the zoonotic potential of G. duodenalis is evident, evidence on the contribution and frequency is (still) lacking. This newly developed molecular database has the potential to tackle intricate epidemiological questions concerning protozoan diseases.  相似文献   

14.
Samples of sewage influent from 40 sewage treatment works (STW) throughout Norway were examined for Cryptosporidium oocysts and Giardia duodenalis cysts. Both parasites were detected frequently (80% of STW were Cryptosporidium positive; 93% of STW were Giardia positive) and at maximum concentrations of >20,000 parasites/liter. The data suggest giardiasis is more widespread, and/or occurs with greater infection intensity, than cryptosporidiosis in Norway. STW serving higher person equivalents were more likely to be positive and had higher parasite concentrations. Parasite concentrations were used to estimate the proportion of contributing populations that could be clinically infected. For Cryptosporidium, the highest estimates were up to 5 per 100,000 individuals for two populations in eastern Norway. For Giardia, the highest estimate was 40 infected per 100,000 persons (approximately five times the usual national annual average) contributing to an STW in western Norway. As this population experienced a large waterborne giardiasis outbreak 6 months after sampling, it can be speculated that regular challenge with Giardia may occur here. Most Giardia isolates in sewage influent were assemblage A, although some assemblage B isolates were detected. There was substantial heterogeneity, but most samples contained isolates similar to genotype A3. Removal efficiencies at two STW with secondary treatment processes were estimated to be approximately 50% for Cryptosporidium and >80% for Giardia. An STW with minimal treatment had negligible removal of both parasites. Many STW in Norway have minimal treatment and discharge effluent into rivers and lakes, thus, risk of contamination of water courses by Cryptosporidium and Giardia is considerable.  相似文献   

15.
Traditionally, species within the Giardia genus have been considered as eukaryotic organisms that show an absence of sexual reproduction in their simple life cycles. This apparent lack of sex has been challenged by a number of studies that have demonstrated (i) the presence in the Giardia duodenalis genome of true homologs of genes specifically involved in meiosis in other eukaryotes, and their stage-specific expression; (ii) the exchange of genetic material in different chromosomal regions among human isolates of the parasite; (iii) the fusion between cyst nuclei (karyogamy) and the transfer of genetic material (episomal plasmids) between them. These results are pivotal for the existence of sexual recombination. However, many details of the process remain elusive, and experimental data are still scarce. This review summarizes the experimental approaches and the results obtained, and discusses the implications of recombination from the standpoint of the taxonomy and molecular epidemiology of this widespread pathogen.  相似文献   

16.
Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative.  相似文献   

17.
18.
The nested PCR method with primers flanking a conserved fragment of the Babesia microti ss-rDNA gene was used to examine 834 larvae of Ixodes trianguliceps ticks engorged to a varying degree, taken off 237 hosts of 12 species (rodents and insectivores). The hosts were collected in southern taiga forests in the lowmountain area of the Middle Urals (Chusovoi District, Perm Province) in 2003–2010. Babesia DNA was detected in 89 (10.7%) larvae from 8 species of small mammals. According to the data obtained by PCR and microscopic methods, either B. microti DNA or the parasites themselves were found in the blood of 45.2% of the mammals. The nucleotide sequences of 15 amplicons of Babesia DNA obtained from larvae of I. trianguliceps ticks and their hosts were identical to those of B. microti available in GenBank. In 13 cases, they were similar to B. microti US-type (a human pathogen) and in two cases (those from I. trianguliceps and from the vole Clethrionomys rufocanus from which it was removed), to B. microti of the Munich strain which is not pathogenic to humans. The duration of feeding on small mammals seems to exert the main influence on the infection rate of I. trianguliceps larvae. The fully engorged larvae contained B. microti DNA more often and usually in greater amounts than those collected during the first days of blood-sucking. The latter usually revealed Babesia DNA in the minimum quantity (< 0.064 ng/μl). According to the data obtained, transovarial transmission of Babesia in I. trianguliceps is unlikely. The processes of horizontal and transstadial transmission appear to be of crucial importance for the functioning of the natural foci of babesiosis.  相似文献   

