首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous investigations have proved that diplomonads have primitive cell nuclei and lack a nucleolus. We determined the distribution of ribosomal DNA (rDNA) in diplomonad nuclei that lacked a nucleolus. Giardia lamblia was used as the experimental organism with Euglena gracilis as the control. The distribution of rDNA was demonstrated indirectly by the modified Ag-I silver technique that can indicate specifically the nucleolus organizing region (NOR) by both light and electron microscopy. In ultrathin sections of silver stained Euglena cells, all silver grains were concentrated in the fibrosa of the nucleolus, while no silver grains were found in the cytoplasm, nucleoplasm, condensed chromosomes or pars granulosa of the nucleus. In the silver stained Giardia cells, no nucleolus was found, but a few silver grains were scattered in the nucleus. This suggests that the rDNA of Giardia does not form an NOR-like structure and that its nucleus is in a primitive state.  相似文献   

2.
Over 90% of the open reading frame of gap genes for glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) was obtained with PCR from five species of Parabasala. With gap1 from Trichomonas vaginalis obtained earlier, the data include two sequences each for three species. All sequences were colinear with T. vaginalis gap1 and shared with it as a synapomorphy a 10- to 11-residue insertion not found in any other gap and an S-loop with characteristic features of eubacterial GAPDH. All residues known to be highly conserved in this enzyme were present. The parabasalid sequences formed a robust monophyletic group in phylogenetic reconstructions with distance-based, maximum-parsimony, and maximum-likelihood methods. The two genes of the amphibian commensal, Trichomitus batrachorum, shared a common ancestor with the rest, which separate into two well-supported lineages. T. vaginalis and Tetratrichomonas gallinarum (both representatives of Trichomonadinae) formed one, while Monocercomonas sp. and Tritrichomonas foetus formed the other. These data agreed with and/or were close to published reconstructions based on other macromolecules. They did not support the ancestral position of Monocercomonas sp. proposed on the basis of morphological characteristics but confirmed an early emergence of Trichomitus batrachorum. The sequence pairs obtained from three species indicated either gene duplications subsequent to the divergence of the corresponding lineages or a strong gene conversion later in these lineages. The parabasalid clade was a robust part of the eubacterial radiation of GAPDH and showed no relationships to the clade that contained all other eukaryotic gap genes. The data clearly reveal that the members of this lineage use in their glycolytic pathway a GAPDH species with properties and an evolutionary history that are unique among all eukaryotes studied so far. Received: 28 April 1997 / Accepted: 14 October 1997  相似文献   

3.
Keeling PJ  Brugerolle G 《Protist》2006,157(2):205-212
Octomitus intestinalis is a diplomonad flagellate inhabiting the digestive tract of rodents and amphibians. Octomitus is of evolutionary interest because, based on ultrastructural characteristics, it is thought to be closely related to the morphologically derived genus Giardia, and together they have been proposed to make up the Giardiinae. In molecular trees of diplomonads, Giardia is the deepest branching lineage, so identifying a sister group to Giardia that is less derived would be informative. Octomitus is a logical candidate for this position, but unfortunately there are no molecular data from it, and it is not available in culture. To determine the position of Octomitus, and specifically test whether it is more closely related to Giardia than other diplomonads, we have isolated it directly from the caecum of wild mice and characterized its small subunit ribosomal RNA (SSU rRNA) gene. Phylogenetic analysis showed Octomitus to be the sister to Giardia with strong support, together occupying one side of the deepest split in the diplomonad tree.  相似文献   

4.
The lactate and malate dehydrogenases comprise a complex protein superfamily with multiple enzyme homologues found in eubacteria, archaebacteria, and eukaryotes. In this study we describe the sequence and phylogenetic relationships of a malate dehydrogenase (MDH) gene from the amitochondriate diplomonad protist, Giardia lamblia. Parsimony, distance, and maximum-likelihood analyses of the MDH protein family solidly position G. lamblia MDH within a eukaryote cytosolic MDH clade, to the exclusion of chloroplast, mitochondrial, and peroxisomal homologues. Furthermore, G. lamblia MDH is specifically related to a homologue from Trichomonas vaginalis. This MDH topology, together with published phylogenetic analyses of β-tubulin, chaperonin 60, valyl-tRNA synthetase, and EF-1α, suggests a sister-group relationship between diplomonads and parabasalids. Since these amitochondriate lineages contain genes encoding proteins which are characteristic of mitochondria and α-proteobacteria, their shared ancestry suggests that mitochondrial properties were lost in the common ancestor of both groups. Received: 14 September 1998 / Accepted: 29 December 1998  相似文献   

