首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
A new bis heterocycle comprising both bioactive 2-aminopyrimidine and thiazolidin-4-one nuclei namely 3-(4′-(4″-fluorophenyl)-6′-phenylpyrimidin-2′-yl)-2-phenylthiazolidin-4-one 3 was synthesized, characterized with the help of melting point, elemental analysis, FT-IR, MS, one-dimensional NMR (1H, 13C) spectra and we evaluated the chemopreventive potential of 3-(4′-(4″-fluorophenyl)-6′-phenylpyrimidin-2′-yl)-2-phenylthiazolidin-4-one based on in vivo inhibitory effects on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch carcinogenesis. Administration of 3 effectively suppressed oral carcinogenesis initiated with DMBA as revealed by the reduced incidence of neoplasms. Lipid peroxidation, glutathione (GSH) content, and the activities of glutathione peroxidase (GPx), glutathione S-transferase (GST) were used to biomonitor the chemopreventive potential of 3. Lipid peroxidation was found to be significantly decreased, whereas GSH, GPx, GST, and GGT were elevated in the oral mucosa of tumor-bearing animals. Our data suggest that 3 may exert its chemopreventive effects in the oral mucosa by modulation of lipid peroxidation and enhancing the levels of GSH, GPx, and GST.  相似文献   

2.
Optically pure (R)-3-quinuclidinol [(R)-3-Qui] is widely used as a chiral building block for producing various antimuscarinic agents. An asymmetric bioreduction approach using 3-quinuclidinone reductases is an effective way to produce (R)-3-Qui. In this study, a biocatalyst for producing (R)-3-Qui was developed by using Escherichia coli that coexpressed Kaistia granuli (KgQR) and mutant glucose dehydrogenase (GDH). KgQR catalyses the synthesis of (R)-3-Qui through the efficient reduction of 3-quinuclidinone. The specific activity of recombinant KgQR was 254?U/mg, and the Michaelis–Menten constant (Km) for 3-quinuclidinone was 0.51?mM. The thermal stability of KgQR was relatively high compared with ArQR. Approximately 73% of the residual activity remained after incubation in 0.2 M potassium phosphate buffer (KPB) (pH 7.0) for 8?h at 30?°C. In addition, 80% residual activity remained for the double-mutant GDH (Q252L and E170K) after incubation in a buffer (pH 7.0) for 8?h at 30 and 40?°C. 3-Quinuclidinone (242?g/L) can be reduced to (R)-3-Qui in 3?h by coexpressing KgQR and mutant GDH in E. coli. The conversion rate reached 80.6?g/L/h, which is the highest reported to date. The results demonstrates that this whole-cell biocatalyst will have a great potential in industrial manufacturing.  相似文献   

3.
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is an important chiral intermediate for the synthesis of rosuvastatin. The biotechnological production of (3R,5S)-CDHH is catalyzed from tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) by a carbonyl reductase, and this synthetic pathway is becoming a primary route for (3R,5S)-CDHH production due to its high enantioselectivity, mild reaction conditions, low cost, process safety, and environmental friendship. However, the requirement of the pyridine nucleotide cofactors, reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) limits its economic flexibility. In the present study, a recombinant Escherichia coli strain harboring carbonyl reductase R9M and glucose dehydrogenase (GDH) was constructed with high carbonyl reduction activity and cofactor regeneration efficiency. The recombinant E. coli cells were applied for the efficient production of (3R,5S)-CDHH with a substrate conversion of 98.8%, a yield of 95.6% and an enantiomeric excess (e.e.) of >99.0% under 350 g/L of (S)-CHOH after 12 hr reaction. A substrate fed-batch strategy was further employed to increase the substrate concentration to 400 g/L resulting in an enhanced product yield to 98.5% after 12 hr reaction in a 1 L bioreactor. Meanwhile, the space–time yield was 1,182.3 g L−1 day−1, which was the highest value ever reported by a coupled system of carbonyl reductase and glucose dehydrogenase.  相似文献   

4.
【背景】醇脱氢酶AdhS能催化不对称还原反应制备(R)-2-氯-1-苯乙醇,但由于自身再生辅酶NADH的能力不足,需要辅酶再生酶协助其再生NADH。谷氨酸脱氢酶能以谷氨酸为底物,再生辅酶NAD(P)H,具有辅酶再生酶的潜力。【目的】克隆表达谷氨酸脱氢酶基因gdhA,构建谷氨酸脱氢酶GdhA与醇脱氢酶AdhS的大肠杆菌共表达体系,提高AdhS制备(R)-2-氯-1-苯乙醇的转化效率。【方法】从枯草芽孢杆菌(Bacillus subtilis) 168中克隆基因gdhA,并在大肠杆菌(Escherichia coli) BL21(DE3)中表达,分析辅酶再生活力;再与醇脱氢酶AdhS共表达,优化表达条件;分析不同辅酶再生方案对制备(R)-2-氯-1-苯乙醇的转化效率的影响。【结果】谷氨酸脱氢酶GdhA再生NADH的比活力为694 U/g。经GdhA与AdhS的共表达及表达条件优化后,制备(R)-2-氯-1-苯乙醇的转化效率达465 U/L。经比较,GdhA协助再生辅酶NADH,可使AdhS制备(R)-2-氯-1-苯乙醇的转化效率提高到约3倍。【结论】谷氨酸脱氢酶GdhA为NADH高效再生酶,与醇脱氢酶AdhS共表达可显著提高AdhS制备(R)-2-氯-1-苯乙醇的转化效率。  相似文献   

