首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have previously reported that cells of Dictyostelium discoideum lacking the fatty acid oxidation enzyme MFE1 accumulate excess cyclopropane fatty acids from ingested bacteria. Cells in which mfeA(-) is disrupted fail to develop when grown in association with bacteria but form normal fruiting bodies when grown in axenic media. Bacterially grown mfeA(-) cells express the genes for the cyclic AMP (cAMP) receptor (carA) and adenylyl cyclase (acaA) but fail to respond to a cAMP pulse by synthesis of additional cAMP which normally relays the signal. Moreover, they do not accumulate the adhesion protein, gp80, which is encoded by the cAMP-induced gene, csaA. As a consequence, they do not acquire developmentally regulated EDTA-resistant cell-cell adhesion. When mutant cells are mixed with wild-type cells and allowed to develop together, they co-aggregate and differentiate into both spores and stalk cells. Thus, most of the developmental consequences of excess cyclopropane fatty acids appear to result from impaired cAMP relay.  相似文献   

2.
We have altered the phospholipid composition of the plasma membranes of Ehrlich ascites cells grown in mice and studied the effects on the properties of the insulin receptor of this cell. The insulin receptor of the Ehrlich cell demonstrated all of the binding characteristics of mammalian insulin receptors: specificity for insulin and insulin analogs, saturability, inverse relationship of steady-state binding levels to temperature, and negative cooperativity. Cellular phospholipids enriched in monounsaturated fatty acyl groups were produced by growth in animals that were maintained on a diet rich in coconut oil; cellular phospholipids enriched in polyunsaturated fatty acyl groups were produced in animals fed sunflower oil. Insulin receptors were present in the normal cells at 180 000 sites/cell but this fell to 125 000 (p <0.001) in cells enriched in monounsaturated fatty acids and rose to 386 000 (p <0.001) in cells enriched in polyunsaturated fatty acids. The normal cells had affinity constants ( and ) of 0.03 and 0.01 nM−1. The cells enriched in monounsaturated fatty acids had an increase in these affinity constants to 0.06 and 0.03 nM−1 whereas values of 0.01 and 0.005 nM−1 were obtained in the cells enriched in polyunsaturated fatty acids (all comparison p <0.001). Thus, increased unsaturation of plasma membrane phospholipids, produced by dietary manipulations, was associated with an increase in insulin receptor number but a decrease in binding affinity. In contrast, increased saturation of the phospholipids of the plasma membrane was associated with a decrease in receptor number and an increase in affinity. The results can be explained by a model in which the insulin receptor is assumed to be multimeric.  相似文献   

3.
A simple method is described for introducing exogenous fatty acids into the membrane phospholipids of the murine leukemia cell EL-4, and into the membrane phospholipids of resting mouse lymphocytes. The method involves culturing of the cells with free or methylated fatty acids at concentrations up to 50 microgram/ml. The presence of serum in the culture medium does not interfere with fatty acid uptake, but does increase the growth rate and viability of the cells. Membrane lipid composition returns to normal after the cells are grown in medium without exogenous fatty acid. Fractionation of the cell membranes confirmed that exogenous fatty acids were incorporated into the phospholipids of the plasma membrane.  相似文献   

4.
Alteration of the fatty acid composition of monolayer cultures of LM cells grown in chemically defined medium was achieved by supplementation with fatty acids complexed to bovine serum albumin. Phospholipids containing up to 40% linoleate were found in cells grown in medium containing 20 mu g of linoleate/ml. Incorporation of linoleate into phospholipids reached a plateau after 12-24 hr, and cells remained viable for at least 3-4 days. Although linoleic, linolenic, and arachidonic acids were incorporated into LM cells equally well, only the latter was elongated by these cells under these experimental conditions. Nonadecanoic acid was incorporated to a lesser extent than the polyunsaturated fatty acids. Phosphatidylcholine and phosphatidylethanolamine of LM cells had different fatty acid compositions; phosphatidylethanolamine contained more longer chain and unsaturated fatty acids. Cells were also grown in the absence of choline and presence of choline analogs such as N,N-dimethylethanolamine, N-methylethanolamine, 3-amino-1-propanol, and 1-2-amino-1-butanol. The analog phospholipids in these cells had fatty acid compositions which were intermediate between those of phosphatidylethanolamine and phosphatidylcholine of control cells grown in the presence of choline. Linoleate was found in both phosphatidylcholine and phosphatidylethanolamine of cells supplemented with linoleate. The sphingolipid fraction of these cells, however, did not contain significant amounts of linoleate. When linoleate was present in the phospholipids, compensatory decreases in the oleate and palmitoleate content of phospholipids were observed. Lowering of the growth temperature to 28 degrees produced an increase in unsaturate fatty acid content of the phospholipids. When linoleate was supplied to cells grown at 28 degrees, there was no further increase in the unsaturated fatty acid composition of the phospholipids. Using both fatty acid supplementation and lowered growth temperature, LM cell membranes can be produced which have phospholipids with vastly different fatty acid compositions.  相似文献   