5.
Among a few potential archezoan groups, only the Metamonada (diplomonads, retortamonads, and oxymonads) still retain the status of amitochondriate protists that diverged before the acquisition or retention of mitochondria. Indeed, finding that diplomonad genomes harbor a gene encoding a mitochondrial type chaperonin 60, the most compelling evidence for their secondarily amitochondriate nature, may be interpreted as an acquisition of this important general chaperone during some transient alpha-proteobacterial endosymbiosis. Recently published data on the cysteine desulfurase IscS demonstrated an alpha-proteobacterial origin of mitochondrial enzymes including a diplomonad Giardia lamblia homolog. An extended phylogenetic analysis of IscS is reported here that revealed a full canonical pattern of mitochondrial ancestry for the giardial enzyme. The above canonical pattern, a sister group relationship of mitochondria and rickettsiae exclusive of free-living alpha-proteobacteria, was robustly confirmed by a comprehensive analysis of Cob and Cox1 subunits of the respiratory chain encoded by resident mitochondrial genes. Given that Fe-S cluster assembly involving IscS represents an essential mitochondrial function, these data strongly suggest that diplomonads once harbored bona fide mitochondria.  相似文献   

6.
We have sequenced the small ribosomal subunit RNA gene of the diplozoanTrepomonas agilis. This provides the first molecular information on a free-living archezoan. We have performed a phylogenetic analysis by maximum likelihood, parsimony, and distance methods for all available nearly complete archezoan small subunit ribosomal RNA genes and for representatives of all major groups of more advanced eukaryotes (metakaryotes). These show Diplozoa as the earliest-diverging eukaryotic lineage, closely followed by microsporidia.Trepomonas proves to be much more closely related toHexamita, and, to a lesser degree, toSpironucleus, than toGiardia. The close relationship between the free-livingTrepomonas on our trees and the parasitesHexamita inflata andSpironucleus refutes the idea that the early divergence of the amitochondrial Archezoa is an artefact caused by parasitism. The deep molecular divergence between the three phagotrophic genera with two cytostomes (Hexamita, Trepomonas, Spironucleus) and the saprotrophicGiardia that lacks cytostomes is in keeping with the classical evidence for a fundamental difference in the symmetry of the cytoskeleton between the two groups. We accordingly separate the two groups as two orders: Distomatida for those with two cytostomes/cytopharynxes and Giardiida ord. nov. forGiardia andOctomitus that lack these, and divide each order into two families. We suggest that this fundamental divergence in manner of feeding and in the symmetry of the cytoskeleton evolved in a free-living diplozoan very early indeed in the evolution of the eukaryotic cell, possibly very soon after the origin of the diplokaryotic state (having two nuclei linked together firmly by the cytoskeleton) and before the evolution of parasitism by distomatids and giardiids, which may have colonized animal guts independently. We discuss the possible relationship between the two archezoan phyla (Metamonada and Microsporidia) and the nature of the first eukaryotic cell in the light of our results and other recent molecular data.  相似文献   

7.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), localized in the cytosol of Trichomonas vaginalis, was partially purified. The enzyme is specific for NAD+ and is similar in most of its catalytic properties to glycolytic GAPDHs from other organisms. Its sensitivity to koningic acid is similar to levels observed in GAPDHs from eubacteria and two orders of magnitude lower than those observed for eukaryotic GAPDHs. The complete amino acid sequence of T. vaginalis GAPDH was derived from the N-terminal sequence of the purified protein and the deduced sequence of a cDNA clone. It showed great similarity to other eubacterial and eukaryotic GAPDH sequences. The sequence of the S-loop displayed a eubacterial signature. The overall sequence was more similar to eubacterial sequences than to cytosolic and glycosomal eukaryotic sequences. In phylogenetic trees obtained with distance matrix and parsimony methods T. vaginalis GAPDH clustered with its eubacterial homologs. GAPDHs of other amitochondriate protists, belonging to early branches of the eukaryotic lineage (Giardia lamblia and Entamoeba histolytica—Smith M.W. and Doolittle R.F., unpublished data in GenBank), showed typical eukaryotic signatures and clustered with other eukaryotic sequences, indicating that T. vaginalis GAPDH occupies an anomalous position, possibly due to horizontal gene transfer from a eubacterium. Correspondence to: M. Müller  相似文献   

