首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国雨蛙精子结构及其在系统发育上的意义   总被引:11,自引:1,他引:10  
研究了中国雨蛙(Hylachinensis)精子的超微结构,并初步探讨其在系统发育上的意义,中国雨蛙精子由头部和尾部两部分组成,头部一有棒状的细胞核,核内染色质高度浓缩,细胞核前方有顶体。顶体圆锥状,顶体下腔之中一圆锥状的顶体下锥和细小的囊泡,精子尾部细长,主要由轴丝,致密纤维和线粒体组成,尾部没有波动膜。从蟾蜍科,雨蛙科和蛙科的精子结构看,无尾两栖类在进化过程中,精子结构趋向简单,雨蛙科精子的结  相似文献   

2.
The morphology of spermatozoa from the red veld rat, Aethomys chrysophilus, of Southern Africa is described; two very different types were found, which came from animals from two separate, as-yet-undescribed, species. In individuals from South Africa the sperm head had a somewhat disc-shaped nucleus and a large acrosome with a huge apical segment that, during epididymal transit, changed in form from initially projecting anteriorly to a highly complex structure that was flexed caudad and lay alongside part of the rest of the sperm head. In addition, the chromatin generally appeared to be not fully condensed. Spermatozoa from animals collected in Malawi were very different in morphology and had a head with a typical apical hook, a perforatorium, fully condensed chromatin, and a 4-μm-long ventral spur. Its sperm tail was also significantly longer. The time of divergence of these two groups of animals from a common ancestor is not known, but the present results show that a considerable morphological change in the sperm nucleus, acrosome, and subacrosomal space can evolve even between two, presumably closely related, species.  相似文献   

3.
大鲵精子的超微结构研究   总被引:4,自引:0,他引:4  
本文运用透射电镜和扫描电镜研究了大鲵(Andrias davidianus)精子的超微结构,大鲵精子由头部(head),中片(midpiece)和尾部(tail)三部分组成。头部有棒状细胞核,核内染色质高度浓缩,细胞核前方呈细丝状,但非顶体结构。头部后端凹陷,称为植入窝(implantation fossa),植入窝内有线粒体和中心粒等细胞器结构,此区域为精子的中片。精子尾部细长,主要由轴丝和附属纤维(accessory fiber)组成,轴丝的外面具有波动膜。  相似文献   

4.
The acrosome reaction is a fundamental event in the biology of the sperm and is a prerequisite to fertilization of the egg. Members of the Rho family of GTPases and their effectors are present in the cytoplasm and/or plasma membrane overlying the acrosome of porcine sperm. We have implicated the Rho family of GTPases and the Rho-activated kinase, ROCK-1, in mediating the zona-pellucida-induced acrosome reaction. Others have implicated the Rho GTPase in regulating the ionophore-induced acrosome reaction in the sperm of several mammalian species as well as in motility of bovine sperm. In this study, the localization of the Rho GTPases (RhoA, RhoB, Rac1 and Cdc42) as well as the effectors RhoGDI, PI(4)P5K and ROCK-1, was determined in boar, human, rat, ram, bull and elephant sperm. The four GTPases were each present in the sperm head of all species examined. RhoGDI was expressed in the head and tail of sperm from all species except pig, where it was present only in the head. PI(4)P5K was expressed in both head and tail of sperm from all species, but expression was typically weaker in the tail. Finally, ROCK-1 was expressed in the heads and tails of all sperm except that of the boar, where it was present only in the acrosomal region. These observations taken together suggest that the expression of Rho GTPases in sperm has been conserved throughout mammalian evolution, most likely due to the role of these GTPases in regulating acrosomal exocytosis.  相似文献   

5.
The ultrastructure of sperm in seven species of bivalves, the representatives of six families, Arcidae (Anadara broughtonii, Arca boucardi), Anomiidae (Pododesmus macrochisma), Tellinidae (Macoma tokyoensis), Ostreidae (Crassostrea gigas), Myidae (Mya japonica) and Trapezidae (Trapezium liratum) is described. All the studied sperm were typical tail sperm, adapted to external insemination, which, however, had a specific structure. Differences were revealed in the form of head, acrosome structure and number of mitochondria. The studied species of the above families had their specific morphology, the Arcidae species had a bullet- or barrel-shaped head with four or five mitochondria in the middle part; the Anomiidae had conic head, the acrosome with periacrosome material and four mitochondria (a basic feature of sperm is the axial core entering periacrosome material and consisting of bundle of actin filaments); the Myidae had a curved conic head and four mitochondria; in the Tellinidae the head was bullet-shaped, the periacrosome material contained a fibril component and four mitochondria; the Trapezidae had sperm of a conic form with spherical acrosome. The spherical sperm of C. gigas were similar to sperm of Saccostrea commercialis and Crassostrea virginica, but with some distinctions in the acrosome substructure. The morphology of sperm testified to the correct attribution of the Crassostreidae family as a synonym to the Ostreidae family.  相似文献   

