首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrate reductase (NO3R) activity, nitrite reductase (NO2R) activity and NADH2 dependent glutamate dehydrogenase (GDH) activity were followed in extracts from excised pea roots incubated under aseptic conditions for 9 and 24 h in nitrate containing nutrient medium to which IAA was added in concentrations promoting lateral root formation (1 × 10?5; 3 × 10?5; 5 × 10?5 M) and kinetin in concentrations which reduce lateral root formation (0.1; 1; 5 mg 1?1, that is 4.65 × 10?7;4.65 × 10?6 and 2.3 × 10?5 M). NO3R activity was not influenced by IAA, NO2R activity was slightly depressed by IAA after 24 h incubation and GDH activity was slightly increased after 24 h incubation in the presence of IAA. Kinetin decreased NO3R activity significantly both after 9 h and 24 h incubation, slightly increased NO2R activity after 9 h incubation but slightly decreased it after 24 h incubation, and did not affect GDH activity after 24 h incubation. However, when applied together with IAA, kinetin abolished the promoting effect of IAA on GDH activity. IAA neither reversed nor accentuated the effect of kinetin on NO2R activity. Nevertheless the depressing effect of kinetin on NO3R activity was emphasized by the presence of IAA after 9 h incubation. The results obtained indicate that reduced nitrate assimilation due to the depression of nitrate reductase activity caused by kinetin probably contributes to the negative growth effect of kinetin in pea root segments grown in nitrate medium.  相似文献   

2.
Both nitrite reductase and nitrate reductase were induced by nitrite, but there were differences in the time course of induction and in the response to different NO2 - concentrations between these enzymes. NH4 + depressed the induction of nitrite reductase. NADH2 dependent glutamate dehydrogenase activity was enhanced by those NO2-concentrations in the medium at which unmetabolized NO2 - occurred in the roots. NADPH2 and NAD+ dependent GDh activities were not affected. In vivo modification and (or) in vivo activation were probably responsible for the increase in NADH2 dependent GDH activity.  相似文献   

3.
Summary. We have shown that urinary urea excretion increased in rats fed a low quality protein. The purpose of present study was to determine whether an addition of dietary limiting amino acids affected urea synthesis in rats fed a low gluten diet. Experiments were done on three groups of rats given diets containing 10% gluten, 10% gluten+0.5% L-lysine or 10% gluten+0.5% L-lysine, 0.2% L-threonine and 0.2% L-methionine for 10d. The urinary excretion of urea, and the liver concentrations of serine and ornithine decreased with the addition of dietary L-lysine, L-threonine and L-methionine. The fractional and absolute rates of protein synthesis in tissues increased with the treatment of limiting amino acids. The activities of hepatic urea-cycle enzymes was not related to the urea excretion. These results suggest that the addition of limiting amino acids for the low gluten diet controls the protein synthesis in tissues and hepatic ornithine and decline urea synthesis.  相似文献   

4.
The growth and survival of juvenile Haliotis rubra, when fed with the diatom Navicula sp. cultured in f/2 medium containing combined nitrogen at 24.71 mg NO3-N L–1 (high), 12.35 mg NO3-N L–1 (standard) or 2.47 mg NO3-N L–1 (low), were compared in a 33-day trial. The alga in the low nitrogen medium contained 37% less total amino acid than that in the high and standard nitrogen media. There was a slightly greater reduction in essential amino acids (40%) compared to non-essential amino acids (35%). Juvenile abalone feeding on Navicula grown in medium with low nitrate and lower total amino acid content grew more slowly than when fed on the same species grown in standard or higher nitrogen medium with a higher amino acid content. The growth rate of juveniles was highest (43 m d–1) in the high nitrate treatment followed (40 m d–1) by the standard nitrate treatment and lowest (31 m d–1) in the low nitrate treatment. The survival of the juveniles was also effected by the diet. Survival was better in the high and standard nitrogen media (88%) than the low nitrogen medium (75%). The results suggest that in order to achieve uniformity in nutritional quality of diatoms and good growth of abalone juveniles in commercial abalone nurseries, the nitrogen concentration in tanks should be monitored and additional nitrate added to provide an optimum concentration of between 2 and 12 mg NO3-N L–1.  相似文献   

