首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The relative expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) is an important determinant in trophoblast invasion of the uterus and tumor invasion and metastasis. Our previous studies have shown that low oxygen levels increase the in vitro invasiveness of trophoblast and tumor cells. The present study examined whether changes in oxygen levels affect TIMP and MMP expression by cultured trophoblast and breast cancer cells. Reverse zymographic analysis demonstrated reduced TIMP-1 protein secretion by HTR-8/SVneo trophoblast cells as well as MDA-MB-231 and MCF-7 breast carcinoma cells cultured in 1% vs 20% oxygen for 24 h. While gelatin zymography revealed no changes in the levels of MMP-9 secreted by HTR-8/SVneo trophoblasts cultured under various oxygen concentrations for 24 h, human MDA-MB-231 breast carcinoma cells displayed increased MMP-9 secretion and human MCF-7 breast cancer cells exhibited reduced secretion of this enzyme when cultured under similar conditions. In contrast, MMP-2 levels remained unchanged in all cultures incubated under similar conditions. Western blot analysis of MMP-9 protein in cell extracts confirmed the results of zymography. To assess the contribution of enhanced MMP activity to hypoxia-induced invasion, the effect of an MMP inhibitor (llomastat) on the ability of MDA-MB-231 cells to penetrate reconstituted extracellular matrix (Matrigel) was examined. Results showed that MMP inhibition significantly decreased the hypoxic upregulation of invasion by these cells. These findings indicate that the increased cellular invasiveness observed under reduced oxygen conditions may be due in part to a shift in the balance between MMPs and their inhibitors favoring increased MMP activity.  相似文献   

3.
Tissue inhibitor of metalloproteinases (TIMPs; TIMP-1, -2, -3 and -4) are endogenous inhibitor for matrix metalloproteinases (MMPs) that are responsible for remodeling the extracellular matrix (ECM) and involved in migration, invasion and metastasis of tumor cells. Unlike under normal conditions, the imbalance between MMPs and TIMPs is associated with various diseased states. Among TIMPs, TIMP-1, a 184-residue protein, is the only N-linked glycoprotein with glycosylation sites at N30 and N78. The structural analysis of the catalytic domain of human stromelysin-1 (MMP-3) and human TIMP-1 suggests new possibilities of the role of TIMP-1 glycan moieties as a tuner for the proteolytic activities by MMPs. Because the TIMP-1 glycosylation participate in the interaction, aberrant glycosylation of TIMP-1 presumably affects the interaction, thereby leading to pathogenic dysfunction in cancer cells. TIMP-1 has not only the cell proliferation activities but also anti-oncogenic properties. Cancer cells appear to utilize these bilateral aspects of TIMP-1 for cancer progression; an elevated TIMP-1 level exerts to cancer development via MMP-independent pathway during the early phase of tumor formation, whereas it is the aberrant glycosylation of TIMP-1 that overcome the high anti-proteolytic burden. The aberrant glycosylation of TIMP-1 can thus be used as staging and/or prognostic biomarker in colon cancer. [BMB Reports 2012; 45(11): 623-628]  相似文献   

4.
5.
Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis.   总被引:12,自引:0,他引:12  
The matrix metalloproteinases (MMPs) constitute a multigene family of over 23 secreted and cell-surface associated enzymes that cleave or degrade various pericellular substrates. In addition to virtually all extracellular matrix (ECM) compounds, their targets include other proteinases, chemotactic molecules, latent growth factors, growth factor-binding proteins and cell surface molecules. The MMP activity is controlled by the physiological tissue inhibitors of MMPs (TIMPs). There is much evidence that MMPs and their inhibitors play a key role during extracellular remodeling in physiological situations and in cancer progression. They have other functions that promoting tumor invasion. Indeed, they regulate early stages of tumor progression such as tumor growth and angiogenesis. Membrane type MMPs (MT-MMPs) constitute a new subset of cell surface-associated MMPs. The present review will focus on MT1-MMP which plays a major role at least, in the ECM remodeling, directly by degrading several of its components, and indirectly by activating pro-MMP2. As our knowledge on the field of MT1-MMP biology has grown, the unforeseen complexities of this enzyme and its interaction with its inhibitor TIMP-2 have emerged, often revealing unexpected mechanisms of action.  相似文献   

