首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
New members of a satellite DNA family (Sat 121), specific for wild beets of the section Procumbentes of the genus Beta, were isolated. Sequence analysis showed that the members of Sat-121 fall into two distinct classes. The organization of Sat-121 in the vicinity of a beet cyst nematode (Heterodera schachtii Schm.) resistance locus (Hs1) in B. patellaris and B. procumbens was investigated by pulsed-field gel electrophoresis (PFGE) using DNA from a series of resistant monosomic fragment additions, each containing an extra chromosome fragment of B. patellaris chromosome-1 (pat-1) in B. vulgaris. In this way several clusters of Sat-121 flanking the Hs1 pat-1 locus were identified. In nematode resistant diploid introgressions (2n=18), which contain small segments of B. procumbens chromosome-1 (pro-1) in B. vulgaris, only two major Sat-121 clusters were detected near the Hs1 pro-1 locus.  相似文献   

2.
Summary In cultivated beet no useful level of resistance of the beet cyst nematode (BCN) Heterodera schachtii Schm. has been found, unlike the situation in wild species of the section Procumbentes. Stable introgression of resistance genes from the wild species into Beta vulgaris has not been achieved, but resistant monosomic additions (2n =18 + 1), diploids of B. vulgaris with an extra alien chromosome carrying the resistance locus, have been obtained. Here we describe a new series of resistant monosomic fragment addition material of B. patellaris chromosome 1 (pat-1). We further describe the cloning of a single-copy DNA marker that specifically hybridizes with a monosomic addition fragment of approximately 8 Mb (AN5-90) carrying the BCN resistance locus. This marker and another fragment-specific, single-copy DNA marker probably flank the BCN locus on the addition fragment present in the AN5-203 material, which is approximately 19 Mb in size. Furthermore, several specific repetitive DNA markers have been isolated, one of which hybridizes to AN5-90 and also to DNA from a smaller DNA segment of Beta procumbens, present in line B883, carrying a BCN resistance locus introgressed into the B. vulgaris genome. This suggests that the specific repetitive marker is closely linked to the BCN locus.  相似文献   

3.
A YAC library was constructed from the Beta vulgaris fragment addition AN5-203b. This monosomic fragment addition harbors an approximate 12-Mbp fragment of B.patellaris chromosome 1 accomodating the Hs1 pat-1 conferring resistance to the beet cyst nematode (Heterodera schachtii). The YAC library consists of 20,000 YAC clones having an average size of 140 kb. Screening with organelle-specific probes showed that 12% of the clones contain chloroplast DNA while only 0.2% of the clones hybridizes with a mitochondrial specific probe. On the basis of a sugar beet haploid genome size of 750 Mbp this library represents 3.3 haploid genome equivalents. The addition fragment present in AN5-203b harbors a major satellite DNA cluster that is tightly linked to the Hs1 pat-1 locus. The cluster is located on a single 250-kb EcoRI restriction fragment and consists of an estimated 700–800 copies of a 159-bp core sequence, most of which are arranged in tandem. Using this core sequence as a probe, we were able to isolate 1 YAC clone from the library that contains the entire 250-kb satellite DNA cluster.Abbreviations YAC Yeast artificial chromosome - BCN beet cyst nematode - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism  相似文献   

4.
Summary Nearly isogenic lines (NILs) of rice (Oryza sativa) differing at a locus conferring resistance to the pathogen Xanthomonas oryzae pv. oryzae were surveyed with 123 DNA markers and 985 random primers using restriction fragment length plymorphism (RFLP) and random amplified polymorphic DNA (RAPD) analysis. One chromosome 11 marker (RG103) detected polymorphism between the NILs that cosegregated with Xa21. All other chromosome 11 DNA markers tested were monomorphic between the NILs, localizing the Xa21 introgressed region to an 8.3 cM interval on chromosome 11. Furthermore, we identified two polymerase chain reaction (PCR) products (RAPD2148 and RAPD818) that detected polymorphisms between the NILs. Genomic sequences hybridizing with RAPD818, RAPD248 and RG103 were duplicated specifically in the Xa21 NIL. All three markers cosegregated with the resistance locus, Xa21, in a F2 population of 386 progeny. Based on the frequency with which we recovered polymorphic Xa21-linked markers, we estimated the physical size of the introgressed region to be approximately 800 kb. This estimation was supported by physical mapping (using pulsed field gel electrophoresis) of the sequences hybridizing with the three Xa21-linked DNA markers. The results showed that the three Xa21-linked markers are physically close to each other, with one copy of the RAPD818 sequences located within 60 kb of RAPD248 and the other copy within 270 kb of RG103. None of the enzymes tested generated a DNA fragment that hybridized with all three of the markers indicating that the introgressed region containing the resistance locus Xa21 is probably larger than 270 kb.  相似文献   