5.
The nitrate reductase complex from Chlorella pyrenoidosa has been purified by a procedure which includes as main steps, ammonium sulfate fractionation, polyethylene glycol treatment, and DEAE-cellulose chromatography. The Michaelis constants for NADH, FAD, and NO3 in the NADH-nitrate reductase assay are 10 μm, 2.6 μm, and 0.23 mm, respectively. Heat treatment exerts varying effects on the enzymatic activities associated with the nitrate reductase complex.  相似文献   

6.
7.
Hydroxylamine added to the nutrient medium in sublethal concentrations (0.2 to 1.0 mN) enhanced NADH2 dependent glutamate dehydrogenase activity in isolated pea roots. The increase in activity depended on proteosynthesis and was lower in the presence of NO3 ? and NH4 + ions. The induction of nitrate reductase and of nitrite reductase was partly inhibited by sublethal hydroxylamine concentrations.  相似文献   

8.
Aslam M  Oaks A  Boesel I 《Plant physiology》1978,62(5):693-695
l-Canavanine inhibits the appearance of nitrate reductase (NADH-nitrate oxidoreductase, EC 1.6.6.1) in both root tips and mature root sections of corn (Zea mays L.). Ten-fold more canavanine was required to cause a 50% reduction in the level of nitrate reductase activity (NRA) in root tips than in mature root sections. For example with one particular batch of seeds 500 μm canavanine was effective in root tips whereas only 50 μm was required in mature root sections. In root tips arginine (1 mm) completely reversed the effect of 1 mm canavanine. In mature root sections higher concentrations of arginine (approximately 5 mm) were required for a complete reversal of the canavanine effect. Additions of canavanine to roots after a period of 3 hours with 5 mm KNO3 resulted in a loss of NRA. NO3 protected nitrate reductase from this inactivation in both root tip and mature root sections.  相似文献   

9.
Summary Cell-free extracts of gram-negative, non-fermentative, marine eubacteria were assayed for aspartokinase activity. The organisms tested included polarly flagellated species and groups which had GC contents in their DNAs of 46 to 64 moles % (Alteromonas, Pseudomonas) as well as species which had peritrichous flagellation and moles % GC contents of 53 to 68 (Alcaligenes). The results of these studies suggested that in all the strains tested, aspartokinase activity was catalyzed by a single enzyme. On the basis of the effect ofl-threonine,l-lysine,l-methionine, andl-isoleucine on activity, five different types of aspartokinases (designated I through V) were delineated. In aspartokinase types I through IV,l-threonine andl-lysine inhibited activity by means of a concerted feedback inhibition; in type V, activity was inhibited byl-threonine but unaffected byl-lysine. In types I, III, and IV,l-threonine andl-lysine alone were inhibitory, while in type II these effectors had virtually no effect on activity when tested singly. Three distinct responses were observed in the presence of two other end products of the aspartate pathway,l-methionine andl-isoleucine. In types I and II, these two amino acids usually stimulated activity and overcame the inhibition byl-threonine andl-lysine; in types IV and V,l-methionine andl-isoleucine had no effect; and in type III these amino acids inhibited activity. The results of this study indicate that the aspartokinases of a number of species and groups of marine bacteria have similarities and differences which should be of use in making future taxonomic groupings.  相似文献   

