首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biliary disease is a major cause of acute pancreatitis. In this study we investigated the electrophysiological effects of bile acids on pancreatic acinar cells. In perforated patch clamp experiments we found that taurolithocholic acid 3-sulfate depolarized pancreatic acinar cells. At low bile acid concentrations this occurred without rise in the cytosolic calcium concentration. Measurements of the intracellular Na(+) concentration with the fluorescent probe Sodium Green revealed a substantial increase upon application of the bile acid. We found that bile acids induce Ca(2+)-dependent and Ca(2+)-independent components of the Na(+) concentration increase. The Ca(2+)-independent component was resolved in conditions when the cytosolic Ca(2+) level was buffered with a high concentration of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). The Ca(2+)-dependent component of intracellular Na(+) increase was clearly seen during stimulation with the calcium-releasing agonist acetylcholine. During acetylcholine-induced Ca(2+) oscillations the recovery of cytosolic Na(+) was much slower than the recovery of Ca(2+), creating a possibility for the summation of Na(+) transients. The bile-induced Ca(2+)-independent current was found to be carried primarily by Na(+) and K(+), with only small Ca(2+) and Cl(-) contributions. Measurable activation of such a cationic current could be produced by a very low concentration of taurolithocholic acid 3-sulfate (10 microm). This bile acid induced a cationic current even when applied in sodium- and bicarbonate-free solution. Other bile acids, taurochenodeoxycholic acid, taurocholic acid, and bile itself also induced cationic currents. Bile-induced depolarization of acinar cells should have a profound effect on acinar fluid secretion and, consequently, on transport of secreted zymogens.  相似文献   

2.
Quantitative analysis of spontaneous mitochondrial depolarizations   总被引:8,自引:0,他引:8       下载免费PDF全文
Spontaneous transient depolarizations in mitochondrial membrane potential (DeltaPsi(m)), mitochondrial flickers, have been observed in isolated mitochondria and intact cells using the fluorescent probe, tetramethylrhodamine ethyl ester (TMRE). In theory, the ratio of [TMRE] in cytosol and mitochondrion allows DeltaPsi(m) to be calculated with the Nernst equation, but this has proven difficult in practice due to fluorescence quenching and binding of dye to mitochondrial membranes. We developed a new method to determine the amplitude of flickers in terms of millivolts of depolarization. TMRE fluorescence was monitored using high-speed, high-sensitivity three-dimensional imaging to track individual mitochondria in freshly dissociated smooth muscle cells. Resting mitochondrial fluorescence, an exponential function of resting DeltaPsi(m), varied among mitochondria and was approximately normally distributed. Spontaneous changes in mitochondrial fluorescence, indicating depolarizations and repolarizations in DeltaPsi(m), were observed. The depolarizations were reversible and did not result in permanent depolarization of the mitochondria. The magnitude of the flickers ranged from <10 mV to >100 mV with a mean of 17.6 +/- 1.0 mV (n = 360) and a distribution skewed to smaller values. Nearly all mitochondria flickered, and they did so independently of one another, indicating that mitochondria function as independent units in the myocytes employed here.  相似文献   

3.
Calcium signalling and pancreatic cell death: apoptosis or necrosis?   总被引:2,自引:0,他引:2  
Secretagogues, such as cholecystokinin and acetylcholine, utilise a variety of second messengers (inositol trisphosphate, cADPR and nicotinic acid adenine dinucleotide phosphate) to induce specific oscillatory patterns of calcium (Ca(2+)) signals in pancreatic acinar cells. These are tightly controlled in a spatiotemporal manner, and are coupled to mitochondrial metabolism necessary to fuel secretion. When Ca(2+) homeostasis is disrupted by known precipitants of acute pancreatitis, for example, hyperstimulation or non-oxidative ethanol metabolites, Ca(2+) stores (endoplasmic reticulum and acidic pool) become depleted and sustained cytosolic [Ca(2+)] elevations replace transient signals, leading to severe consequences. Sustained mitochondrial depolarisation, possibly via opening of the mitochondrial permeability transition pore (MPTP), elicits cellular ATP depletion that paralyses energy-dependent Ca(2+) pumps causing cytosolic Ca(2+) overload, while digestive enzymes are activated prematurely within the cell; Ca(2+)-dependent cellular necrosis ensues. However, when stress to the acinar cell is milder, for example, by application of the oxidant menadione, release of Ca(2+) from stores leads to oscillatory global waves, associated with partial mitochondrial depolarisation and transient MPTP opening; apoptotic cell death is promoted via the intrinsic pathway, when associated with generation of reactive oxygen species. Apoptosis, induced by menadione or bile acids, is potentiated by inhibition of an endogenous detoxifying enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), suggesting its importance as a defence mechanism that may influence cell fate.  相似文献   

