首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of tight-seal whole0cell recording was used to study the amino-acid specificity of the Na+/alanine cotransporter in pancreatic acinar cells. Single cells or small clusters of electrically coupled cells were obtained by enzymatic dissociation of mouse pancreas. Inward currents were measured under ‘zero-trans’ conditions, i.e., at finite concentrations of Na+ and amino acid at the extracellular side and vanishing concentrations at the cytoplasmic side. The cotransporter, which corresponds to ‘system A’, as previously defined in the literature, was found to exhibit a wide tolerance to neutral amino acids (l-cysteine, l-serine, l-alanine, glycine, l-phenylalanine). Competition experiments with 2-methylaminoisobutyric acid (MeAIB) indicate that for glycine a second electrogenic transport system exists in pancreatic acinar cells.  相似文献   

2.
The method of tight-seal whole-cell recording was used to study the amino-acid specificity of the Na+/alanine cotransporter in pancreatic acinar cells. Single cells or small clusters of electrically coupled cells were obtained by enzymatic dissociation of mouse pancreas. Inward currents were measured under 'zero-trans' conditions, i.e., at finite concentrations of Na+ and amino acid at the extracellular side and vanishing concentrations at the cytoplasmic side. The cotransporter, which corresponds to 'system A', as previously defined in the literature, was found to exhibit a wide tolerance to neutral amino acids (L-cysteine, L-serine, L-alanine, glycine, L-phenylalanine). Competition experiments with 2-methylaminoisobutyric acid (MeAIB) indicate that for glycine a second electrogenic transport system exists in pancreatic acinar cells.  相似文献   

3.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

4.
A search for genes expressed more highly in mouse cumulus cells than mural granulosa cells by subtraction hybridization yielded Slc38a3. SLC38A3 is a sodium-coupled neutral amino acid transporter having substrate preference for l-glutamate, l-histidine, and l-alanine. Detectable levels of Slc38a3 mRNA were found by in situ hybridization in granulosa cells of large preantral follicles, but levels were higher in all granulosa cells of small antral follicles; expression became limited to cumulus cells of large antral follicles. Expression of Slc38a3 mRNA in granulosa cells was promoted by fully grown oocytes from antral follicles but not by growing oocytes from preantral follicles. Fully grown oocytes were dependent on cumulus cells for uptake of l-alanine and l-histidine but not l-leucine. Fully grown but not growing oocytes secreted one or more paracrine factors that promoted cumulus cell uptake of all three amino acids but of l-alanine and l-histidine to a much greater extent than l-leucine. Uptake of l-leucine appeared dependent primarily on contact-mediated signals from fully grown oocytes. Fully grown oocytes also promoted elevated levels of Slc38a3 mRNA and l-alanine transport by preantral granulosa cells, but growing oocytes did not. Therefore, fully grown oocytes secrete one or more paracrine factors that promote cumulus cell uptake of amino acids that oocytes themselves transport poorly. These amino acids are likely transferred to oocytes via gap junctions. Thus, oocytes use paracrine signals to promote their own development via metabolic cooperativity with cumulus cells. The ability of oocytes to mediate this cooperativity is developmentally regulated and acquired only in later stages of oocyte development.  相似文献   

5.
Whole cells of Bacillus subtilis transported d-alanine and l-alanine by two different systems. The high-affinity system (K(m) of 1 muM and V(max) of 0.6 to 0.8 nmol/min per mg of protein) was specific for the two stereoisomers of alanine. The low-affinity system (K(m) of 10 muM for l-alanine and 20 muM for d-alanine and glycine) had a V(max) of 5 to 12 nmol/min per mg of protein. This system transported glycine, d-cycloserine, and d-serine, in addition to d- and l-alanine. Azide inhibited the uptake of these amino acids and caused the efflux of d-alanine from preloaded cells. These data suggest that transport of these amino acids is energized by the electron transport chain.  相似文献   