6.
TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism   总被引:30,自引:0,他引:30  
Tissue inhibitors of metalloproteinases (TIMPs) suppress matrix metalloproteinase (MMP) activity critical for extracellular matrix turnover associated with both physiologic and pathologic tissue remodeling. We demonstrate here that TIMP-2 abrogates angiogenic factor-induced endothelial cell proliferation in vitro and angiogenesis in vivo independent of MMP inhibition. These effects require alpha 3 beta 1 integrin-mediated binding of TIMP-2 to endothelial cells. Further, TIMP-2 induces a decrease in total protein tyrosine phosphatase (PTP) activity associated with beta1 integrin subunits as well as dissociation of the phosphatase SHP-1 from beta1. TIMP-2 treatment also results in a concomitant increase in PTP activity associated with tyrosine kinase receptors FGFR-1 and KDR. Our findings establish an unexpected, MMP-independent mechanism for TIMP-2 inhibition of endothelial cell proliferation in vitro and reveal an important component of the antiangiogenic effect of TIMP2 in vivo.  相似文献   

7.
Extracellular matrix (ECM) molecules play critical roles in muscle function by participating in neuromuscular junction (NMJ) development and the establishment of stable, cytoskeleton-associated adhesions required for muscle contraction. Matrix metalloproteinases (MMPs) are neutral endopeptidases that degrade all ECM components. While the role of MMPs and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs), has been investigated in many tissues, little is known about their role in muscle development and mature function. TIMP-2 -/- mice display signs of muscle weakness. Here, we report that TIMP-2 is expressed at the NMJ and its expression is greater in fast-twitch (extensor digitorum longus, EDL) than slow-twitch (soleus) muscle. EDL muscle mass is reduced in TIMP-2-/- mice without a concomitant change in fiber diameter or number. The TIMP-2-/- phenotype is not likely due to increased ECM proteolysis because net MMP activity is actually reduced in TIMP-2-/- muscle. Most strikingly, TIMP-2 colocalizes with beta1 integrin at costameres in the wild-type EDL and beta1 integrin expression is significantly reduced in TIMP-2-/- EDL. We propose that reduced beta1 integrin in fast-twitch muscle may be associated with destabilized ECM-cytoskeletal interactions required for muscle contraction in TIMP-2-/- muscle; thus, explaining the muscle weakness. Given that fast-twitch fibers are lost in muscular dystrophies and age-related sarcopenia, if TIMP-2 regulates mechanotransduction in an MMP-independent manner it opens new potential therapeutic avenues.  相似文献   

8.
TIMP-2: an endogenous inhibitor of angiogenesis   总被引:7,自引:0,他引:7  
Remodeling of the extracellular matrix--regulated by the matrix metalloproteinases (MMPs) and their endogenous inhibitors--is an important component of disease progression in many chronic disease states. Unchecked MMP activity can result in significant tissue damage, facilitate disease progression and is associated with host responses to pathologic injury, such as angiogenesis. The tissue inhibitors of metalloproteinases (TIMPs) have been shown to regulate MMP activity. However, recent findings demonstrate that an MMP-independent effect of TIMP-2 inhibits the mitogenic response of human microvascular endothelial cells to growth factors. This is the first demonstration of a cell-surface signaling receptor for a member of the TIMP family and suggests that TIMP-2 functions to regulate cellular responses to growth factors. These new findings are integrated in a comprehensive model of TIMP-2 function in tissue homeostasis.  相似文献   

9.
10.
Regulation of the matrix metalloproteinases (MMPs) is crucial to regulate extracellular matrix (ECM) proteolysis which is important in metastasis. This study investigated the mechanism(s) by which three flavonoid-enriched fractions from lowbush blueberry (Vaccinium angustifolium) down-regulate MMP activity in DU145 human prostate cancer cells. Metalloproteinase activity was evaluated from cells exposed to "crude," anthocyanin-enriched (AN) and proanthocyanidin-enriched (PAC) fractions. Differential down-regulation of MMPs was observed. The activity of the endogenous tissue inhibitors of metalloproteinases (TIMPs) from these cells was also evaluated. Increases in TIMP-1 and TIMP-2 activity were observed in response to these fractions. The possible involvement of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase pathways in the flavonoid-mediated decreases in MMP activity was observed. These findings indicate that blueberry flavonoids may use multiple mechanisms in down-regulating MMP activity in these cells.  相似文献   