4.
Mitochondrial involvement in Ca2+ signaling is thought to be due to the effect of mitochondrial Ca2+ removal from and Ca2+ release to cytosolic domains close to ryanodine and IP3 Ca2+ channels. However, mitochondria are a source of low levels of endogenous reactive oxygen species, and Ca2+ release channels are known to be redox-sensitive. In the present work, we studied the role of mitochondrial production of oxygen species in Ca2+ oscillations during physiological stimulation. Mitochondria-targeted antioxidants and mitochondrial inhibitors quickly inhibited calcium oscillations in pancreatic acinar cells stimulated by postprandial levels of the gut hormone cholecystokinin. Confocal microscopy using different redox-sensitive dyes showed that cholecystokinin-induced oscillations are associated with mitochondrial production of reactive oxygen species. This production is inhibited by application of mitochondria-targeted antioxidants and mitochondrial inhibitors. In addition, we found no correlation between inhibition of oscillations and mitochondrial depolarization. We conclude that low level production of reactive oxygen species by mitochondria is a necessary element in the development of Ca2+ oscillations during physiological stimulation. This study unveils a new and unexplored aspect of the participation of mitochondria in calcium signals.  相似文献   

5.
In dispersed acinar cells from guinea pig pancreas we found that chelating extracellular calcium with EDTA did not alter cellular cyclic GMP but caused a 50% reduction in the increase in cyclic GMP caused by the synthetic C-terminal octapeptide of porcine cholecystokinin (cholecystokinin octapeptide). This effect was maximal within 2 min and preincubating the cells with EDTA for as long as 30 min caused no further reduction in the action of cholecystokinin octapeptide. In acinar cells preincubated without calcium, adding calcium caused a time dependent increase in the action of cholecystokinin octapeptide and this increase was maximal after 10 min of incubation. An effect of extracellular calcium on the action of cholecystokinin octapeptide could be detected with 0.5 mM calcium and was maximal with 2.0 mM calcium. Magnesium alone or with calcium did not alter the action of cholecystokinin octapeptide. Extracellular calcium did not alter the time course or the configuration of the dose vs. response curve for the action of cholecystokinin octapeptide on cellular cyclic GMP. Low concentrations of EGTA (0.1 mM) decreased the effect of cholecystokinin octapeptide on cellular cyclic GMP to the same extent as did EDTA or preincubating acinar cells without calcium. Increasing EGTA above 0.1 mM caused progressive augmentation of the action of cholecystokinin octapeptide on cellular cyclic GMP and this augmentation did not require extracellular calcium or magnesium. Results similar to those obtained with cholecystokinin octapeptide were also obtained with bombesin, carbamylcholine, litorin and eledoisin. In contrast, the action of sodium nitroprusside on cyclic GMP in pancreatic acinar cells was not altered by adding EDTA or EGTA.These results indicate that the ability of extracellular calcium to influence the action of cholecystokinin octapeptide and other agents on cyclic GMP results from changes in cellular calcium and not from effects of extracellular calcium per se. The action of low concentrations of EGTA on the increase in cyclic GMP caused by various agents reflects the ability of EGTA to chelate extracellular calcium. The actions of high concentrations of EGTA were independent of extracellular calcium or magnesium and appear to reflect a direct action of EGTA on pancreatic acinar cells.  相似文献   