5.
W D Sweet  F Schroeder 《FEBS letters》1988,229(1):188-192
Sterols are asymmetrically distributed between the leaflets of animal cell plasma membranes. Although transbilayer migration of sterols is extremely rapid, s to min, previous experimental manipulations have not altered their transmembrane steady-state distribution. However, the effect of polyunsaturated fatty acids has not been reported. When cultured in a lipid-free, chemically defined culture medium, LM fibroblasts do not synthesize polyunsaturated fatty acids but will incorporate polyunsaturated fatty acids into their plasma membranes if supplied in the medium. Sterol transbilayer distribution in LM plasma membranes was determined from quenching of fluorescence of dehydroergosterol by trinitrophenyl groups selectively attached to the exofacial leaflet. When cells are cultured in lipid-free media, 28.1% of the plasma membrane sterol is located in the exofacial (outside) leaflet. In contrast, when cells are cultured with linoleate- or linolenate-supplemented medium, 71.8% and 75.5% of the plasma membrane sterol is exofacial, respectively.  相似文献   

6.
V79-UF cells were isolated from Chinese hamster V79 cells as a cell line that requires exogenous unsaturated fatty acids for growth. V79-UF cells incorporated arachidonic acid into phospholipids. The molecular species of diacyl phosphatidylcholine and phosphatidylethanolamine containing arachidonic acid comprised 61.4 and 70.5% of the total phospholipid molecular species in total membranes and 58.1 and 64.7% in plasma membrane, respectively. Polyunsaturated molecular species were distributed in a higher amount in the intracellular membranes than in the plasma membrane. No significant difference was seen in the diffusion coefficient between the plasma membranes from cells supplemented with oleic and arachidonic acids in spite of a distinct difference in the degree of unsaturation between the molecular species of these plasma membranes. The amount of cholesterol in the plasma membrane was higher in the cells grown in the presence of arachidonic acid than in those grown in the presence of oleic acid.  相似文献   

7.
The fatty acid composition and some physical properties of intact cells and isolated plasma membranes of two types of mouse myeloid leukemia cell clone grown in culture have been examined. One clone type, MGI+D+, can be induced by the macrophage and granulocyte-inducing protein (MGI) to differentiate into mature macrophages and granulocytes. The other clone type, MGI+D-, could not be induced to differentiate into mature cells. A two-fold increase in the ratio of saturated fatty acid to unsaturated fatty acid was found in the MGI+D- compared to the MGI+D+ clones. The MGI+D- clones produced an unusual polyunsaturated C20:5 fatty acid at 28 degrees C, whereas the MGI+D+ clones did not grow at this temperature. The cells and their isolated plasma membranes were studied by electron spin resonance. The motion of the 5-nitroxide stearate spin label was found to be higher in the intact cells and in the membranes of MGI+D- clones than of the MGI+D+ clones. The cells of MGI+D+ clones showed a similar freedom of motion to normal myeloblasts from the bone marrow. The results indicate that myeloid leukemia cells which differ in their competence to be induced to differentiate into mature cells have different physical properties of their plasma membranes and that this is correlated with their fatty acid acyl chain composition.  相似文献   