5.
The Rfm1a gene restores the fertility of msm1 cytoplasmic male-sterile lines in barley. We identified three RAPD markers linked to the Rfm1 locus (CMNB-07/800, OPI-18/900, and OPT-02/700) using isogenic lines and segregating BC1F1 and F2 populations. Using a previously developed linkage map of barley, we located CMNB-07/800 and OPT-02/700 beside MWG2218 on chromosome 6HS. The linkage between MWG2218 and the Rfm1 locus was demonstrated using the segregating BC1F1 and F2 populations. To confirm the chromosomal locations of these markers, we converted them to STSs and tested against two sets of wheat–barley chromosome addition lines. These STS markers, CMNB-07/800, OPT-02/700, and MWG2218, were amplified only in the addition lines possessing the chromosome 6H, thereby providing additional evidence the Rfm1 locus is located on chromosome 6H. Homoeologous relationships among fertility restoration genes in Triticeae are discussed. Received: 27 March 2000 / Accepted: 25 June 2000  相似文献   

6.
Blast resistance in the indica cultivar (cv.) Q61 was inherited as a single dominant gene in two F2 populations, F2-1 and F2-2, derived from crosses between the donor cv. and two susceptible japonica cvs. Aichi Asahi and Lijiangxintuanheigu (LTH), respectively. To rapidly determine the chromosomal location of the resistance (R) gene detected in Q61, random amplified polymorphic DNA (RAPD) analysis was performed in the F2-1 population using bulked-segregant analysis (BSA) in combination with recessive-class analysis (RCA). One of the three linked markers identified, BA1126550, was cloned and sequenced. The R gene locus was roughly mapped on rice chromosome 8 by comparison of the BA1126550 sequence with rice sequences in the databases (chromosome landing). To confirm this finding, seven known markers, including four sequence-tagged-site (STS) markers and three simple-sequence repeat (SSR) markers flanking BA1126550 on chromosome 8, were subjected to linkage analysis in the two F2 populations. The locus was mapped to a 5.8 cM interval bounded by RM5647 and RM8018 on the short arm of chromosome 8. This novel R gene is therefore tentatively designated as Pi36(t). For fine mapping of the Pi36(t) locus, five additional markers including one STS marker and four candidate resistance gene (CRG) markers were developed in the target region, based on the genomic sequence of the corresponding region of the reference japonica cv. Nipponbare. The Pi36(t) locus was finally localized to an interval of about 0.6 cM flanked by the markers RM5647 and CRG2, and co-segregated with the markers CRG3 and CRG4. To physically map this locus, the Pi36(t)-linked markers were mapped by electronic hybridization to bacterial artificial chromosome (BAC) or P1 artificial chromosome (PAC) clones of Nipponbare, and a contig map was constructed in silico through Pairwise BLAST analysis. The Pi36(t) locus was physically delimited to an interval of about 17.0 kb, based on the genomic sequence of Nipponbare.  相似文献   

7.
Linkage analysis of a fertility restoring mutant generated from CMS rice   总被引:9,自引:0,他引:9  
 DNA polymorphism between a cytoplasmic male-sterile rice line II-32A, the male-fertile maintainer counterpart II-32B, a fertile revertant (T24), as well as two commercial indica restorers, was analyzed with randomly amplified polymorphic DNA (RAPD). A very low degree of polymorphism was found between the revertant T24 and II-32A compared with that of indica rice varieties. This result, together with agronomic and genetic evidence, suggests the revertant to be a product of a nuclear mutation. An analysis of polymorphism between II-32A and the revertant T24 with 510 RAPD decamer primers identified the co-segregating markers OPB07640 and OPB181000 to be linked to a sterile allele of the restoring locus in the revertant T24, at a distance of 5.3 cM. RAPD analysis of a mapping population of Tesanai2/CB with primer OPB07 revealed linkage of OPB07640 with RG374 (10.8 cM) and RG394 (8.8 cM) on chromosome 1. Thus the restorer gene, designated Rf 5, was tentatively localized between RG374 and RG394 on chromosome 1 and appears to be independent of other mapped restorer genes in rice. Received: 11 November 1997 / Accepted: 17 December 1997  相似文献   