6.
1. The early events of sperm entry in Saccoglossus and Hydroides are described and examined in relation to present knowledge of the acrosome reaction and of egg membrane lysins. In Saccoglossus and several other species these events occur in two phases. First. The acrosome filament of the spermatozoön spans the egg membrane barriers, reaches the reactive egg protoplasm, and causes the egg to begin its fertilization reaction. Second. The filament and its connected sperm head move through the egg membrane barriers and enter the egg proper. The first phase is completed in a matter of seconds but the second phase usually requires several minutes. 2. The peripheral areas of the eggs of the two species differ as seen in sections. In Hydroides, but not in Saccoglossus, the vitelline membrane is bounded by a distinct outer border layer of small concentrically differentiated bodies and penetrated by microvilli from the egg. 3. The acrosome filament, seen in the living condition as a delicate thread in Hydroides and as an exceedingly tenuous thread in Saccoglossus, appears to be tubular in both species when seen in electron micrographs of thin sections. 4. The acrosomal region of Hydroides appears to consist of two components—a peripheral one, which may collapse during the acrosome reaction, and a central one related to the acrosome filament. 5. Deliberately induced polyspermic material was used to increase the probability of finding examples of sperm penetration in thin sections. 6. As seen in sections, areas of low electron density, interpreted as spaces or pits from which the material of the membrane is absent, surround the attached or penetrating spermatozoa. (a) In Hydroides the spaces vary greatly in many characteristics including shape, position in the membrane, and size with relation to the enclosed sperm head. In one specimen a portion of the membrane is missing from border to border; no spermatozoön is seen but immediately beneath the space is the apex of a fertilization cone. (b) In every case in which a determination could be made, the spermatozoön in the membrane has undergone its acrosome reaction. (c) In Saccoglossus some pits are found with which several spermatozoa are associated. Generally, where the spermatozoa are more numerous the pit is larger. (d) Pits similar to those seen in Saccoglossus sections are observed in living eggs. They remain in Membrane I after sperm entry. (e) From the above and other considerations it is suggested that the pits and spaces are formed by local action of a lysin or lysins emanating from the individual spermatozoön at the site of sperm entry. 7. It is considered that the suggested lysin would participate in sperm entry by eroding the membrane barrier in the vicinity of the sperm head, thus permitting the sperm head to pass through the membrane. Since the acrosome filament much earlier stimulates the egg's initial fertilization response, this lysin would facilitate the second phase of the early events of sperm entry.  相似文献   

7.
An acrosome reaction occurs by fusion between the acrosomal outer membrane and the plasmalemma enclosing the acrosome in Ciona intestinalis spermatozoa. The fusion seems to proceed along the peripheral margin of the acrosome, which causes vesiculation. The membrane bound vesicle formed by this process is probably shed by the sperm. The acrosomal inner membrane is exposed and becomes a part of the plasmalemma enclosing the anterior region of the sperm head. During this process, any acrosomal substance might be released through the opening formed by membrane fusion. The acrosome reaction most likely occurs in C. intestinalis spermatozoa, via vesiculation, in fundamentally the same way as observed in mammalian spermatozoa.  相似文献   

8.
Summary The apex of the sperm head which has undergone the acrosome reaction comes in contact with the plasma membrane of the ovum. After the entire surface of the inner acrosomal membrane has come into close contact with the plasma membrane of the ovum, the two membranes fuse to form a continuous membrane. All parts of the spermatozoon that are devoid of plasma membrane penetrate into the ooplasm. As the head of the spermatozoon moves deeper into the ooplasm, the chromatin begins to disperse, and the head of spermatozoon is transformed into a large spherical nucleus with low electron density. At a later stage of the transformation, many small vesicles appear around the nucleus and subsequently fuse to form two continuous membranes. These membranes represent the male pronuclear envelope. The condensation of the chromatin occurs in places in the nucleus, so that the male pronucleus is formed. During the course of the formation of the male pronucleus, the subacrosomal rod and tail become detached from the head and disintegrate.The authors are greatly indebted to assoc. Prof. Dr. Osamu Koga for his valuable advices. The authors also wish to thank Mr. Takayuki Mori for his helpful suggestions and technical advices. This investigation was supported by a grant from the Ministry of Education of Japan (156185)  相似文献   