19.
Of the seven genetic groups, or assemblages, currently recognized in the Giardia duodenalis species complex, only assemblages A and B are associated with human infection, but they also infect other mammals. Recent investigations have suggested the occurrence of genetic exchanges among isolates of G. duodenalis, and the application of assemblage-specific PCR has shown both assemblages A and B in a significant number of human infections. In this work, three real-time quantitative (qPCR) assays were developed to target the G. duodenalis triose phosphate isomerase, glutamate dehydrogenase, and open reading frame C4 sequences. Primers were designed to allow the specific amplification of the DNA of assemblage A or B and to generate products distinguishable by their melting curves or, after qPCR, by their sequences, sizes, or restriction patterns. The assays showed full specificity and detected DNA from a single trophozoite (4 to 8 target copies). We applied these assays, as well as a TaqMan assay that targets the β-giardin gene, to genomic DNA extracted from 30 human stools and to Giardia cysts purified by immunomagnetic capture from the same samples. Simultaneous detection of both assemblages was observed in a large number of DNAs extracted from stools, and experiments on the cysts purified from the same samples showed that this was essentially attributable to mixed infections, as only one assemblage was detected when dilutions of cysts were tested. In a few cases, detection of both assemblages was observed even when single cysts were tested. This result, which suggests the presence of recombinants, needs to be confirmed using more accurate methods for cyst separation and enumeration. The assays described in this study can be used to detect Giardia cysts infectious to humans in samples from animals and in water and food.Giardia duodenalis (syn. Giardia intestinalis and Giardia lamblia) is the only species within the genus Giardia that infects humans, although it is also found in other mammals, including pets and livestock (1). The infection has a global distribution and, with an estimated 2.8 × 108 cases per year, represents the most common gastrointestinal parasitic infection of humans in developed countries (20). In Asia, Africa, and Latin America, about 200 million people have symptomatic giardiasis, with some 500,000 new cases reported each year (35). Several characteristics of G. duodenalis influence the epidemiology of infection: (i) in humans, the infective dose is about 10 to 100 cysts; (ii) cysts are immediately infectious when excreted in feces and can be transmitted by person-to-person or animal-to-animal contact; (iii) cysts are remarkably stable and can survive for weeks to months in the environment; and (iv) environmental contamination can lead to the contamination of drinking water and food (6, 32).A considerable amount of data has shown that G. duodenalis should be considered a species complex whose members show little variation in their morphology yet can be assigned to at least seven distinct assemblages (A to G) based on genetic analyses (7, 34). The analysis of more than a thousand human isolates from different geographical locations, examined by PCR amplification of DNA extracted directly from feces, has demonstrated that in almost all cases, only G. duodenalis assemblages A and B are associated with human infections (6). The prevalence of each assemblage varies considerably from country to country; assemblage B seems more common overall, but no strong conclusions can be drawn from current data. The remaining assemblages (C to G) are likely to be host specific, as assemblages C and D have been identified in dogs, cats, coyotes, and wolves; assemblage E in cattle, sheep, goats, pigs, water buffaloes, and muflons; assemblage F in cats; and assemblage G in rats.The epidemiology of human giardiasis is further complicated by the occurrence of mixed infections and the possibility of genetic exchanges between isolates of assemblage A (10) or even between isolates of assemblages A and B (21, 33). Ideally, genotyping should be performed on single cysts, as this allows a distinction between mixed infections and recombinants. To reach this technically demanding high level of sensitivity and specificity, real-time quantitative PCR (qPCR) appears to be a promising technique.This work describes the development of new qPCR assays that, through the use of assemblage-specific primers, allow the specific and simultaneous detection of DNAs of assemblages A and B. The application of these assays to DNA extracted from human stools and to cysts purified from the same samples is described.  相似文献   

20.
Giardia intestinalis (syn. G. lamblia, G. duodenalis) is a flagellated unicellular eukaryotic microorganism that commonly causes diarrheal disease throughout the world. In humans, the clinical effects of Giardia infection range from the asymptomatic carrier state to a severe malabsorption syndrome possibly due to different virulence of the Giardia strain, the number of cysts ingested, the age of the host, and the state of the host immune system at the time of infection.The question about how G. intestinalis is controlled by the organism remains unanswered. Here, we investigated the role of the complement system and in particular, the lectin pathway during Giardia infections. We present the first evidence that G. intestinalis activate the complement lectin pathway and in doing so participate in eradication of the parasite. We detected rapid binding of mannan-binding lectin, H-ficolin and L-ficolin to the surface of G. intestinalis trophozoites and normal human serum depleted of these molecules failed to kill the parasites. Our finding provides insight into the role of lectin pathway in the control of G. intestinalis and about the nature of surface components of parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号