8.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

9.
Sugar beet (Beta vulgaris L.) is highly susceptible to the beet cyst nematode (Heterodera schachtii Schm.). Three resistance genes originating from the wild beets B. procumbens (Hs1 pro-1) and B. webbiana (Hs1 web-1, Hs2 web-7) have been transferred to sugar beet via species hybridization. We describe the genetic localization of the nematode resistance genes in four different sugar beet lines using segregating F2 populations and RFLP markers from our current sugar beet linkage map. The mapping studies yielded a surprising result. Although the four parental lines carrying the wild beet translocations were not related to each other, the four genes mapped to the same locus in sugar beet independent of the original translocation event. Close linkage (0–4.6 cM) was found with marker loci at one end of linkage group IV. In two populations, RFLP loci showed segregation distortion due to gametic selection. For the first time, the non-randomness of the translocation process promoting gene transfer from the wild beet to the sugar beet is demonstrated. The data suggest that the resistance genes were incorporated into the sugar beet chromosomes by non-allelic homologous recombination. The finding that the different resistance genes are allelic will have major implications on future attempts to breed sugar beet combining the different resistance genes.  相似文献   

10.
Rice blast, caused byPyricularia grisea, is a major production constraint in many parts of the world. The Korean rice variety Tongil showed high levels of resistance for about six years when widely planted under highly disease-conducive conditions, before becoming susceptible. Tongil was found to carry a single dominant gene, designatedPi-10t, conferring resistance to isolate 106 of the blast pathogen from the Philippines. We report here the use of bulked segregant RAPD analysis for rapid identification of DNA markers linked toPi-10t. Pooled DNA extracts from five homozygous blast-resistant (RR) and five susceptible (rr) BC3F2 plants, derived from a CO39 × Tongil cross, were analyzed by RFLP using 83 polymorphic probes and by RAPD using 468 random oligomers. We identified two RAPD markers linked to thePi-10t locus: RRF6 (3.8 ± 1.2 cM) and RRH18 (2.9 ± 0.9 cM). Linkage of these markers withPi-10t was verified using an F2 population segregating forPi-10t. The two linked RAPD markers mapped 7 cM apart on chromosome 5. Chromosomal regions surrounding thePi-10t gene were examined with additional RFLP markers to define the segment introgressed from the donor genome.Pi-10t is likely to be a new blast-resistance locus, because no other known resistance gene has been mapped on chromosome 5. These tightly linked RAPD markers could facilitate early selection of thePi-10t locus in rice breeding programmes.  相似文献   

11.
A detailed genetic map has been constructed in apple (Malus x domestica Borkh.) in the region of the v f gene. This gene confers resistance to the apple scab fungus Venturia inaequalis (Cooke) Wint. Linkage data on four RAPD (random amplified polymorphic DNA) markers and the isoenzyme marker PGM-1, previously reported to be linked to the v f gene, are integrated using two populations segregating for resistance to apple scab. Two new RAPD markers linked to v f (identified by bulked segregant analysis) and a third marker previously reported as being present in several cultivars containing v f are also placed on the map. The map around v f now contains eight genetic markers spread over approximately 28 cM, with markers on both sides of the resistance gene. The study indicates that RAPD markers in the region of crab apple DNA introgressed with resistance are often transportable between apple clones carrying resistance from the same source. Analysis of co-segregation of the resistance classes 3A (weakly resistant) and 3B (weakly susceptible) with the linked set of genetic markers demonstrates that progeny of both classes carry the resistance gene.This work was supported in part by grants from the New Zealand Foundation for Research Science and Technology (FoRST) Programme 94-HRT-07-366 and ENZA New Zealand (International)  相似文献   