6.
Apoptosis and necrosis are critical parameters of pancreatitis, the mechanisms of which remain unknown. Many characteristics of pancreatitis can be studied in vitro in pancreatic acini treated with high doses of cholecystokinin (CCK). We show here that CCK stimulates apoptosis and death signaling pathways in rat pancreatic acinar cells, including caspase activation, cytochrome c release, and mitochondrial depolarization. The mitochondrial dysfunction is mediated by upstream caspases (possibly caspase-8) and, in turn, leads to activation of caspase-3. CCK causes mitochondrial alterations through both permeability transition pore-dependent (cytochrome c release) and permeability transition pore-independent (mitochondrial depolarization) mechanisms. Caspase activation and mitochondrial alterations also occur in untreated pancreatic acinar cells; however, the underlying mechanisms are different. In particular, caspases protect untreated acinar cells from mitochondrial damage. We found that caspases not only mediate apoptosis but also regulate other parameters of CCK-induced acinar cell injury that are characteristic of pancreatitis; in particular, caspases negatively regulate necrosis and trypsin activation in acinar cells. The results suggest that the observed signaling pathways regulate parenchymal cell injury and death in CCK-induced pancreatitis. Protection against necrosis and trypsin activation by caspases can explain why the severity of pancreatitis in experimental models correlates inversely with the extent of apoptosis.  相似文献   

7.
Isolated pancreatic acini were loaded with the calcium selective fluorescent indicator, quin-2. Measurements of cellular K+ content and lactic dehydrogenase release indicated that cell viability was not affected by quin-2 loading. The concentration of intracellular free calcium of unstimulated acinar cells was calculated to be 180 +/- 4 nM. When cells suspended in media containing millimolar calcium were exposed to the secretagogues carbachol and cholecystokinin a rapid increase in [Ca2+]i occurred. Both the amplitude and rate of rise of the concentration increase were dose dependent with [Ca2+]i reaching a maximum of 860 +/- 41 nM. The dose-response relationship coincides with the known concentration dependence of the stimulation of amylase release by these agents. In the absence of extracellular calcium, carbachol was still able to elicit a rise in [Ca2+]i. These studies indicate that pancreatic secretagogues induce an increase in [Ca2+]i of acinar cells, both in the presence or absence of extracellular calcium.  相似文献   

8.
In the present study, we have employed confocal laser scanning microscopy to investigate the effect that stimulation of mouse pancreatic acinar cells with the secretagogue cholecystokinin (CCK) has on mitochondrial activity. We have monitored changes in cytosolic as well as mitochondrial Ca2+ concentrations, mitochondrial membrane potential and FAD autofluorescence by loading the cells with fluo-3, rhod-2 or JC-1, respectively. Our results show that stimulation of cells with cholecystokinin led to release of Ca2+ from intracellular stores that then accumulated into mitochondria. In the presence of the hormone a depolarization of mitochondrial membrane potential was observed, which partially recovered; in addition a transient increase in FAD autofluorescence could be observed. Similarly, treatment of cells with thapsigargin induced increases in mitochondrial Ca2+ and FAD autofluorescence, and depolarized mitochondria. Pretreament of cells with thapsigargin blocked cholecystokinin-evoked changes. Similar results were obtained when the cells were incubated in the presence of rotenone, which blocks the mitochondrial electron transport chain. Our findings are consistent with changes in mitochondrial activity in response to stimulation of pancreatic acinar cells with cholecystokinin. Following stimulation, mitochondria take up Ca2+ that could in turn activate the mitochondrial machinery that may match the energy supply necessary for the cell function during secretion, suggesting that Ca2+ can act as a regulator of mitochondrial activity.  相似文献   

9.
Stimulation of rat pancreatic acinar cells with low concentrations of phosphatidylinositol (PI)-linked secretagogues induces [Ca2+]i oscillations, without measurable changes in the formation of inositol 1,4,5-trisphosphate. Therefore, we tested U73122 a new phospholipase C inhibitor to determine if PI turnover is necessary for the generation of [Ca2+]i oscillations. In acini prelabeled with [3H]inositol, PI hydrolysis on stimulation with either cholecystokinin or carbachol was inhibited dose-dependently by U73122, with a maximal effect seen at 10 microM; the formation of inositol 1,4,5-trisphosphate, measured using a radioreceptor assay, was also similarly inhibited. By contrast secretin- or vasoactive intestinal peptide-stimulated production of cAMP was unaffected by 10 microM U73122. These studies indicate that U73122 is a relatively specific inhibitor of G-protein-mediated phospholipase C activation in pancreatic acini. In fura-2-loaded acini, U73122 inhibited the increases in [Ca2+]i stimulated by these high concentrations of secretagogues which can be demonstrated to elicit PI turnover. The [Ca2+]i signal generated by directly stimulating G-proteins with sodium fluoride was also inhibited by U73122; however, the [Ca2+]i rise induced by thapsigargin was unaffected. These data indicate that the mechanism of inhibition was distal to the occupation of cell surface receptors but did not involve an interference of Ca2+ metabolism in general. When [Ca2+]i oscillations were elicited by low concentrations of cholecystokinin or carbachol, U73122 rapidly inhibited the oscillating [Ca2+]i signal. In contrast, oscillations induced by an analogue of cholecystokinin, JMV-180, which does not stimulate changes in PI metabolism at any concentration, were unaffected. This indicates that cholecystokinin- and carbachol-induced oscillations are probably initiated by small, localized changes in PI metabolism, which are not readily detectable. However, the inability of U73122 to inhibit JMV-180-induced oscillations indicates that PI metabolism may not necessarily be a prerequisite for the generation of [Ca2+]i oscillations.  相似文献   