11.
12.
13.
The goal of our study was to analyse the prognostic values for some matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in breast cancer. We evaluated the activity and the expression levels of MMP-9, MMP-2, TIMP-1 and TIMP-2 in malignant versus benign fresh breast tumor extracts. For this purpose, gelatinzymography, immunoblotting and ELISA were used to analyse the activity and expression of MMPs and TIMPs. We found that MMP-9 expression level and activity are increased in malignant tumors. In addition, MMP-9/TIMP-1 and MMP-2/TIMP-2 ratio values obtained by us were significantly different in malignant tumors compared to benign tumors. We suggest that the abnormal MMP-9/TIMP-1 balance plays a role in the configuration of breast invasive carcinoma of no special type and also in tumor growth, while altered MMP-2/TIMP-2 ratio value could be associated with lymph node invasion and used as a prognostic marker in correlation with Nottingham Prognostic Index. Finally, we showed that in malignant tumors high expression of estrogen receptors is associated with enhanced activity of MMP-2 and increased bcl- 2 levels, while high expression of progesterone receptors is correlated with low TIMP-1 protein levels.  相似文献   

14.
Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, using RT-PCR analysis, we examine the metamorphic RNA levels of two membrane-type MMPs (MT1-MMP, MT3-MMP), two TIMPs (TIMP-2, TIMP-3) and a potent gelatinase (Gel-A) that can be activated by the combinatory activity of a MT-MMP and a TIMP. In the metamorphic tail and intestine the RNA levels of TIMP-2 and MT1-MMP mirror each other, and closely resemble that of Gel-A as all three are elevated during periods of cell death and proliferation. Conversely, MT3-MMP and TIMP-3 do not have similar RNA level patterns nor do they mimic the RNA levels of the other genes examined. Intriguingly, TIMP-3, which has been shown to have anti-apoptotic activity, is found at low levels in tissues during periods of apoptosis.  相似文献   

15.
Extracellular matrix remodeling and degradation are of great importance in both physiological and pathological situations. Matrix metalloproteinases (MMPs) and their natural occurring inhibitors - tissue inhibitors of metalloproteinases (TIMPs) - are involved in matrix turnover. Among the TIMPs there is only little specificity for inhibiting individual MMPs. In this report we describe the mutational analysis of the interaction of human TIMP-4 with several MMPs. The effects of different substitutions of residue 2 (Ser(2)) in the inhibitory domain of TIMP-4 were determined by kinetic measurements. Size, charge and polarity of residue 2 in the TIMP structure are key factors in MMP inhibition.  相似文献   

16.
Tissue inhibitors of metalloproteinases (TIMPs) may regulate extracellular matrix turnover and cellular functions by modulating matrix metalloproteinase (MMP) activity and cell proliferation and apoptosis. To investigate the locations and functions of TIMP-4 in human breast cancer, a highly specific polyclonal anti-TIMP-4 peptide antibody (pAb-T4-S61) was developed. The potency and specificity of the purified IgG were characterized by an enzyme-linked immunosorbent assay, immunoblot, and immunohistochemistry. The optimal IgG concentration range was 0.1-10 microg/ml. pAb-T4-S61 did not cross-react with TIMP-1 and TIMP-2 and should not react with TIMP-3 according to the sequence analysis. Parental MDA-MB-435 breast cancer cells were TIMP-4 negative and a TIMP-4 transfected clone, TIMP-4-435-12, produced TIMP-4. Membrane type-1 MMP was detected although TIMP-2 was not found in these cells. Interestingly, the TIMP-4 protein was detected by immunohistochemical staining in infiltrating breast carcinoma cells in tumor tissues. Thus, pAb-T4-S61 is a useful tool to investigate expression patterns and functions of TIMP-4 in cancers.  相似文献   

17.