6.
In this study, we investigated the effects of secretagogues and bile acids on the mitochondrial membrane potential of pancreatic acinar cells. We measured the mitochondrial membrane potential using the tetramethylrhodamine-based probes tetramethylrhodamine ethyl ester and tetramethylrhodamine methyl ester. At low levels of loading, these indicators appeared to have a low sensitivity to the uncoupler carbonyl cyanide m-chlorophenylhydrazone, and no response was observed to even high doses of cholecystokinin. When loaded at high concentrations, tetramethylrhodamine methyl ester and tetramethylrhodamine ethyl ester undergo quenching and can be dequenched by mitochondrial depolarization. We found the dequench mode to be 2 orders of magnitude more sensitive than the low concentration mode. Using the dequench mode, we resolved mitochondrial depolarizations produced by supramaximal and by physiological concentrations of cholecystokinin. Other calcium-releasing agonists, acetylcholine, JMV-180, and bombesin, also produced mitochondrial depolarization. Secretin, which employs the cAMP pathway, had no effect on the mitochondrial potential; dibutyryl cAMP was also ineffective. The cholecystokinin-induced mitochondrial depolarizations were abolished by buffering cytosolic calcium. A non-agonist-dependent calcium elevation induced by thapsigargin depolarized the mitochondria. These experiments suggest that a cytosolic calcium concentration rise is sufficient for mitochondrial depolarization and that the depolarizing effect of cholecystokinin is mediated by a cytosolic calcium rise. Bile acids are considered possible triggers of acute pancreatitis. The bile acids taurolithocholic acid 3-sulfate, taurodeoxycholic acid, and taurochenodeoxycholic acid, at low submillimolar concentrations, induced mitochondrial depolarization, resolved by the dequench mode. Our experiments demonstrate that physiological concentrations of secretagogues and pathologically relevant concentrations of bile acids trigger mitochondrial depolarization in pancreatic acinar cells.  相似文献   

7.
The binding of 125I-labelled egg-white lysozyme to isolated brush border membranes of rat kidney cortex was investigated. The lysozyme binding was reversible and saturable. The Scatchard plot revealed a one-component binding type with a dissociation constant of 7.8 μM and 15.6 nmol/mg membrane protein for the number of binding sites. The binding of the basic lysozyme could be reduced by basic amino acids such as l-lysine, l-ornithine or l-arginine, while neutral amino acids such as l-citrulline or l-alanine had no effect. The inhibitory effect of lysine was competitive.  相似文献   

8.
The influence of the radioprotectors cystaamine and aminoethylisothiouronium (AET) as well as the amino acids l-cysteine, l-alanine, l-arginine, l-asparagine, l-glutamic acid, l-histidine and l-methionine on the cytogenetic action of 8-hydroxyquinoline sulphate (8-HCHS) was tested in human lymphocyte cultures in vitro. An excess of l-cysteine, cysteamine, and l-asparagine, when added to the cultures simulataneously with 8-HCHS, distinctly reduced the chromosome-damaging effect of this agent. l-Glutamic acid and AET exerted a protective activity to a lesser extent. l-Methionine only displayed some effect in reducing the relatively rare isochromatid aberrations induced by 8-HCHS. The other amino acids had no effect on the chromosome-damaging action of this substance.The dose dependence of the protective activity as well as the degree of effectivity and the spectrum of action of the different protectors are compared. The possible mechanisms of action are discussed.  相似文献   

9.
Studies were carried out to analyze the cryoprotecting efficacy of several amino acids by use of a chemically defined synthetic medium (modified Ringer's solution) and goat cauda epididymal sperm as the model system. Motile goat cauda sperm dispersed in the synthetic medium were subjected to a freezing protocol in a computer-controlled bio-freezer, cooling 0.25 degrees C x min(-1) to 5 degrees C, 5 degrees C x min(-1) to -20 degrees C, and 20 degrees C x min(-1) to -100 degrees C, prior to being plunged into liquid nitrogen. In the absence of amino acids, sperm cells completely lost their flagellar motility. Of all the amino acids tested, l-alanine showed maximal cryoprotection potential. l-Alanine at 135 mM offered optimum cryoprotection potential: recovery of sperm forward motility and total motility were 14 +/- 2% and 19 +/- 2%, respectively. l-Glutamine, l-proline, and glycine at optimum concentration (100-150 mM) cryopreserved approx. 11-17% total motility of the sperm cells, whereas amino acids such as l-arginine, l-lysine, and l-histidine offered little cryoprotection (0-5%) to the cells. Increasing the amino acid concentration beyond the optimum level sharply decreased the recovery of the sperm motility, which therefore showed a biphasic cryoprotection profile. Addition of amino acids enhanced (approx. 7-10%) the cryoprotection efficacy of the well-known cryoprotectants glycerol and a combination of glycerol and dimethyl sulfoxide. The presence of glycerol caused a marked reduction (from 100-150 mM to 20-70 mM levels) in the optimal cryoprotective concentration of the amino acids. The combined cryoprotecting action of glycerol, dimethyl sulfoxide, and amino acids provided motility recovery as high as 52%. The observation that amino acids and dimethyl sulfoxide had an additive effect in augmenting the cryoprotecting potential of glycerol suggests that the mechanism of their action is different from that of glycerol. This cocktail of cryoprotectants may be useful for cryopreservation of semen of various species.  相似文献   