8.
It has been suggested that tumour-derived cells are differentially sensitive to the anti-proliferative and cytotoxic effects of long chain n-3 and n-6 polyunsaturated fatty acids (PuFAs). We have previously shown that PuFAs are also growth suppressive to highly proliferative normal human urinary bladder uro-epithelial (NHU) cells grown in monolayer culture. To determine if the effects on NHU cells are directly related to the proliferative index, we have studied the effects of long chain fatty acids in a bladder organ culture system, where proliferation and differentiation of the urothelium is under homeostatic control. A 50 microM concentration of fatty acids was chosen as this concentration of PuFA was profoundly growth inhibitory to NHU cells in monolayer culture. In organ culture, 50 microM PuFAs had no detectable effect on the proliferation or on the preservation of urothelial differentiated histioarchitecture, as assessed using a panel of phenotypic markers. These results suggest that the effects of PuFA may be modulated by the tissue microenvironment.  相似文献   

9.
Effects of ethanol on the Escherichia coli plasma membrane.   总被引:11,自引:1,他引:10       下载免费PDF全文
The effects of ethanol on the fluidity of Escherichia coli plasma membranes were examined by using a variety of fluorescent probes: 1,6-diphenyl-1,3,5-hexatriene, perylene, and a set of n-(9-anthroyloxy) fatty acids. The anthroyloxy fatty acid probes were used to examine the fluidity gradient across the width of the plasma membrane and artificial membranes prepared from lipid extracts of plasma membranes. Ethanol caused a small decrease in the polarization of probes primarily located near the membrane surface. In comparison, hexanol decreased the polarization of probes located more deeply in the membrane. Temperature had a large effect on probes located at all depths. The effects of ethanol on E. coli membranes from cells grown with or without ethanol were also examined. Plasma membranes isolated from cells grown in the presence of ethanol were more rigid than those from control cells. In contrast to plasma membranes, artificial membranes prepared from lipid extracts of ethanol-grown cells were more fluid than those from control cells. These differences are explained by analyses of membrane composition. Membranes from cells grown in the presence of ethanol are more rigid than those from control cells due to a decrease in the lipid-to-protein ratio. This change more than compensates for the fluidizing effect of ethanol and the ethanol-induced increase in membrane C18:1 fatty acid which occurs during growth. Our results suggest that the regulation of the lipid-to-protein ratio of the plasma membrane may be an important adaptive response of E. coli to growth in the presence of ethanol.  相似文献   

10.
The fluidity of the lipids in membrane preparations from a mutant of Escherichia coli resistant to the uncoupler CCCP, grown at different temperatures with and without CCCP, was examined by electron spin resonance using the spin probe 5-doxyl stearic acid. The fluidity of the membrane lipids at the growth temperature, as estimated using electron spin resonance, was less in cells grown at lower temperatures. Precise homeoviscous adaptation was not observed. Growth in the presence of CCCP resulted in a decrease in membrane lipid fluidity, particularly in the inner (cytoplasmic) membrane. There was no change in the proportion of phosphatidylethanolamine, phosphatidylglycerol and cardiolipin in the cell envelope. However, there was an increase in the proportion of unsaturated fatty acids in membranes from cells grown with uncoupler. This was reflected in the increased fluidity of the lipids extracted from these membranes. This result is contrary to that expected from measurements of the fluidity of the lipid in these membranes. The decreased fluidity of the lipid in these membranes may be a consequence of the observed increase in the ratio of protein to phospholipid.  相似文献   

11.
Cells of Dictyostelium discoideum grown on media containing polyunsaturated fatty acid (PUFA) exhibit impaired differentiation when placed on a solid surface in the absence of all nutrients. Differentiation is inhibited at all temperatures, and although the inhibition is somewhat less pronounced at low temperatures, there is neither a lowering of the optimum temperature of aggregation nor a reversal of inhibition at low temperatures. Furthermore, although the in vitro aggregation of vegetative cells and the reaggregation of dispersed aggregation-phase cells are markedly temperature dependent, PUFA supplementation does not markedly influence this dependence. These data are not consistent with the hypothesis that impaired differentiation is due to increased plasma membrane fluidity. PUFA had no adverse effect on cell growth at temperatures at or below the optimum growth temperature, 22 °C. At 25 °C, however, there was considerable inhibition and at 27 °C growth was completely eliminated in the presence of PUFA.  相似文献   