8.
BACKGROUND: Lateral gene transfer (LGT) is an important evolutionary mechanism among prokaryotes. The situation in eukaryotes is less clear; the human genome sequence failed to give strong support for any recent transfers from prokaryotes to vertebrates, yet a number of LGTs from prokaryotes to protists (unicellular eukaryotes) have been documented. Here, we perform a systematic analysis to investigate the impact of LGT on the evolution of diplomonads, a group of anaerobic protists.RESULTS: Phylogenetic analyses of 15 genes present in the genome of the Atlantic Salmon parasite Spironucleus barkhanus and/or the intestinal parasite Giardia lamblia show that most of these genes originated via LGT. Half of the genes are putatively involved in processes related to an anaerobic lifestyle, and this finding suggests that a common ancestor, which most probably was aerobic, of Spironucleus and Giardia adapted to an anaerobic environment in part by acquiring genes via LGT from prokaryotes. The sources of the transferred diplomonad genes are found among all three domains of life, including other eukaryotes. Many of the phylogenetic reconstructions show eukaryotes emerging in several distinct regions of the tree, strongly suggesting that LGT not only involved diplomonads, but also involved other eukaryotic groups.CONCLUSIONS: Our study shows that LGT is a significant evolutionary mechanism among diplomonads in particular and protists in general. These findings provide insights into the evolution of biochemical pathways in early eukaryote evolution and have important implications for studies of eukaryotic genome evolution and organismal relationships. Furthermore, "fusion" hypotheses for the origin of eukaryotes need to be rigorously reexamined in the light of these results.  相似文献   

9.
李靖炎 《动物学研究》1996,17(3):287-289
根据本实验室对贾第虫(Giardia)细胞核的观察、研究,并参阅有关文献及电镜照片报道,发现双滴虫类的细胞核有两个极原始的特征:1)还没有进化出核仁;2)核被膜尚不完整。它们在核分裂方面也是极原始的。据此,作者建议把Cavalier—Smith(1989)提出的源真核生物(Archezoa)超界中的源真核生物界划分为两个界,即以双滴虫门为代表的前源真核生物(Proarchezoa)界和包含目前所知的其他源真核生物的后源真核生物(Metarchezoa)界。  相似文献   

10.
11.
Previous investigations have proved that diplomonads have primitive cell nuclei and lack a nucleolus. We determined the distribution of ribosomal DNA (rDNA) in diplomonad nuclei that lacked a nucleolus. Giardia lamblia was used as the experimental organism with Euglena gracilis as the control. The distribution of rDNA was demonstrated indirectly by the modified Ag-I silver technique that can indicate specifically the nucleolus organizing region (NOR) by both light and electron microscopy. In ultrathin sections of silver stained Euglena cells, all silver grains were concentrated in the fibrosa of the nucleolus, while no silver grains were found in the cytoplasm, nucleoplasm, condensed chromosomes or pars granulosa of the nucleus. In the silver stained Giardia cells, no nucleolus was found, but a few silver grains were scattered in the nucleus. This suggests that the rDNA of Giardia does not form an NOR-like structure and that its nucleus is in a primitive state.  相似文献   

12.
Eukaryotic microbes are highly diverse, and many lineages remain poorly studied. One such lineage, the diplomonads, a group of binucleate heterotrophic flagellates, has been studied mainly due to the impact of Giardia intestinalis, an intestinal, diarrhea-causing parasite in humans and animals. Here we describe the development of a stable transfection system for use in Spironucleus salmonicida, a diplomonad that causes systemic spironucleosis in salmonid fish. We designed vectors in cassette format carrying epitope tags for localization (3×HA [where HA is hemagglutinin], 2× Escherichia coli OmpF linker and mouse langerin fusion sequence [2×OLLAS], 3×MYC) and purification of proteins (2× Strep-Tag II–FLAG tandem-affinity purification tag or streptavidin binding peptide–glutathione S-transferase [SBP-GST]) under the control of native or constitutive promoters. Three selectable gene markers, puromycin acetyltransferase (pac), blasticidin S-deaminase (bsr), and neomycin phosphotransferase (nptII), were successfully applied for the generation of stable transfectants. Site-specific integration on the S. salmonicida chromosome was shown to be possible using the bsr resistance gene. We epitope tagged six proteins and confirmed their expression by Western blotting. Next, we demonstrated the utility of these vectors by recording the subcellular localizations of the six proteins by laser scanning confocal microscopy. Finally, we described the creation of an S. salmonicida double transfectant suitable for colocalization studies. The transfection system described herein and the imminent completion of the S. salmonicida genome will make it possible to use comparative genomics as an investigative tool to explore specific, as well as general, diplomonad traits, benefiting research on both Giardia and Spironucleus.  相似文献   