10.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (psi m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+],) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas.  相似文献   

11.
Dispersed acini from rat pancreas were used to examine the effects of various pancreatic secretagogues on the fine structure of the acinar cell plasma membrane. With the C-terminal octapeptide of cholecystokinin, the C-terminal tetrapeptide of cholecystokinin, carbamylcholine, bombesin, A23187, vasoactive intestinal peptide or 8-bromo cyclic adenosine monophosphate, concentrations of the secretagogues that caused maximal stimulation of enzyme secretion did not produce alterations of the acinar cell plasma membrane. Supramaximal concentrations of the C-terminal octapeptide of cholecystokinin, the C-terminal tetrapeptide of cholecystokinin or carbamylcholine induced the formation of cytoplasmic protrusions at the basolateral plasma membrane of the pancreatic acinar cell, whereas supramaximal concentration of bombesin, A23187, vasoactive intestinal peptide or 8-bromo cyclic AMP did not alter the morphology of the acinar cell. Effects of the C-terminal octapeptide of cholecystokinin could be detected as early as after two minutes of incubation and these effects progressed for up to 30 minutes of incubation.  相似文献   

12.
An early feature of acute pancreatitis is activation of zymogens, such as trypsinogen, within the pancreatic acinar cell. Supraphysiologic concentrations of the hormone cholecystokinin (CCK; 100 nM), or its orthologue cerulein (CER), induce zymogen activation and elevate levels of cAMP in pancreatic acinar cells. The two classes of adenylyl cyclase, trans-membrane (tmAC) and soluble (sAC), are activated by distinct mechanisms, localize to specific subcellular domains, and can produce locally high concentrations of cAMP. We hypothesized that sAC activity might selectively modulate acinar cell zymogen activation. sAC was identified in acinar cells by PCR and immunoblot. It localized to the apical region of the cell under resting conditions and redistributed intracellularly after treatment with supraphysiologic concentrations of cerulein. In cerulein-treated cells, pre-incubation with a trans-membrane adenylyl cyclase inhibitor did not affect zymogen activation or amylase secretion. However, treatment with a sAC inhibitor (KH7), or inhibition of a downstream target of cAMP, protein kinase A (PKA), significantly enhanced secretagogue-stimulated zymogen activation and amylase secretion. Activation of sAC with bicarbonate significantly inhibited secretagogue-stimulated zymogen activation; this response was decreased by inhibition of sAC or PKA. Bicarbonate also enhanced secretagogue-stimulated cAMP accumulation; this effect was inhibited by KH7. Bicarbonate treatment reduced secretagogue-stimulated acinar cell vacuolization, an early marker of pancreatitis. These data suggest that activation of sAC in the pancreatic acinar cell has a protective effect and reduces the pathologic activation of proteases during pancreatitis.  相似文献   

13.
为了研究 C B P在胰岛 H I T 细胞中调节基因转录的机制,将不同的 C B P片段瞬时转染到细胞中,观察其转录活性.实验表明,在胰岛 H I T 细胞中,膜去极化及 c A M P 均可诱导 C B P30( C R E B结合功能区)转录活性增强,并有协同效应. P K C对 C B P30 的转录活性无影响;与 C R E B有更强结合力的 C B P K I X S/ B(氨基酸序列短于 C B P30 的 C R E B结合功能区)其基本转录活性及膜去极化、c A M P诱导下的转录活性均比 C B P30 更强.反义 C R E B 的过度表达可降低 c A M P诱导的 C B P的转录活性.提示在胰岛 H I T 细胞中,膜去极化及 c A M P对共转录因子 C B P转录活性的调节作用通过 C R E B介导.  相似文献   