12.
Liver plasma membranes isolated from rats with chronic dietary iron overload showed a large modification of their phospholipid fatty acid composition. Specifically, a significant decrease in polyunsaturated fatty acids and a parallel increase in saturated fatty acids was observed. This pattern was consistent with thein vivo occurrence of lipoperoxidative reactions in the liver plasma membranes. However, neither change in the cholesterol/phospholipid molar ratio nor in the lipid/protein ratio was detected. Direct measurement of the plasma membrane fluidity state by electron spin resonance spectrometry did not reveal any difference between control and iron-treated rats. These findings indicate that chronic dietary iron overload can induce lipid peroxidation of rat liver plasma membranes, but this event does not bring about modification in the physical state of the membrane.  相似文献   

13.
Nutritional intervention with specific fatty acids depresses tumor growth and enhances tumor responsiveness to chemotherapy. Supplementation of tumors with long chained omega-3 polyunsaturated fatty acids results in enrichment of tumor phospholipid fractions with omega-3 fatty acids resulting in an altered membrane composition and function. Tumors enriched with long chained omega-3 polyunsaturated fatty acids possess membranes with increased fluidity, an elevated unsaturation index, enhanced transport capabilities that results in accumulation of selective anti-cancer agents, increased activity of selected drug activating enzymes, and alteration of signaling pathways important for cancer progression. These nutritionally induced changes in tumor fatty acid composition result in increased sensitivity to chemotherapy, especially in tumor lines that are resistant to chemotherapy and cause specific enhancement of cytotoxicity to tumor cells and protection of normal cells. Pre-disposing tumors to increased chemo-sensitivity through nutritional intervention with specific fatty acids has the potential to improve patient response to chemotherapy with fewer untoward side effects if these pre-clinical findings carry over into a clinical setting.  相似文献   

14.
15.
Isolated plasma membranes from the yeast Candida tropicalis grown on two different carbon sources (glucose or hexadecane), had similar contents of protein (60% of total dry weight), lipid (21-24%) and carbohydrates (16-21%). Sodium dodecyl sulphate gel electrophoresis of the membrane proteins revealed 17 and 19 protein bands, respectively, for glucose and hexadecane grown cells. There were marked differences in RF values and relative peak heights between the two gels. Sterols and free fatty acids were the major components of the plasma membrane lipids. Phospholipid content was less than 2% of total plasma membrane lipids. Membrane microviscosity, as determined by fluorescence polarization, was very high (16.6 P). Fatty acid determination of membrane lipids by gas chromatography showed a significant increase of C16 fatty acids in plasma membranes of cells grown on hexadecane. Reduced-oxidized difference spectra demonstrated the presence of a b-type cytochrome in both Saccharomyces cerevisiae and C. tropicalis plasma membranes. Its concentration in C. tropicalis plasma membranes was three-fold greater in cells grown on hexadecane than in glucose grown cells.  相似文献   

16.
The growth of Dictyostelium discoideum Ax-2 was inhibited completely by cerulenin at a concentration of 5 mug/ml. This inhibition of growth was found to be due to the inhibition of fatty acid synthesis. Acetate incorporation into a long-chain fatty acid was inhibited completely by cerulenin, and the growth inhibition could be reversed by inclusion of certain saturated fatty acids in the medium. Unsaturated fatty acids and sterols failed to reverse the inhibitory effect. The fatty acid and sterol compositions of cerulenin-treated cells were determined to establish whether the drug could be used to manipulate the organism's lipid composition. Only relatively small manipulations were obtained under the conditions employed in this study. Cerulenin inhibited differentiation but only at high concentrations (150 mug/ml). This inhibition could be reversed by palmitic acid, suggesting that the prime cause of the inhibition was an inhibition of fatty acid synthesis. Thus, it appears that continued fatty acid synthesis is required for the cellular process of differentiation in D. discoideum.  相似文献   