10.
Arginine and ornithine are known to be important for various biological processes in the testis, but the delivery of extracellular cationic amino acids to the seminiferous tubule cells remains poorly understood. We investigated the activity and expression of cationic amino acid transporters in isolated rat Sertoli cells, peritubular cells, pachytene spermatocytes, and early spermatids. We assessed the l-arginine uptake kinetics, Na(+) dependence of transport, profiles of cis inhibition of uptake by cationic and neutral amino acids, and sensitivity to trans stimulation of cationic amino acid transporters, and studied the expression of the genes encoding them by RT-PCR. Our data suggest that l-arginine is taken up by Sertoli cells and peritubular cells, principally via system y(+)L (SLC3A2/SLC7A6) and system y(+) (SLC7A1 and SLC7A2), with system B(0+) making a minor contribution. By contrast, system B(0+), associated with system y(+)L (SLC3A2/SLC7A7 and SLC7A6), made a major contribution to the transport of cationic amino acids in pachytene spermatocytes and early spermatids. Sertoli cells had higher rates of l-arginine transport than the other seminiferous tubule cells. This high efficiency of arginine transport in Sertoli cells and the properties of the y(+)L system predominating in these cells strongly suggest that Sertoli cells play a key role in supplying germ cells with l-arginine and other cationic amino acids. Furthermore, whereas cytokines induce nitric oxide (NO) production in peritubular and Sertoli cells, little or no upregulation of arginine transport by cytokines was observed in these cells. Thus, NO synthesis does not depend on the stimulation of arginine transport in these somatic tubular cells.  相似文献   

11.
1. The fluorescent intensity of the dye 3,3'-dipropylthiodicarbocyanine iodide was measured in suspensions of Ehrlich ascites tumor cells in an attempt to monitor their membrane potentials under a variety of different ionic and metabolic conditions. 2. In the presence of valinomycin, fluorescent intensity is dependent on log [K+]medium (the fluorescent intensity increased with increasing [K+]medium) where K+ replaced Na+ in the medium. Cellular K+ content also influenced fluorescent intensity in the presence of valinomycin. With lower cellular K+, fluorescent intensity in the presence of valinomycin for any given concentration was increased. 3. In the presence of gramicidin fluorescent intensity was highest in Krebs-Ringer and decreased with the substitution of choline+ for Na+. 4. The observations with ionophores are consistent with the hypothesis that the dye monitors membrane potential in these cells with an increase in fluorescence indicating membrane depolarization (internal becomes more positive). 5. The estimated membrane potentials were influenced by the way in which the cells were treated. Upon dilution of the cells from 1 in 20 to 1 in 300 the initial estimations were between -50 and -60 mV. With incubation at 1 in 300 dilution for 1 h at room temperature or a 37 degrees C, the membrane potentials ranged from -18 to -42 mV. 6. Estimations of membrane potential on the basis of chloride distribution (Cl-cell/Cl-medium) in equilibrated cells ranged from -13 to -32 mV. 7. Addition of glucose to cells equilibrated at 37 degrees C for 30 min in the presence of rotenone led to a decrease in fluorescent intensity indicating hyperpolarization. Addition of ouabain in turn led to a 70 to 100% reversal of fluorescent intensity. This hyperpolarization is therefore probably due to the electrogenic activity of the sodium pump. 8. The addition of amino acids known to require external Na+ for transport increased fluorescent intensity (depolarization) reaching a maximum at higher concentrations of amino acids. Plots of 1/deltafluorescence vs. 1/[glycine] were linear with an apparent Km of 2-3 mM. The increase in fluorescence with amino acids always required external Na+. Plots of 1/fluorescence vs. 1/[Na+]medium were also linear with an apparent Km of 29 mM. These apparent Km values compare favorably with those derived from amino acid transport studies using tracers. These data indicate that the Na+-dependent transport of amino acids in these cells is electrogenic.  相似文献   