5.
Methyl (R)-3-hydroxytetradeconoate ((R)-MHOT) is a crucial chiral intermediate for the chemical synthesis of the anti-obesity drug, orlistat. Here, (R)-MHOT was prepared from methyl 3-oxotetradecanoate (MOT) using a mutant of the short-chain dehydrogenase/reductase (SDR) from Novosphingobium aromaticivorans (NaSDR). Mutant NaSDR-G145A/I199L had a 3.23 times greater kcat value than that of wild type toward MOT. The conditions for the expression of recombinant NaSDR-G145A/I199L were further investigated and obtained cells were used for gram-scale preparation of (R)-MHOT with 50 g/L of MOT. The target product was extracted and confirmed by gas chromatography; the enantiomeric excess value of (R)-MHOT was 99.0 %. Molecular docking analysis was used to reveal the molecular basis of the enhanced catalytic activity of NaSDR-G145A/I199L; NaSDR-G145A/I199L presented a more effective docking posture than NaSDR. This is the first reported use of SDR for preparing (R)-MHOT via the reduction of MOT. Our study provides a foundation for greener preparation of (R)-MHOT.  相似文献   

6.
In the present work, a new bis heterocyclic compound comprising both the piperidone and thiohydantoin nuclei namely 3-[2,6-bis(4-fluorophenyl)-3-methylpiperidin-4-ylideneamino]-2-thioxoimidazolidin-4-one was synthesised and characterised with the help of mp, elemental analysis, FT-IR, MS and one-dimensional NMR (1H and 13C) spectra. The inhibitory effect of 3-[2,6-bis(4-fluorophenyl)-3-methylpiperidin-4-ylideneamino]-2-thioxoimidazolidin-4-one on 7,12-dimethylbenz[a]anthracene (DMBA) induced buccal pouch carcinogenesis was investigated in Syrian male hamsters. All the hamsters that were painted with DMBA on their buccal pouches for 14 weeks developed squamous cell carcinoma. Administration of 3-[2,6-bis(4-fluorophenyl)-3-methylpiperidin-4-ylideneamino]-2-thioxoimidazolidin-4-one effectively suppressed the oral carcinogenesis initiated with the DMBA as revealed by a reduced incidence of neoplasms. Lipid peroxidation, glutathione (GSH) content and the activities of glutathione peroxidase (GPx), glutathione S-transferase (GST) were used to biomonitor the chemopreventive potential of 3-[2,6-bis(4-fluorophenyl)-3-methylpiperidin-4-ylideneamino]-2-thioxoimidazolidin-4-one. Lipid peroxidation was found to be significantly decreased, whereas GSH, GPx, GST and GGT were elevated in the oral mucosa of tumour bearing animals. Our data suggest that 3-[2,6-bis(4-fluorophenyl)-3-methylpiperidin-4-ylideneamino]-2-thioxoimidazolidin-4-one may exert its chemopreventive effects in the oral mucosa by modulation of lipid peroxidation, antioxidants and detoxification systems.  相似文献   

7.
A full length cDNA encoding glutamate dehydrogenase was cloned from Teladorsagia circumcincta (TcGDH). The TcGDH cDNA (1614 bp) encoded a 538 amino acid protein. The predicted amino acid sequence showed 96% and 93% similarity with Haemonchus contortus and Caenorhabditis elegans GDH, respectively. A soluble N-terminal 6xHis-tagged GDH protein was expressed in the recombinant Escherichia coli strain BL21 (DE3) pGroESL, purified and characterised. The recombinant TcGDH had similar kinetic properties to those of the enzyme in homogenates of T. circumcincta, including greater activity in the aminating than deaminating reaction. Addition of 1 mM ADP and ATP increased activity about 3-fold in the deaminating reaction, but had no effect in the reverse direction. TcGDH was a dual co-factor enzyme that operated both with NAD+ and NADP+, GDH activity was greater in the deaminating reaction with NADP+ as co-factor and more with NADH in the aminating reaction.  相似文献   