10.
The photoreversible nature of the regulation of nitrate reductase is one of the most interesting features of this enzyme. As well as other chemicals, NH2OH reversibly inactivates the reduced form of nitrate reductase from Ankistrodesmus braunii. From the partial activities of the enzyme, only terminal nitrate reductase is affected by NH2OH. To demonstrate that the terminal activity was readily inactivted by NH2OH, the necessary reductants of the terminal part of the enzyme had to be cleared of dithionite since this compound reacts chemically with NH2OH. Photoreduced flavins and electrochemically reduced methyl viologen sustain very effective inactivation of terminal nitrate reductase activity, even if the enzyme was previously deprived of its NADH-dehydrogenase activity. The early inhibition of nitrate reductase by NH2OH appears to be competitive versus NO3. Since NO3, as well as cyanate, carbamyl phosphate and azide (competitive inhibitors of nitrate reductase versus NO3), protect the enzyme from NH2OH inactivation, it is suggested that NH2OH binds to the nitrate active site. The NH2OH-inactivated enzyme was photoreactivated in the presence of flavins, although slower than when the enzyme was previously inactivated with CN. NH2OH and NADH concentrations required for full inactivation of nitrate reductase appear to be low enough to potentially consider this inactivation process of physiological significance.  相似文献   

11.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

12.
Summary Mitochondria isolated from potato tubers were placed in solutions containing various alcohols, aldoses, or neutral amino acids. Based on the osmotic responses in the different media, the reflection coefficients and hence the relative permeabilities of the nonelectrolytes could be determined. The reflection coefficients ( j 'S) of the potato tuber mitochondria for alcohols became progressively larger as hydroxymethyl groups were added to the molecule,viz. methanol ( j =0.07), ethylene glycol (0.25), glycerol (0.44),meso-erythritol (0.71) and adonitol (0.98). This increase in j (decrease in permeativity) with increasing chain length parallels the decreasing lipid-water partition coefficients of the solutes. The reflection coefficients ofd-sorbitol (1.02) and ofd-mannitol (0.99) indicate that these six-carbon polyhydroxy alcohols are relatively impermeant and hence they would be suitable osmotica in which to suspend mitochondria. The j 'S varied from 0.96 to 1.02 forD-ribose,D-xylose,D-lyxose,D-arabinose, -D-glucose, -D-glucose,D-galactose,D-mannose, glycine,L-alanine,L-threonine,L-phenylalanine,L-methionine andL-cysteine, indicating that these sugars and amino acids do not readily diffuse across the pair of membranes surrounding potato mitochondria. By contrast, the j 'S of liver mitochondria for glycine and of pea chloroplasts for most of the same aldopentoses and amino acids are close to zero. Thus, different organelles can vary widely in their permeability properties for nonelectrolytes.  相似文献   

13.
An isoleucine leaky auxotroph of Arthrobacter paraffineus, which was isolated by Takayama et al.3) as a mutant producing L-threonine and L-valine from n-paraffin, was subjected to further mutagenesis in an attempt to obtain better L-threonine producers. Some of the double auxotrophs derived from the isoleucine auxotroph and some of their revertants with respect to isoleucine requirement produced more L-threonine than the original isoleucine auxotroph. In contrast to the original isoleucine auxotroph, a revertant derived from a methionine plus isoleucine double auxotroph, KY7135, produced an increased amount of L-threonine and a decreased amount of L-valine. The optimum level of L-methionine for L-threonine production in KY7135 was much higher (1000 ~ 2000 μg/ml) with n-paraffin medium than with sorbitol or mannitol medium (10 ~ 50 μg/ml). L-Threonine production reached a maximum level (11.5 mg/ml) in 7 days incubation with the medium containing 10% n-paraffin (C12 ~ C14 rich). Several mutants which produce L-threonine more than 12 mg/ml were obtained from KY 7135 by monocolony isolation procedure.  相似文献   