Background

Matrix metalloproteinases (MMPs) are involved in remodeling of the extracellular matrix (ECM) during pregnancy and parturition. Aberrant ECM degradation by MMPs or an imbalance between MMPs and their tissue inhibitors (TIMPs) have been implicated in the pathogenesis of preterm labor, however few studies have investigated MMPs or TIMPs in maternal serum. Therefore, the purpose of this study was to determine serum concentrations of MMP-3, MMP-9 and all four TIMPs as well as MMP:TIMP ratios during term and preterm labor.

Methods

A case control study with 166 singleton pregnancies, divided into four groups: (1) women with preterm birth, delivering before 34 weeks (PTB); (2) gestational age (GA) matched controls, not in preterm labor; (3) women at term in labor and (4) at term not in labor. MMP and TIMP concentrations were measured using Luminex technology.

Results

MMP-9 and TIMP-4 concentrations were higher in women with PTB vs. GA matched controls (resp. p = 0.01 and p<0.001). An increase in MMP-9:TIMP-1 and MMP-9:TIMP-2 ratio was observed in women with PTB compared to GA matched controls (resp. p = 0.02 and p<0.001) as well as compared to women at term in labor (resp. p = 0.006 and p<0.001). Multiple regression results with groups recoded as three key covariates showed significantly higher MMP-9 concentrations, higher MMP-9:TIMP-1 and MMP-9:TIMP-2 ratios and lower TIMP-1 and -2 concentrations for preterm labor. Significantly higher MMP-9 and TIMP-4 concentrations and MMP-9:TIMP-2 ratios were observed for labor.

Conclusions

Serum MMP-9:TIMP-1 and MMP-9:TIMP-2 balances are tilting in favor of gelatinolysis during preterm labor. TIMP-1 and -2 concentrations were lower in preterm gestation, irrespective of labor, while TIMP-4 concentrations were raised in labor. These observations suggest that aberrant serum expression of MMP:TIMP ratios and TIMPs reflect pregnancy and labor status, providing a far less invasive method to determine enzymes essential in ECM remodeling during pregnancy and parturition.  相似文献   

18.
Invadopodia are micron-sized invasive structures that mediate extracellular matrix (ECM) degradation through a combination of membrane-bound and soluble matrix metalloproteinases (MMPs). However, how such localized degradation is converted into pores big enough for cancer cells to invade, and the relative contributions of membrane-bound versus soluble MMPs to this process remain unclear. In this article, we address these questions by combining experiments and simulations. We show that in MDA-MB-231 cells, an increase in ECM density enhances invadopodia-mediated ECM degradation and decreases inter-invadopodia spacing. ECM degradation is mostly mediated by soluble MMPs, which are activated by membrane-bound MT1-MMP. We present a computational model of invadopodia-mediated ECM degradation, which recapitulates the above observations and identifies MMP secretion rate as an important regulator of invadopodia stability. Simulations with multiple invadopodia suggest that inter-invadopodia spacing and MMP secretion rate collectively dictate the size of the degraded zones. Taken together, our results suggest that for creating pores conducive for cancer invasion, cells must tune inter-invadopodia spacing and MMP secretion rate in an ECM density-dependent manner, thereby striking a balance between invadopodia penetration and ECM degradation.  相似文献   

19.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). TIMP molecules are made up of two domains: an N-terminal domain that associates with the catalytic cleft of the metalloproteinases (MP) and a smaller C-terminal domain whose role in MP association is still poorly understood. This work is aimed at investigating the role of the C-terminal domain in MP selectivity. In this study, we replaced the C-terminal domain of TIMP-1 with those of TIMP-2, -3 and -4 to create a series of “T1:TX” chimeras. The affinity of the chimeras against ADAM10, ADAM17, MMP14 and MMP19 was investigated. We can show that replacement of the C-terminal domain by those of other TIMPs dramatically increased the affinity of TIMP-1 for some MPs. Furthermore, the chimeras were able to suppress TNF-α and HB-EGF shedding in cell-based setting. Unlike TIMP-1, T1:TX chimeras had no growth-promoting activity. Instead, the chimeras were able to inhibit cell migration and development in several cancer cell lines. Our findings have broadened the prospect of TIMPs as cancer therapeutics. The approach could form the basis of a new strategy for future TIMP engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号