12.
Summary Light-microscopic autoradiography was used to localize the cellular sites for neutral amino acid uptake in submandibular and sublingual salivary gland epithelia. The vasculature of isolated glands was perfused for 3–5 min with either L-(3-3H)serine or L-(4-3H)phenylalanine and then fixed by perfusion with buffered glutaraldehyde. In the submandibular gland the small neutral amino acid L-serine and the aromatic amino acid L-phenylalanine were localized to central acinar cells, demilunar cells and ductal cells. In the sublingual gland silver grains associated with each of these tritiated amino acids were localized to central acinar and ductal cells. Perfusion of both submandibular and sublingual glands with unlabelled L-serine (25 mM) or L-phenylalanine (30 mM) resulted in a significant decrease in the silver grain density associated with each labelled amino acid. The absence of silver grains in the lumina of acinar and ductal cells and the presence of tight junctions near the apical surface of the epithelium strongly suggest that the initial uptake of these amino acids was mediated by basolateral plasma membrane carriers.  相似文献   

13.
Electrical coupling and uncoupling of exocrine acinar cells   总被引:3,自引:1,他引:2       下载免费PDF全文
The electrical communication network in the mouse pancreatic acinar tissue has been investigated using simultaneous intracellular recording with two separate microelectrodes and direct microscopical control of the localizations of the microelectrode tips. All cells within one acinus were electrically coupled, and the coupling coefficient (the electrotonic potential change in a cell neighboring to the cell into which current is injected [V2] divided by the electrotonic potential change in the cell of current injection [V1]) between two cells near each other (less than 50 micron) was always close to 1. Cells farther apart (50-100 micron) were, in some cases, coupled; in other cases, there was no coupling at all. Coupling coefficients varied between 0 and 1. There was rarely electrical coupling over distances of more than 110 micron. Using microiontophoretic acetylcholine (ACh) application, it was possible to evoke almost complete electrical uncoupling of two previously coupled pancreatic or lacrimal acinar cells from different acini or within one acinus. The effects were fully and quickly reversible. While the ACh-evoked uncoupling in the pancreas was associated with membrane depolarization, ACh caused hyperpolarization in the lacrimal acinar cells. The uncoupling was associated with a very marked reduction in electrical time constant, indicating a reduction in input capacitance (effective surface cell membrane area). The concentrations of stimulants needed to evoke reduction in pancreatic cell-to-cell coupling were 1 micron for ACh, 0.14 nM for caerulein, and 3 nM for bombesin. These concentrations are smaller than those required to evoke maximal enzyme secretion.  相似文献   

14.
The induction of paraffin oxidation in intact cells of Pseudomonas aeruginosa was investigated. Oxidation of (14)C-heptane by cell-free extracts of adapted cells showed that the activity of whole cells is a reliable reflection of the synthesis of the first enzyme in the degradation of n-alkanes. Induction was significantly affected by glucose and could be completely repressed by malate. The amino acids l-proline, l-alanine, l-arginine, and l-tyrosine exhibited a rather low repressor action. Malonate, a nonrepressive carbon source, allowed gratuitous enzyme synthesis. A number of compounds which did not sustain growth were found to be suitable substitutes for paraffins as an inducer. Among these were cyclopropane and diethoxymethane. The induction studied under conditions of gratuity with the latter compound as an inducer showed immediate linear kinetics only at saturating inducer concentrations. With n-hexane as the inducer, a lag time was always observed, even when high concentrations were used.  相似文献   