14.
Kende H  Hahn H  Kays SE 《Plant physiology》1971,48(6):702-706
Nitrate reductase activity in excised embryos of Agrostemma githago increases in response to both NO3 and cytokinins. We asked the question whether cytokinins affected nitrate reductase activity directly or through NO3, either by amplifying the effect of low endogenous NO3 levels, or by making NO3 available for induction from a metabolically inactive compartment. Nitrate reductase activity was enhanced on the average by 50% after 1 hour of benzyladenine treatment. In some experiments, the cytokinin response was detectable as early as 30 minutes after addition of benzyladenine. Nitrate reductase activity increased linearly for 4 hours and began to decay 13 hours after start of the hormone treatment. When embryos were incubated in solutions containing mixtures of NO3 and benzyladenine, additive responses were obtained. The effects of NO3 and benzyladenine were counteracted by abscisic acid. The increase in nitrate reductase activity was inhibited at lower abscisic acid concentrations in embryos which were induced with NO3, as compared to embryos treated with benzyladenine. Casein hydrolysate inhibited the development of nitrate reductase activity. The response to NO3 was more susceptible to inhibition by casein hydrolysate than the response to the hormone. When NO3 and benzyladenine were withdrawn from the medium after maximal enhancement of nitrate reductase activity, the level of the enzyme decreased rapidly. Nitrate reductase activity increasd again as a result of a second treatment with benzyladenine but not with NO3. At the time of the second exposure to benzyladenine, no NO3 was detectable in extracts of Agrostemma embryos. This is taken as evidence that cytokinins enhance nitrate reductase activity directly and not through induction by NO3.  相似文献   

15.
16.
Synthesis of nitrate reductase (EC 1.6.6.1) in Chlorella vulgaris was studied under inducing conditions, i.e. with cells grown on ammonia and then transferred to nitrate medium. Cycloheximide (but not chloramphenicol) completely inhibited synthesis of the enzyme, but only if it was added at the start (i.e. at the time of nitrate addition) of the induction period. Cycloheximide inhibition became less effective as induction by nitrate proceeded. Enzyme from small quantities of culture (1 to 3 milliliters of packed cells) was purified to homogeneity with the aid of blue dextran-Sepharose chromatography. Incorporation of radioactivity from labeled arginine into nitrate reductase was measured in the presence and absence of cycloheximide. Conditions were found under which the inhibitor completely blocked the incorporation of labeled amino acid, but only slightly decreased the increase in nitrate reductase activity. The results indicate that synthesis of nitrate reductase from amino acids proceeds by way of a protein precursor which is inactive enzymically.  相似文献   

17.
1. Three bacterial isolates capable of growth on l-threonine medium only when supplemented with branched-chain amino acids, and possessing high l-threonine dehydratase activity, were examined to elucidate the catabolic route for the amino acid. 2. Growth, manometric, radiotracer and enzymic experiments indicated that l-threonine was catabolized by initial deamination to 2-oxobutyrate and thence to propionate. No evidence was obtained for the involvement of l-threonine 3-dehydrogenase or l-threonine aldolase in threonine catabolism. 3. l-Threonine dehydratase of Corynebacterium sp. F5 (N.C.I.B. 11102) was partially purified and its kinetic properties were examined. The enzyme exhibited a sigmoid kinetic response to substrate concentration. The concentration of substrate giving half the maximum velocity, [S0.5], was 40mm and the Hill coefficient (h) was 2.0. l-Isoleucine inhibited enzyme activity markedly, causing 50% inhibition at 60μm, but did not affect the Hill constant. At the fixed l-threonine concentration of 10mm, the effect of l-valine was biphasic, progressive activation occurring at concentrations up to 2mm-l-valine, but was abolished by higher concentrations. Substrate-saturation plots for the l-valine-activated enzyme exhibited normal Michaelis–Menten kinetics with a Hill coefficient (h) of 1.0. The kinetic properties of the enzyme were thus similar to those of the `biosynthetic' isoenzyme from Rhodopseudomonas spheroides rather than those of the enteric bacteria. 4. The synthesis of l-threonine dehydratase was constitutive and was not subject to multivalent repression by l-isoleucine or other branched-chain amino acids either singly or in combination. 5. The catabolism of l-threonine, apparently initiated by a `biosynthetic' l-threonine dehydratase in the isolates studied, depended on the concomitant catabolism of branched-chain amino acids. The biochemical basis of this dependence appeared to lie in the further catabolism of 2-oxobutyrate by enzymes which required branched-chain 2-oxo acids for their induction.  相似文献   