8.
t‐Butyl 6‐cyano‐(3R,5R)‐dihydroxyhexanoate ((3R,5R)‐ 2 ) is a key chiral diol precursor of atorvastatin calcium (Lipitor®). We have constructed a Kluyveromyces lactis aldo‐keto reductase mutant KlAKR‐Y295W/W296L (KlAKRm) by rational design in previous research, which displayed high activity and excellent diastereoselectivity (dep > 99.5%) toward t‐butyl 6‐cyano‐(5R)‐hydroxy‐3‐oxohexanoate ((5R)‐ 1 ). To realize in situ cofactor regeneration, a robust KlAKRm and Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) co‐producer E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm was constructed in this work. Under the optimized conditions, AKR and GDH activities of E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm peaked at 249.9 U/g DCW (dry cellular weight) and 29100 U/g DCW, respectively. It completely converted (5R)‐ 1 at substrate loading size of up to 60.0 g/L (5R)‐ 1 in the absence of exogenous NADH, which was one‐fifth higher than that of the separately prepared KlAKRm and EsGDH under the same conditions. In this manner, a biocatalytic process for (3R,5R)‐ 2 with productivity of 243.2 kg/m3 d was developed. Compared with the combination of separate expressed KlAKRm with EsGDH, co‐expression of KlAKRm and EsGDH has the advantages of alleviating cell cultivation burden and elevating substrate load. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1235–1242, 2017  相似文献   

9.
Abstract

R-2-(4-hydroxyphenoxy)propionic acid (R-HPPA) is a key chiral intermediate for phenoxypropionic acid herbicide synthesis. In this study, to improve the production of R-HPPA with B. bassiana ZJB16007, the cultivation conditions in solid-state fermentation (SSF) were investigated. The effects of various substrates on R-HPPA production were evaluated and the process parameters were also optimized. The results showed that rice bran was the optimal substrate for R-HPPA production. The optimal medium components and cultivation conditions were: rice bran: silkworm chrysalis powder = 5.25: 2.25 (g: g), nutrient salts solution 12?mL which contained 50?g/L R-PPA, pH 5.0, and cultivated at 28?°C for 11 days. Under the optimized conditions, the transformation of R-HPPA was significantly improved and the yield of R-HPPA reached 77.78%, which was 15.14% higher than that of the control (67.55%). Therefore, SSF may serve as an alternative for R-HPPA production by B. bassiana ZJB16007.  相似文献   

10.
Abstract

Aromatic α-halohydrins, particularly 2-haloethanols as significant precursor of drugs, can easily be converted to chiral β-adrenergic receptor blockers. Eight strains of Lactobacillus curvatus were tested as biocatalysts for asymmetric reduction of 2-bromo-1-(naphthalen-2-yl)ethanone 1 to 2-bromo-1- (naphthalen-2-yl) ethanol 2. The parameters of the bioreduction were optimized using L. curvatus N4, the best biocatalyst found. As a result, (R)-2-bromo-1-(naphthalen-2-yl)ethanol 2, which can be β-adrenergic receptor blocker precursor, was produced for the first time in high yield and enantiomerically pure form using biocatalysts. Moreover, the gram scale synthesis was performed and 7.54?g of (R)-2 was synthesized as enantiopure form (enantiomeric excess >99%) in 48?h. The important advantages of this process are that it produces of (R)-2 for the first time in enantiopure form, in excellent yield and under environmentally friendly and moderate reaction conditions. This system is of the potential to be applied at a commercial scale.  相似文献   

11.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   

12.
Abstract

A series of novel 4-chlorophenyl N-alkyl phosphoramidates of 3′-[4-fluoroaryl-(1,2,3-triazol-1-yl)]-3′-deoxythymidines (2049) was synthesized by means of phosphorylation of 3′-[4-aryl-(1,2,3-triazol-1-yl)]-3′-deoxythymidines (711) with 4-chlorophenyl phosphoroditriazolide (14), followed by a reaction with the appropriate amine. The synthesized compounds 711 and 2049 were evaluated along with four known anticancer compounds for their cytotoxic activity in human cancer cell lines: cervical (HeLa), nasopharyngeal (KB), breast (MCF-7), osteosarcoma (143B) (only selected compounds 20, 24, 28, 3236, 38, 40, 46) and normal human dermal fibroblast cell line (HDF) using the sulforhodamine B (SRB) assay. Among 3′-[4-aryl-(1,2,3-triazol-1-yl)]-3′-deoxythymidines (711) the highest activity in all the investigated cancer cells was displayed by 3′-[4-(3-fluorophenyl)-(1,2,3-triazol-1-yl)]-3′-deoxythymidine (9) (IC50 in the range of 2.58–3.61?μM) and its activity was higher than that of cytarabine. Among phosphoramidates 2049 the highest activity was demonstrated by N-n-propyl phosphoramidate of 3′-[4-(3-fluorophenyl)-(1,2,3-triazol-1-yl)]-3′-deoxythymidine (35) in all the cancer cells (IC50 in the range of 0.97–1.94?μM). Also N-ethyl phosphoramidate of 3′-[4-(3-fluorophenyl)-(1,2,3-triazol-1-yl)]-3′-deoxythymidine (33) exhibited good activity in all the used cell lines (IC50 in the range of 4.79–4.96?μM).  相似文献   