13.
14.
Synonymous codon usage variation among Giardia lamblia genes and isolates.   总被引:3,自引:0,他引:3  
The pattern of codon usage in the amitochondriate diplomonad Giardia lamblia has been investigated. Very extensive heterogeneity was evident among a sample of 65 genes. A discrete group of genes featured unusual codon usage due to the amino acid composition of their products: these variant surface proteins (VSPs) are unusually rich in Cys and, to a lesser extent, Gly and Thr. Among the remaining 50 genes, correspondence analysis revealed a single major source of variation in synonymous codon usage. This trend was related to the extent of use of a particular subset of 21 codons which are inferred to be those which are optimal for translation; at one end of this trend were genes expected to be expressed at low levels with near random codon usage, while at the other extreme were genes expressed at high levels in which these optimal codons are used almost exclusively. These optimal codons all end in C or G so G + C content at silent sites varies enormously among genes, from values around 40%, expected to reflect the background level of the genome, up to nearly 100%. Although VSP genes are occasionally extremely highly expressed, they do not, in general, have high frequencies of optimal codons, presumably because their high expression is only intermittent. These results indicate that natural selection has been very effective in shaping codon usage in G. lamblia. These analyses focused on sequences from strains placed within G. lamblia "assemblage A"; a few sequences from other strains revealed extensive divergence at silent sites, including some divergence in the pattern of codon usage.  相似文献   

15.
Two genes encoding the ribosomal proteins were cloned and sequenced from amitochondriate protists, L1 (L10a in mammalian nomenclature) from Trichomonas vaginalis and L29 (L35 in mammalian nomenclature) from Giardia lamblia. The deduced amino acid sequences were analyzed by sequence alignments and phylogenetic reconstructions. Both the T. vaginalis L1 and the G. lamblia L29 displayed eukaryotic sequence features, when compared with all the homologs from the three primary kingdoms.  相似文献   

16.
Entamoeba histolytica and Spironucleus barkhanus have genes that encode short iron-dependent hydrogenases (Fe-hydrogenases), even though these protists lack hydrogenosomes. To understand better the biochemistry of the protist Fe-hydrogenases, we prepared a recombinant E. histolytica short Fe-hydrogenase and measured its activity in vitro. A Giardia lamblia gene encoding a short Fe-hydrogenase was identified from shotgun genomic sequences, and RT-PCR showed that cultured entamoebas and giardias transcribe short Fe-hydrogenase mRNAs. A second E. histolytica gene, which encoded a long Fe-hydrogenase, was identified from shotgun genomic sequences. Phylogenetic analyses suggested that the short Fe-hydrogenase genes of entamoeba and diplomonads share a common ancestor, while the long Fe-hydrogenase gene of entamoeba appears to have been laterally transferred from a bacterium. These results are discussed in the context of competing ideas for the origins of genes encoding fermentation enzymes of these protists.  相似文献   

17.
Rare evolutionary events, such as lateral gene transfers and gene fusions, may be useful to pinpoint, and correlate the timing of, key branches across the tree of life. For example, the shared possession of a transferred gene indicates a phylogenetic relationship among organismal lineages by virtue of their shared common ancestral recipient. Here, we present phylogenetic analyses of prolyl-tRNA and alanyl-tRNA synthetase genes that indicate lateral gene transfer events to an ancestor of the diplomonads and parabasalids from lineages more closely related to the newly discovered archaeal hyperthermophile Nanoarchaeum equitans (Nanoarchaeota) than to Crenarchaeota or Euryarchaeota. The support for this scenario is strong from all applied phylogenetic methods for the alanyl-tRNA sequences, whereas the phylogenetic analyses of the prolyl-tRNA sequences show some disagreements between methods, indicating that the donor lineage cannot be identified with a high degree of certainty. However, in both trees, the diplomonads and parabasalids branch together within the Archaea, strongly suggesting that these two groups of unicellular eukaryotes, often regarded as the two earliest independent offshoots of the eukaryotic lineage, share a common ancestor to the exclusion of the eukaryotic root. Unfortunately, the phylogenetic analyses of these two aminoacyl-tRNA synthetase genes are inconclusive regarding the position of the diplomonad/parabasalid group within the eukaryotes. Our results also show that the lineage leading to Nanoarchaeota branched off from Euryarchaeota and Crenarchaeota before the divergence of diplomonads and parabasalids, that this unexplored archaeal diversity, currently only represented by the hyperthermophilic organism Nanoarchaeum equitans, may include members living in close proximity to mesophilic eukaryotes, and that the presence of split genes in the Nanoarchaeum genome is a derived feature.  相似文献   