17.
There is considerable evidence correlating the production of increased proportions of membrane unsaturated fatty acids (UFAs) with bacterial growth at low temperatures or high pressures. In order to assess the importance of UFAs to microbial growth under these conditions, the effects of conditions altering UFA levels in the psychrotolerant piezophilic deep-sea bacterium Photobacterium profundum SS9 were investigated. The fatty acids produced by P. profundum SS9 grown at various temperatures and pressures were characterized, and differences in fatty acid composition as a function of phase growth, and between inner and outer membranes, were noted. P. profundum SS9 was found to exhibit enhanced proportions of both monounsaturated (MUFAs) and polyunsaturated (PUFAs) fatty acids when grown at a decreased temperature or elevated pressure. Treatment of cells with cerulenin inhibited MUFA but not PUFA synthesis and led to a decreased growth rate and yield at low temperature and high pressure. In addition, oleic acid-auxotrophic mutants were isolated. One of these mutants, strain EA3, was deficient in the production of MUFAs and was both low-temperature sensitive and high-pressure sensitive in the absence of exogenous 18:1 fatty acid. Another mutant, strain EA2, produced little MUFA but elevated levels of the PUFA species eicosapentaenoic acid (EPA; 20:5n-3). This mutant grew slowly but was not low-temperature sensitive or high-pressure sensitive. Finally, reverse genetics was employed to construct a mutant unable to produce EPA. This mutant, strain EA10, was also not low-temperature sensitive or high-pressure sensitive. The significance of these results to the understanding of the role of UFAs in growth under low-temperature or high-pressure conditions is discussed.  相似文献   

18.
Leakage of potassium from mouse fibroblast LM cells, X-irradiated at 0 degrees C with doses up to 400 Gy is shown to be related to plasma membrane lipid composition. Fatty acid supplemented cells, containing about 40 per cent polyunsaturated fatty acids (PUFA) in their membranes were much more sensitive to radiation, as measured by increased permeability, than normal cells, which contained 7 per cent PUFA. The damage observed after irradiation at 0 degrees C was partially repaired during a post-irradiation incubation at 22 degrees C. The o.e.r. for potassium leakage was about 4 for normal fibroblasts and 8 for the PUFA-supplemented cells. No oxygen-dependent radiation damage could be observed in cells treated with high amounts of vitamin E. Depletion of glutathione in PUFA cells sensitized oxic cells to radiation damage, resulting in an increase of the o.e.r. from 8 to 17. No lipid peroxidation (malondialdehyde production and disappearance of fatty acyl chains) could be demonstrated. While PUFA, normal and vitamin E grown cells showed a differential sensitivity in radiation-induced potassium leakage and trypan blue uptake (high doses, interphase death), no difference in radiation-induced clonogenic ability (reproductive death) could be observed after the different cell treatments. The experiments reported are supportive of a role of membranes in the mechanism of radiation-induced interphase death and show that increased damage may be expected when high amounts of polyunsaturated membrane lipids are present under conditions of low amounts of appropriate antioxidants.  相似文献   

19.
Tetrahymena grown with foreign sterols such as ergosterol incorporate them into cellular membranes at the expense of the native compound, tetrahymanol. It is shown that cells grown with ergosterol have a lessened capacity to produce the polyunsaturated linoleic and gamma-linolenic acids from [14C]oleic acid. However, the same cells have normal capacities to introduce double bonds at C-6 into linoleate, alpha-linolenate, or cis-vaccenate. Thus, a presumed 12-desaturase is inhibited in the presence of ergosterol, while desaturation at C-6 is unaffected.  相似文献   

20.
Paramecium requires oleic acid for growth and can grow in media containing no other fatty acids. In the present study, we have shown that this ciliate utilized oleate mainly as a carbon and energy source, even though this fatty acid was the only substrate available for synthesis of polyunsaturated fatty acids. Culture growth was inhibited by the addition of the drug triparanol. Triparanol decreased the formation of polyunsaturated fatty acids from oleate by preventing desaturation to form the dienoic acid, linoleate. Triparanol inhibition resulted in an altered phospholipid fatty acyl composition, an increased fragility and an altered behavioral response of the cells to a depolarizing stimulation solution. Therefore, although most of the dietary oleate was not used by the cells for polyunsaturated fatty acid synthesis, the desaturation of oleic acid was critical for normal culture growth, cell integrity and swimming behavior, all of which are expected to be dependent on normal membrane lipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号