14.
Lee KK  Uhm DY  Park MK 《FEBS letters》2003,538(1-3):134-138
We have investigated whether low affinity cholecystokinin (CCK) receptors suppress agonist-induced rises of cytosolic free Ca(2+) concentration ([Ca(2+)]c) in pancreatic acinar cells by using properties of caffeine. A high concentration of caffeine (20 mM) completely blocked inositol 1,4,5-trisphosphate (InsP(3))-induced [Ca(2+)]c rises but spared the InsP(3)-independent long-lasting [Ca(2+)]c oscillations. In the presence of 20 mM caffeine, only high concentrations of CCK, but not bombesin or JMV-180, suppressed the caffeine-resistant CCK or bombesin-induced [Ca(2+)]c oscillations, indicating that low affinity CCK receptors inhibit agonist-induced [Ca(2+)]c oscillations. It could be one of the underlying mechanisms by which low affinity CCK receptors suppress secretion in pancreatic acinar cells.  相似文献   

15.
The effect of prolonged protein kinase C activation on cholecystokinin octapeptide (CCK-8)-induced amylase secretion from rabbit pancreatic acini was studied by means of the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). The phorbol ester itself increased basal amylase secretion but inhibited completely the secretory response to relatively low concentrations of CCK-8. The inhibitory action of TPA on CCK-8-induced amylase secretion was paralleled by inhibition of CCK-8-induced calcium mobilization but not by inhibition of CCK-8-induced breakdown of 32P-labelled phosphatidylinositol 4,5-bisphosphate. The results presented suggest that protein kinase C, or one of its phosphorylated products, inhibits the CCK-8-stimulated pathway leading to secretion at a level beyond the secretagogue-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate. Inhibition of the initial, inositol 1,4,5-trisphosphate-mediated and extracellular calcium-independent, increase in free cytosolic calcium concentration, together with the findings of others, suggests that the efficacy of this inositol-phosphate to release calcium is reduced.  相似文献   

16.
Receptor-activated cytoplasmic calcium (Ca2+) oscillations have been investigated in single pancreatic acinar cells by microfluorimetry (Fura-2 as indicator). At submaximal concentrations of the agonists acetylcholine (ACh) and cholecystokinin octapeptide (CCK-8), both give rise to oscillatory changes in the cytosolic free calcium concentration ([Ca2+]i). The patterns of oscillations are markedly and consistently different for each of these two agonists. The ACh induced oscillations are superimposed upon a median elevation in background [Ca2+]i. The CCK-8 induced oscillations are of longer duration with [Ca2+]i returning to prestimulus levels between the discrete spikes. The ACh induced oscillations are rapidly abolished upon removal of extracellular Ca2+ while the CCK-8 induced oscillations persist for many minutes in the absence of external Ca2+. The CCK-8, but not the ACh, induced oscillations are increased in duration by the protein kinase C (PKC) inhibitor staurosporine and abolished by the PKC activating phorbol ester PMA. It is clear that CCK-8 and ACh do not activate receptor transduction mechanisms in an identical manner to generate oscillating [Ca2+]i signals.  相似文献   