9.
The sperm cell has a characteristic polarized morphology and its surface is also highly differentiated into different membrane domains. Junctional protein ring structures seal the surface of the mid-piece from the head and the tail respectively and probably prevent random diffusion of membrane molecules over the protein rings. Despite the absence of such lateral diffusion-preventing structures, the sperm head surface is also highly heterogeneous. Furthermore, lipid and membrane protein ordering is subjected to changes when sperm become capacitated. The forces that maintain the lateral polarity of membrane molecules over the sperm surface, as well as those that cause their dynamic redistribution, are only poorly understood. Nevertheless, it is known that each of the sperm head surface regions has specific roles to allow sperm to fertilize the oocyte: a specific region is devoted to zona pellucida binding, a larger area of the sperm head surface is involved in the acrosome reaction (intracellular fusion), while yet another region is involved in egg plasma membrane binding and fertilization fusion (intercellular membrane fusion). All three events occur in the area of the sperm head where the plasma membrane covers the acrosome. Recently, lipid ordered microdomains (lipid rafts) were discovered in membranes of many biological specimens including sperm. In this review, we cover the latest insights about sperm lipid raft research and discuss how sperm lipid raft dynamics may relate to sperm-zona binding and the zona-induced acrosome reaction.  相似文献   

10.
The mature sperm of Dina lineata is of the modified type. The sperm are 48 μm long and 0.3 μm wide. The sperm are filiform and helicoidal cells with a distinct head, a midpiece, and a tail. There are two distinct regions in the head: the acrosome and the posterior acrosome, each with its own characteristic morphology. The midpiece is the mitochondrial region and has a single mitochondrion. Two distinct portions can be observed in the tail: the axonematic region and the terminal piece. In the process of spermatogenesis the early spermatogonia divide to form a poliplast of 512 spermatic cells. In the spermiogenesis the following sequential stages can be distinguished: elongation of the flagellum; reciprocal migration of mitochondria and Golgi complex; condensation of chromatin and formation of the posterior acrosome; spiralization of nuclear and mitochondrial regions; and, finally, formation of the anterior acrosome. The extreme morphological complexity of the Dina spermatozoon is related to the peculiar hypodermal fertilization which characterizes the erpobdellid family. Correlation between sperm morphology and fertilization biology in the Annelida is revised.  相似文献   

11.
Sperm morphology is diverse among vertebrates and is influenced by the reproductive strategies adopted by species. In anurans, sperm morphology is associated with reproductive modes and mating systems. Here, we describe the sperm morphology of 11 frog species in the genus Leptodactylus and that of Lithodytes lineatus and discuss the relationship between sperm morphology and species' mating systems. We observed two distinct sperm morphotypes among the leptodactyline species, which differed mostly in head morphology. Type I sperm had triangular head, discrete acrosome vesicle with posterior margin not clearly visible; type II sperm had elongated head, clear acrosomal vesicle with posterior margin clearly visible. These sperm types do not seem to be associated with phylogeny; instead, type II sperm was observed in all polyandrous species analysed and in species with evidences of polyandry. Moreover, sperm of all species presented tail with undulating membrane connected to the axial fibre. We suggest that differences in sperm morphology might be associated with sperm competition to what polyandrous species are subjected. However, natural history observations on polyandrous mating in some species presenting type II sperm and phylogenetic comparative studies are need to elucidate the role of mating systems in the evolution of sperm morphology in leptodactylines.  相似文献   

12.
《Tissue & cell》2016,48(6):605-615
Head shaping in mammalian sperm is regulated by a number of factors including acrosome formation, nuclear condensation and the action of the microtubular manchette. A role has also been suggested for the attendant Sertoli cells and the perinuclear theca (PT). In comparison, relatively little information is available on this topic in birds and the presence of a PT per se has not been described in this vertebrate order. This study revealed that a similar combination of factors contributed to head shaping in the ostrich, emu and rhea, although the Sertoli cells seem to play a limited role in ratites. A fibro-granular structure analogous to the mammalian PT was identified, consisting of sub- and post-acrosomal components. The latter was characterized by stage-specific finger-like projections that appeared to emanate from the cytoplasmic face of the nuclear envelope. They were particularly obvious beneath the base of the acrosome, and closely aligned, but not connected to, the manchette microtubules. During the final stages of chromatin condensation and elongation of the sperm head the projections abruptly disappeared. They appear to play a role in stabilizing the shape of the sperm head during the caudal translocation of the spermatid cytoplasm.  相似文献   