12.
The Pl1 locus in sunflower, Helianthus annuus L., conferring resistance to downy mildew, Plasmopara halstedii, race 1 has been located in linkage group 1 of the consensus RFLP map of the cultivated sunflower. Bulked segregant analyses were used on 135 plants of an F2 progeny from a cross between a downy mildew susceptible line, GH, and RHA266, a line carrying Pl1. Two RFLP markers and one RAPD marker linked to the Pl1 locus have been identified. The RFLP markers are located at 5.6 cM and 7.1 cM on either side of Pl1. The RAPD marker is situated at 43.7 cM from Pl1. The significance and applications of these markers in sunflower breeding are discussed.  相似文献   

13.
We have cloned and sequenced six RAPD fragments tightly linked to the Tm-1 gene which confers tomato mosaic virus (ToMV) resistance in tomato. The terminal ten bases in each of these clones exactly matched the sequence of the primer for amplifying the corresponding RAPD marker, except for one in which the 5-endmost two nucleotides were different from those of the primer. These RAPD clones did not cross-hybridize with each other, suggesting that they were derived from different loci. From Southern-hybridization experiments, five out of the six RAPD clones were estimated to be derived from middle- or high-repetitive sequences, but not from any parts of the ribosomal RNA genes (rDNA), which are known to be tightly linked with the Tm-1 locus. The remaining clone appeared to be derived from a DNA family consisting of a few copies. These six RAPD fragments were converted to sequence characterized amplified region (SCAR) markers, each of which was detectable using a pair of primers having the same sequence as that at either end of the corresponding RAPD clone. All pairs of SCAR primers amplified distinct single bands whose sizes were the same as those of the RAPD clones. In four cases, the SCAR markers were present in the line with Tm-1 but absent in the line without it, as were the corresponding RAPD markers. In the two other cases, the products of the same size were amplified in both lines. When these SCAR products were digested with different restriction endonucleases which recognize 4-bp sequences, however, polymorphisms in fragment length were found between the two lines. These co-dominant markers are useful for differentiating heterozygotes from both types of homozygote.  相似文献   

14.
 Thirty sugar beet (Beta vulgaris) lines conferring complete resistance to the beet cyst nematode (BCN, Heterodera schachtii) originating from interspecific crosses with wild beets of the section Procumbentes (B. procumbens, B. webbiana and B. patellaris) were investigated by morphology and wild beet-specific molecular markers. The beet lines carrying chromosome mutations consisted of monosomic additions (2n=18+1), fragment additions (2n=18+fragment) and translocations (2n=18) from the wild beets. Genome-specific single-copy, satellite and repetitive probes were applied to study the origin, chromosomal assignment and presence of nematode resistance genes. Within the wild beet species at least three different resistance genes located on different chromosomes were distinguished: Hs1 on the homoelogous chromosomes I of each species, Hs2 on the homoelogous chromosomes VII of B. procumbens and B. webbiana and Hs3 on chromosome VIII of B. webbiana. A clear distinction between the three chromosomes was possible by morphological and molecular means. The translocation lines were separated into two different groups: one containing the resistance gene Hs1 from chromosome I and the other carrying a different nematode resistance gene. The molecular data combined with sequence analyses of Hs1 of the three wild beet species revealed a clear distinction between B. procumbens and B. webbiana. The evolutionary and taxonomical relationship of these species supporting the idea of three different species originating from a common ancestor is discussed. Received: 6 April 1998 / Accepted: 22 April 1998  相似文献   

15.
A population of diploid potato (Solanum tuberosum) was used for the genetic analysis and mapping of a locus for resistance to the potato cyst nematode Globodera rostochiensis, introgressed from the wild potato species Solanum vernei. Resistance tests of 108 genotypes of a F1 population revealed the presence of a single locus with a dominant allele for resistance to G. rostochiensis pathotype Ro1. This locus, designated GroV1, was located on chromosome 5 with RFLP markers. Fine-mapping was performed with RAPD and SCAR markers. The GroV1 locus was found in the same region of the potato genome as the S. tuberosum ssp. andigena H1 nematode resistance locus. Both resistance loci could not excluded to be allelic. The identification of markers flanking the GroV1 locus offers a valuable strategy for marker-assisted selection for introgression of this nematode resistance.Abbreviations BSA bulked segregant analysis - RAPD random-amplified polymorphic DNA - RFLP restriction fragment length polymorphism - SCAR sequence-characterized amplified region  相似文献   