18.
Chlamydomonas reinhardii cells, growing photoautotrophically under air, excreted to the culture medium much higher amounts of NO2 and NH4+ under blue than under red light. Under similar conditions, but with NO2 as the only nitrogen source, the cells consumed NO2 and excreted NH4+ at similar rates under blue and red light. In the presence of NO3 and air with 2% CO2 (v/v), no excretion of NO2 and NH4+ occurred and, moreover, if the bubbling air of the cells that were currently excreting NO2 and NH4+ was enriched with 2% CO2 (v/v), the previously excreted reduced nitrogen ions were rapidly reassimilated. The levels of total nitrate reductase and active nitrate reductase increased several times in the blue-light-irradiated cells growing on NO3 under air. When tungstate replaced molybdate in the medium (conditions that do not allow the formation of functional nitrate reductase), blue light activated most of the preformed inactive enzyme of the cells. Furthermore, nitrate reductase extracted from the cells in its inactive form was readily activated in vitro by blue light. It appears that under high irradiance (90 w m−2) and low CO2 tensions, cells growing on NO3 or NO2 may not have sufficient carbon skeletons to incorporate all the photogenerated NH4+. Because these cells should have high levels of reducing power, they might use NO3 or, in its absence, NO2 as terminal electron acceptors. The excretion of the products of NO2 and NH4+ to the medium may provide a mechanism to control reductant level in the cells. Blue light is suggested as an important regulatory factor of this photorespiratory consumption of NO3 and possibly of the whole nitrogen metabolism in green algae.  相似文献   

19.
The mechanism of nitrate uptake for assimilation in procaryotes is not known. We used the radioactive isotope, 13N as NO3 -, to study this process in a prevalent soil bacterium, Pseudomonas fluorescens. Cultures grown on ammonium sulfate or ammonium nitrate failed to take up labeled nitrate, indicating ammonium repressed synthesis of the assimilatory enzymes. Cultures grown on nitrite or under ammonium limitation had measurable nitrate reductase activity, indicating that the assimilatory enzymes need not be induced by nitrate. In cultures with an active nitrate reductase, the form of 13N internally was ammonium and amino acids; the amino acid labeling pattern indicated that 13NO3 - was assimilated via glutamine synthetase and glutamate synthase. Cultures grown on tungstate to inactivate the reductase concentrated NO3 - at least sixfold. Chlorate had no effect on nitrate transport or assimilation, nor on reduction in cell-free extracts. Ammonium inhibited nitrate uptake in cells with and without active nitrate reductases, but had no effect on cell-free nitrate reduction, indicating the site of inhibition was nitrate transport into the cytoplasm. Nitrate assimilation in cells grown on nitrate and nitrate uptake into cells grown with tungstate on nitrite both followed Michaelis-Menten kinetics with similar K mvalues, 7 M. Both azide and cyanide inhibited nitrate assimilation. Our findings suggest that Pseudomonas fluorescens can take up nitrate via active transport and that nitrate assimilation is both inhibited and repressed by ammonium.  相似文献   

20.
An extended concept for the replacement of amino acids in theP' region of aprotinin by chemical semisynthesis is presented. Either fragment condensation with dipeptides protected as tert-butyl ester or stepwise introduction of two single amino acid-tert-butyl esters into a partially esterified aprotinin derivative (with free Lys15-carboxyl group) lacking the amino acids Ala16 and Arg17 leads to aprotinin homologues and derivatives mutated in theP′ 1 andP′ 2 position. This method may complement the recently reported enzymatic synthesis by enabling access to aprotinin homologues and derivatives, which cannot be prepared enzymatically. The synthesis of [Ala17]BPTI and [seco-17/18]BPTI is described in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号