13.
The ultrastructure of the sperm of the common bivalve species Mercenaria stimpsoni and Mactra chinensis from Peter the Great Bay is described. The sperm structure is typical for animals with external insemination. The sperm consists of a head, middle part, and flagellum. The sperm head of M. stimpsoni has a curved crescent form and includes the nucleus and acrosome; the head length is 9.8 μm. The acrosome is subdivided to the acrosome granule and the periacrosomal material. There are 4 mitochondria of about 0.8 μm in size in the middle part of the spermatozoon. The mitochondria surround the centriolar apparatus, which consists of proximal and distal centrioles located at a right angle. The axoneme originates from the distal centriole. The sperm of M. chinensis is barrel-shaped, with a head length of 3.2 μm. The acrosome is relatively larger, and its height is 1–1.2 μm. There are also 4 mitochondria 0.6–0.8 μm in the middle part of the spermatozoon. The sperm structure of the described species is typical of the families to which the mollusks belong, with insignificant variations.  相似文献   

14.
Regional differences in the structure of the plasma membrane and acrosome membrane of squid spermatozoa were studied by freeze-fracture and thin section electron microscopy. In regions of close apposition the plasma membrane and acrosome membrane are adjoined to one another by regularly spaced linkages. These linkage sites, overlie a set of fibers located at the inner face of the acrosomal membrane. The acrosomal fibers terminate in a layer of granular material located at the base of the acrosome. Detergent treatment of sperm releases the fibers and granular material as an interconnected complex. Freeze-fracture replicas reveal a random arrangement of intramembranous particles in the plasma membrane over the sperm head and linear aggregates of intramembranous particles in the acrosomal membrane. Several regional differences in the structure of the flagellar plasma membrane are present. The thickness of the glycocalyx is progressively reduced distally along the flagellum. Freeze-fracture replicas show evenly spaced linear arrays of intramembranous particles which extend parallel t o the flagellar long axis. Examination of spermatozoa extracted to disrupt flagellar geometry suggest that the dense fiber-doublet microtubule complexes are attached to the plasma membrane. The possible functional role of these membrane differentiations and their relationship t o membrane structures in mammalian spermatozoa are discussed.  相似文献   

15.
16.
Spermatozoa of six species of Australian marsupials have been studied. The nucleus is highly unstable when compared with those of eutherian mammals. When thin films of spermatozoa in buffered saline are air-dried on glass slides, the nucleus disintegrates and flattens, leaving the acrosome, midpiece, and tail intact. This spreading of the nucleus can be inhibited by seminal plasma proteins and by bovine serum albumin, but is potentiated by detergents. The nucleus also decondenses spontaneously in the presence of high concentrations (>0.25M) of calcium and magnesium salts, leaving the head membranes, acrosome, midpiece, and tail intact. This is inhibited by EDTA. In some species, certain areas of the nucleus appear more resistant t o Ca++/Mg++ treatment, and the initial stages of decondensation are uneven. Ultrastructurally the Ca++/Mg++ dispersed chromatin shows a moderately fine, branching, fibrillar structure, interspersed with dense granules. Treatment with disulphide bond cleaving agents together with detergents results in rapid and complete dispersal of the chromatin and acrosome, and slow digestion of midpiece and tail structures. Treatment with HCl, NaCl, KCl, EDTA, detergents, and sucrose has no effect on nuclear integrity, but treatment with NaOH (0.9–1.0M) results in complete digestion of the whole sperm. These findings are discussed in the light of evolutionary differences between marsupial and eutherian mammals in terms of sperm structure and composition.  相似文献   