16.
Recessive alleles (va, va 1 , va 2 , etc) of the tobacco Va locus confer resistance to potato virus Y (PVY). To elucidate the mechanism underlying this resistance, we attempted to identify randomly amplified polymorphic (RAPD) markers that reveal polymorphism between two nearly isogenic lines (NILs) that differ in their susceptibility to PVY. Using each of 500 primers and 800 pairs of primers, we identified over 100 RAPD fragments that differed between the NILs. We applied these RAPD primers or primer combinations to an F2 population obtained from a cross between the susceptible line BY4 and the resistant va 2 -bearing NIL, F55. It was found that only 10 RAPD markers were polymorphic between resistant and susceptible plants. Unexpectedly, these markers were all linked to Va. All 10 RAPD markers were present in all 8 susceptible varieties tested. At least one RAPD marker was not detected in 8 out of 10 resistant varieties. Southern analysis revealed that the sequences of markers were not present in the genomes of resistant varieties, and the markers were found in individually distinct positions on the chromosomes of susceptible tobacco varieties. These results strongly suggest that the resistance conferred by va is due to deletions at the Va locus governing susceptibility to PVY. Received: 20 May 1999 / Accepted: 17 August 1999  相似文献   

17.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

18.
The two eggplant relatives Solanum aethiopicum gr. Gilo and Solanum aethiopicum gr. Aculeatum (=Solanum integrifolium) carry resistance to the fungal wilt disease caused by Fusarium oxysporum f. sp. melongenae, a worldwide soil-borne disease of eggplant. To introgress the resistance trait into cultivated eggplant, the tetraploid somatic hybrids S. melongena S. aethiopicum and S. melongena + S. integrifolium were used. An inheritance study of the resistance was performed on advanced anther culture-derived androgenetic backcross progenies from the two somatic hybrids. The segregation fitted a 3 resistant (R): 1 susceptible (S) ratio in the selfed populations and a 1R:1S ratio in the backcross progenies for the trait derived from S. aethiopicum and S. integrifolium. These ratios are consistent with a single gene, which we designated as Rfo-sa1, controlling the resistance to Fusarium oxysporum f. sp. melongenae. The allelic relationship between the resistance genes from S. aethiopicum and S. integrifolium indicate that these two genes are alleles of the same locus. Bulked Segregant Analysis (BSA) was performed with RAPD markers on the BC3/BC5 resistant advanced backcross progenies, and three RAPD markers associated with the resistance trait were identified. Cleaved Amplified Polymorphic Sequences (CAPSs) were subsequently obtained on the basis of the amplicon sequences. The evaluation of the efficiency of these markers in predicting the resistant phenotype in segregating progenies revealed that they represent useful tools for indirect selection of Fusarium resistance in eggplant.  相似文献   

19.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

20.
The maize inbred lines 1145 (resistant) and Y331 (susceptible), and the F1, F2 and BC1F1 populations derived from them were inoculated with the pathogen Pythium inflatum Matthews, which causes stalk rot in Zea mays. Field data revealed that the ratio of resistant to susceptible plants was 3:1 in the F2 population, and 1:1 in the BC1F1population, indicating that the resistance to P. inflatum Matthews was controlled by a single dominant gene in the 1145×Y331 cross. The gene that confers resistance to P. inflatum Matthews was designated Rpi1 for resistance to P. inflatum) according to the standard nomenclature for plant disease resistance genes. Fifty SSR markers from 10 chromosomes were first screened in the F2 population to find markers linked to the Rpi1 gene. The results indicated that umc1702 and mmc0371 were both linked to Rpi1, placing the resistance gene on chromosome 4. RAPD (randomly amplified polymorphic DNA) markers were then tested in the F2population using bulked segregant analysis (BSA). Four RAPD products were found to show linkage to the Rpi1 gene. Then 27 SSR markers and 8 RFLP markers in the region encompassing Rpi1 were used for fine-scale mapping of the resistance gene. Two SSR markers and four RFLP markers were linked to the Rpi1 gene. Finally, the Rpi1 gene was mapped between the SSR markers bnlg1937 and agrr286 on chromosome 4, 1.6 cM away from the former and 4.1 cM distant from the latter. This is the first time that a dominant gene for resistance to maize stalk rot caused by P. inflatum Matthews has been mapped with molecular marker techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号