18.
We present the first molecular phylogenetic examination of the evolutionary position of retortamonads, a group of mitochondrion-lacking flagellates usually found as commensals of the intestinal tracts of vertebrates. Our phylogenies include small subunit ribosomal gene sequences from six retortamonad isolates-four from mammals and two from amphibians. All six sequences were highly similar (95%-99%), with those from mammals being almost identical to each other. All phylogenetic methods utilized unequivocally placed retortamonads with another amitochondriate group, the diplomonads. Surprisingly, all methods weakly supported a position for retortamonads cladistically within diplomonads, as the sister group to Giardia. This position would conflict with a single origin and uniform retention of the doubled-cell organization displayed by most diplomonads, but not by retortamonads. Diplomonad monophyly was not rejected by Shimodaira-Hasegawa, Kishino-Hasegawa, and expected likelihood weights methods but was marginally rejected by parametric bootstrapping. Analyses with additional phylogenetic markers are needed to test this controversial branching order within the retortamonad + diplomonad clade. Nevertheless, the robust phylogenetic association between diplomonads and retortamonads suggests that they share an amitochondriate ancestor. Because strong evidence indicates that diplomonads have secondarily lost their mitochondria (rather than being ancestrally amitochondriate), our results imply that retortamonads are also secondarily amitochondriate. Of the various groups of eukaryotes originally suggested to be primitively amitochondriate under the archezoa hypothesis, all have now been found to have physical or genetic mitochondrial relics (or both) or form a robust clade with an organism with such a relic.  相似文献   

19.
alpha-Tubulin is one of the most widely used markers for estimating deep-level phylogenetic relationships amongst eukaryotes. We sequenced 6-7 nuclear protein-coding genes, including alpha-tubulin, from the two described species of the enigmatic jakobid(-like) excavate protist Andalucia. Concatenated protein phylogenies place Andalucia in a clade with other jakobids, Euglenozoa and Heterolobosea. Individual gene trees, except that of alpha-tubulin, do not conflict strongly with this position. In alpha-tubulin trees, Andalucia instead falls in a strongly supported clade with diplomonads, parabasalids and opisthokonts (including animals and fungi), and branches with diplomonads. This clade is robust to changes in taxon sampling, and is unlikely to represent long-branch attraction, compositional heterogeneity artefact, or segmental gene conversion. Phylogenies estimated without alpha-tubulin strongly support the original position for Andalucia, and also reinforce recent studies in placing diplomonads and parabasalids with Preaxostyla, not opisthokonts. alpha-Tubulin seems to have experienced two or more eukaryote-to-eukaryote lateral gene transfer (LGT) events, one perhaps from an ancestral opisthokont to an ancestor of diplomonads and parabasalids, or vice versa, and one probably from the diplomonad lineage to Andalucia. Like EF-1alpha/EFL, alpha-tubulin has a complex history that needs to be taken into account when using this marker for deep-level phylogenetic inference.  相似文献   

20.
The single-celled parasite Giardia intestinalis (Diplomonadida) has two equally sized nuclei in one cell. The nuclei have been considered identical. We have previously shown that they contain different chromosomal sets and proceed through the cell cycle with some asynchrony. Here, we demonstrate by fluorescence in situ hybridization that several genes from chromosome 5 are lost in one of the two nuclei of the WBc6 Giardia line. The missing segment stretches over at least 50 kb near the 5′ chromosome end. In both WB and WBc6 Giardia cell lines, chromosome 5 is trisomic in one nucleus and monosomic in the other nucleus. The described chromosomal deletion has always been observed at the monosomic chromosome in WBc6; however, the deletion was not detected in the parent line WB. The chromosomal segment was thus initially lost after biological cloning of WB, which gave rise to clone WBc6. We show that Giardia is capable of carrying out gene expression from only one nucleus. The two nuclei display a certain level of diversity, making each of them irreplaceable. The doubled karyomastigonts of diplomonads likely have separate functions both in the mastigont/flagellar organization and in chromosomal and gene content. To our knowledge, our results offer the first methodical approach to differentiating the two, so far indistinguishable nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号