17.
In dispersed acinar cells from guinea pig pancreas we found that chelating extracellular calcium with EDTA did not alter cellular cyclic GMP but caused a 50% reduction in the increase in cyclic GMP caused by the synthetic C-terminal octapeptide of porcine cholecystokinin (cholecystokinin octapeptide). This effect was maximal within 2 min and preincubating the cells with EDTA for as long as 30 min caused no further reduction in the action of cholecystokinin octapeptide. In acinar cells preincubated without calcium, adding calcium caused a time dependent increase in the action of cholecystokinin octapeptide and this increase was maximal after 10 min of incubation. An effect of extracellular calcium on the action of cholecystokinin octapeptide could be detected with 0.5 mM calcium and was maximal with 2.0 mM calcium. Magnesium alone or with calcium did not alter the action of cholecystokinin octapeptide. Extracellular calcium did not alter the time course or the configuration of the dose vs. response curve for the action of cholecystokinin octapeptide on cellular cyclic GMP. Low concentrations of EGTA (0.1 mM) decreased the effect of cholecystokinin octapeptide on cellular cyclic GMP to the same extent as did EDTA or preincubating acinar cells without calcium. Increasing EGTA above 0.1 mM caused progressive augmentation of the action of cholecystokinin octapeptide on cellular cyclic GMP and this augmentation did not require extracellular calcium or magnesium. Results similar to those obtained with cholecystokinin octapeptide were also obtained with bombesin, carbamylcholine, litorin and eledoisin. In contrast, the action of sodium nitroprusside on cyclic GMP in pancreatic acinar cells was not altered by adding EDTA or EGTA. These results indicate that the ability of extracellular calcium to influence the action of cholecystokinin octapeptide and other agents on cyclic GMP results from changes in cellular calcium and not from effects of extracellular calcium per se. The action of low concentrations of EGTA on the increase in cyclic GMP caused by various agents reflects the ability of EGTA to chelate extracellular calcium. The actions of high concentrations of EGTA were independent of extracellular calcium or magnesium and appear to reflect a direct action of EGTA on pancreatic acinar cells.  相似文献   

18.
Here we describe a technique that allows us to visualize in real time the formation and dynamics (fusion, changes of shape, and translocation) of vacuoles in living cells. The technique involves infusion of a dextran-bound fluorescent probe into the cytosol of the cell via a patch pipette, using the whole-cell patch-clamp configuration. Experiments were conducted on pancreatic acinar cells stimulated with supramaximal concentrations of cholecystokinin (CCK). The vacuoles, forming in the cytoplasm of the cell, were revealed as dark imprints on a bright fluorescence background, produced by the probe and visualized by confocal microscopy. A combination of two dextran-bound probes, one infused into the cytosol and the second added to the extracellular solution, was used to identify endocytic and nonendocytic vacuoles. The cytosolic dextran-bound probe was also used together with a Golgi indicator to illustrate the possibility of combining the probes and identifying the localization of vacuoles with respect to other cellular organelles in pancreatic acinar cells. Combinations of cytosolic dextran-bound probes with endoplasmic reticulum (ER) or mitochondrial probes were also used to simultaneously visualize vacuoles and corresponding organelles. We expect that the new technique will also be applicable and useful for studies of vacuole dynamics in other cell types.  相似文献   

19.
Pancreatitis, a potentially fatal disease in which the pancreas digests itself as well as its surroundings, is a well recognized complication of hyperlipidemia. Fatty acids have toxic effects on pancreatic acinar cells and these are mediated by large sustained elevations of the cytosolic Ca2+ concentration. An important component of the effect of fatty acids is due to inhibition of mitochondrial function and subsequent ATP depletion, which reduces the operation of Ca2+-activated ATPases in both the endoplasmic reticulum and the plasma membrane. One of the main causes of pancreatitis is alcohol abuse. Whereas the effects of even high alcohol concentrations on isolated pancreatic acinar cells are variable and often small, fatty acid ethyl esters – synthesized by combination of alcohol and fatty acids – consistently evoke major Ca2+ release from intracellular stores, subsequently opening Ca2+ entry channels in the plasma membrane. The crucial trigger for pancreatic autodigestion is intracellular trypsin activation. Although there is still uncertainty about the exact molecular mechanism by which this Ca2+-dependent process occurs, progress has been made in identifying a subcellular compartment – namely acid post-exocytotic endocytic vacuoles – in which this activation takes place.  相似文献   

20.
The recently synthesized calcium indicator quin -2 was incorporated into synaptosomes from guinea-pig cerebral cortex following uptake and internal hydrolysis of quin -2 tetra-acetoxymethyl ester. Incubation in physiological media containing 1 mM- or 2 mM-CaCl2 led to equilibrium cytosolic ionized calcium concentrations of 85 +/- 10 nM and 205 +/- 5 nM respectively (mean +/- S.E.M. from eight and eighteen preparations respectively). Cytosolic Ca2+ was elevated following increases in external Ca2+ concentration, plasma membrane depolarization, mitochondrial inhibition, calcium ionophore addition or replacement of external sodium by lithium. Preliminary experiments were performed to assess changes in cytosolic Ca2+ accompanying the release of the neurotransmitter acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号