15.
The transport of l-leucine, l-phenylalanine and l-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of l-leucine was inhibited by BCH (65%) and d-leucine (58%) but not by l-proline. The inhibition of l-leucine clearance by BCH and d-leucine was not additive. l-leucine inhibited the peak clearance of radiolabelled l-leucine by 78%. BCH also inhibited the peak clearance of l-phenylalanine (66%) and l-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that l-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium.  相似文献   

16.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

17.
Available information on the fate and insulinotropic action of l-alanine in isolated pancreatic islets is restricted to data collected in obese hyperglycemic mice. Recent data, however, collected mostly in tumoral islet cells of either the RINm5F line or BRIN-BD11 line, have drawn attention to the possible role of Na+ co-transport in the insulinotropic action of l-alanine. In the present study conducted in islets prepared from normal adult rats, l-alanine was found (i) to inhibit pyruvate kinase in islet homogenates, (ii) not to affect the oxidation of endogenous fatty acids in islets prelabelled with [U-14C]palmitate, (iii) to stimulate 45Ca uptake in islets deprived of any other exogenous nutrient, and (iv) to augment insulin release evoked by either 2-ketoisocaproate or l-leucine, whilst failing to significantly affect glucose-induced insulin secretion. The oxidation of l-[U-14C]alanine was unaffected by d-glucose, but inhibited by l-leucine. Inversely, l-alanine decreased the oxidation of d-[U-14C]glucose, but failed to affect l-[U-14C]leucine oxidation. It is concluded that the occurrence of a positive insulinotropic action of l-alanine is restricted to selected experimental conditions, the secretory data being compatible with the view that stimulation of insulin secretion by the tested nutrient(s) reflects, as a rule, their capacity to augment ATP generation in the islet B cells. However, the possible role of Na+ co-transport in the secretory response to l-alanine cannot be ignored.  相似文献   

18.
The permanent cell culture line AR42J, derived from a rat pancreatic acinar carcinoma, is widely used for functional studies of exocrine pancreatic acinar cells. We now present evidence that these cells are amphicrine in that they contain zymogen granules as well as small (40-80 nm) neuroendocrine (NE) vesicles and typical neurotransmitters. Using the small NE vesicle-specific markers synaptophysin and "protein S.V.2", including synaptophysin cDNA probes, we have found that AR42J cells synthesize these proteins and contain vesicles harboring these proteins with biophysical properties similar to those of small NE vesicles. NE properties of these cells are further indicated by the presence of considerable amounts of stored amino acids (gamma-aminobutyric acid (GABA), glycine, glutamate) and by the presence of the GABA-synthesizing enzyme, glutamic acid decarboxylase. Finally, intermediate filament (IF) protein typing showed only cytokeratins 8 and 18, indicating that AR42J cells possess an IF protein complement indistinguishable from that of acinar and islet cells. Our results document the unusual case of a permanent cell line with combined exocrine and neuroendocrine properties that may be indicative of a derivation from a cell with multipotential character.  相似文献   

19.
The application of neutral or acidic amino acids to oat coleptiles induced transient depolarizations of the membrane potentials. The depolarizations are considered to reflect H+ -amino acid co-transport, and the spontaneous repolarizations are believed to be caused by subsequent electrogenic H+ extrusion. The basic amino acids depolarized the cell membrane strongly, but the repolarizations were weak or absent. The depolarizations induced by the basic amino acids were weakly sensitive to manipulations of the extracellular and intracellular pH. The depolarizations induced by the other amino acids, in contrast, were more strongly affected by the pH changes. Several amino acids induced distinct but diminished depolarizations in the presence of 2,4-dinitrophenol or cyanide, but the repolarizations were generally eliminated. These experiments support the co-transport theory but suggest somewhat different mechanisms for the transport of the neutral, acidic, and basic amino acids. We suggest that the neutral amino acids are co-transported with a single H+ and that accumulation depends upon both the ΔpH and the membrane potential components of the proton motive force. The acidic amino acids appear to be accumulated by a similar mechanism except that the transport of each molecule may be associated with a cation in addition to a single proton. The permanently protonated basic amino acids appear not to be co-transported with an additional proton. Accumulation would depend only on the membrane potential component of the proton motive force.  相似文献   

20.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (psi m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+],) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号