17.
Accessory fibers in most sperm surround the axoneme so that their function in propulsion is difficult to assess. In the sperm of the toad Bufo marinus, an accessory fiber is displaced from the axoneme, being connected to it by the thin undulating membrane in such a way that the movement of axoneme and accessory fiber can be viewed independently. The axoneme is highly convoluted in whole mounts, and the axial fiber is straight. Cinemicrographic analysis shows that it is the longer, flexuous fiber, the presumed axoneme, that move actively. The accessory fiber follows it passively with a lower amplitude of movement. The accessory fiber does not move independent of the axoneme, even after demembranation and reactivation of the sperm. On the basis of anatomical relations in the neck region, it appears that the accessory fibers of amphibians are analogous to the dense fibers of mammalian sperm. SDS polyacrylamide gel electrophoresis of demembranated toad sperm tails reveals two principal proteins in addition to the tubulins, the former probably arising from the accessory fibers and the matrix of the undulating membrane. The function of displacing an accessory fiber into an undulating membrane may be to provide stiffness for the tail without incurring an energy deficit large enough to require a long middle piece. A long middle piece is not present in toad sperm, in contrast to those sperm that have accessory fibers around the axoneme. However, the toad sperm suffers a reduction in speed of about one- third, compared with the speed expected for a sperm without an undulating membrane.  相似文献   

18.
The diversity of the structural organization of the spermatozoa of African murid rodents is described at the light and transmission electron microscopical level of resolution. In most species the sperm head is falciform in shape but it varies somewhat in overall breadth, width, and length. A typical perforatorium is present and the acrosome splits into a large head cap over the convex surface and a smaller ventral segment similar to the sperm head of most Asian and Australasian murids. In a few species, however, the morphology is very different. In Acomys and Uranomys spermatozoa, the apical hook is more bilaterally flattened, has a large apical acrosomal region, and no separate ventral segment. Two species of Aethomys have, in addition to an apical hook, a 4μ long extension of the cytoskeletal material that projects from the concave surface of the sperm head, whereas in Dasymys two large ventral processes extend from the upper concave region which contain nuclear material basally and a huge extension of cytoskeleton apically. In Aethomys chrysophilus type B, the sperm nucleus is unique in form and often has a central region in which threads of chromatin can be seen; it is capped by a massive acrosome whose apical segment is complex and convoluted in structure. Stochomys longicaudatus appears to have a conical sperm head, and in all three Lophuromys species the sperm head is spatulate in shape with the flat, plate-like nucleus capped by a thin acrosome. The evolutionary trends in changes of sperm head shape and design of these rodents are discussed. It is suggested that some of the differences in morphology may relate to the variation in structural organization of the coats around the egg through which the spermatozoon has to pass in order for fertilization to occur.  相似文献   

19.
SPERMIOGENESIS IN CANCER CRABS   总被引:3,自引:1,他引:2       下载免费PDF全文
Spermiogenesis in Cancer crabs was studied by light and electron microscopy. The sperm are aflagellate, and when mature consist primarily of a spherical acrosome surrounded by the nucleus with its short radiating arms. The acrosome forms by a coalescence of periodic acid-Schiff-positive (PAS-positive) vesicles. During spermiogenesis one edge of the acrosomal vesicle invaginates to form a PAS-negative central core. The inner region of the acrosome bounding the core contains basic proteins which are not complexed to nucleic acid. The formation of an elaborate lattice-like complex of fused membranes, principally from membranes of the endoplasmic reticulum, is described. These membranes are later taken into the nucleus and subsequently degenerate. In late spermatids, when most of the cytoplasm is sloughed, the nuclear envelope and the cell membrane apparently fuse to become the limiting boundary over most of the sperm cell. In the mature sperm the chromatin of the nucleus and arms, which is Feulgen-positive, contains no detectable protein. The chromatin filaments appear clumped, branched, and anastomosed; morphologically, they resemble the DNA of bacterial nuclei. Mitochondria are absent or degenerate in mature sperm of Cancer crabs, but the centrioles persist in the nucleoplasm at the base of the acrosome.  相似文献   

20.
三疣梭子蟹精子的发生及超微结构研究   总被引:28,自引:9,他引:28  
李太武 《动物学报》1995,41(1):41-47
用透射电镜观察三疣梭子蟹的精子发生过程及精子的超微结构。发现精原细胞较大,卵圆形。核大而圆,染色质分散,附着于核膜之内侧。胞质少,内含线粒体和粗面内质网等结构。初级精母细胞比精原细胞略小,卵圆形,核内染色质凝聚成团块,散布于核质中,除线粒体外,胞质中尚含有很多内质网小泡和游离核糖体。次级精母细胞多边形,核卵圆形,染色质致密,线粒体等含量均下降。早期精细胞质中由内质网产生许多颗粒,这些颗粒合并成为大  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号