13.
Abstract

Green chemistry includes a novel process in the production of drugs precursors and biological active molecules using biocatalysts, so reducing the threats for human sanitary and ecological pollutions. Asymmetric bioreduction of prochiral ketones by biocatalysts is one of the best prevalent used methods in synthetic organic chemistry due to the production of enantiopure chiral carbinols. This study emphasizes the application biocatalyst L paracasei BD101 for enantioselective bioreduction of 2-methyl-1-phenylpropan-1-one ketone, which contain branched alkyl chain, to (R)-2-methyl-1-phenylpropan-1-ol ((R)-2) in high yields and excellent enantiomeric excess (>99%). The scale-up production was performed, and 4.61?g of (R)-2 in enantiopure form was synthesized. L paracasei BD101 was proved to be a substantial biocatalyst in asymmetric bioreduction of a ketone which contains a branched alkyl chain. There is not any work in the literature similar to our study. Hence, it is important to work on filling this gap. This study is the first example for an enantiopure synthesis of (R)-2 by a biocatalyst. The new green method was developed for bioreduction of bulky ketones, which contains a branched alkyl chain, and it approves the synthesis of novel chiral carbinols in an easy, cheap, and environmentally friendly condition using L paracasei BD101.  相似文献   

14.
A series of benzofuran-2-yl-(phenyl)-3-pyridylmethanol derivatives were prepared using an efficient 1-step procedure in good yields. In addition furan-2-yl-(phenyl)-3-pyridylmethanol derivatives were also prepared to determine the effect of the benzene ring in benzofuran with respect to inhibitory activity. The pyridylmethanol derivatives were all evaluated in vitro for inhibitory activity against aromatase (P450AROM, CYP19), using human placental microsomes. The benzofuran-2-yl-(phenyl)-3-pyridylmethanol derivatives showed good to moderate activity (IC50=1.3–25.1?μM), which was either better than or comparable with aminoglutethimide (IC50=18.5?μM) but lower than arimidex (IC50=0.6?μM), with the 4-methoxyphenyl substituted derivative displaying optimum activity. Molecular modelling of the benzofuran-2-yl-(4-fluorophenyl)-3-pyridylmethanol derivative suggested activity to reside with the (S)-enantiomer. The furan-2-yl-(phenyl)-3-pyridylmethanol derivatives were devoid of activity indicating the essential role of the benzene ring of the benzofuran component for enzyme binding.  相似文献   

15.
5-((R)-1-Hydroxyethyl)-furo[2,3-c]pyridine ((R)-FPH) is a useful chiral building block in the synthesis of pharmaceuticals. An NADH-dependent alcohol dehydrogenase (AFPDH) isolated from Candida maris catalyzed the reduction of 5-acetylfuro[2,3-c]pyridine (AFP) to (R)-FPH with 100% enantiomeric excess. The gene encoding AFPDH was cloned and sequenced. The AFPDH gene comprises 762 bp and encodes a polypeptide of 27,230 Da. The deduced amino acid sequence showed a high degree of similarity to those of other members of the short-chain alcohol dehydrogenase superfamily. The AFPDH gene was overexpressed in Escherichia coli under the control of the lac promoter. One L of the cultured broth of an E. coli transformant coexpressing AFPDH and the glucose dehydrogenase (GDH) gene reduced 250 g of AFP to (R)-FPH in an organic solvent two-phase system. Under coupling with NADH regeneration using 2-propanol, 1 L of the cultured broth of an E. coli transformant expressing the AFPDH gene reduced 150 g of AFP to (R)-FPH. The optical purity of the (R)-FPH formed was 100% enantiomeric excess under both reaction conditions.  相似文献   

16.
Abstract

Zofenopril as an ACE inhibitor expired recently was found to have a favourable safety profile in comparison with other ACE inhibitors in treating high blood pressure, congestive heart failure, and acute myocardial infarction. It can be synthesised from the key building blocks of (S)-3-benzoylthio-2-methylpropanoic acid and (4S)-phenylthio-L-proline. In this report, an efficient hydrolytic resolution via Candida antarctic lipase B (CALB) for preparing the former block in isopropyl ether (IPE) containing (RS)-3-benzoylthio-2-methylpropyl pyrazolide (1) and water was developed. Quantitative improvements of the enzyme activity and enantioselectivity in terms of k2SKmS?1?=?5.726?L h?1 g?1 and E?=?217 at 45?°C were found from the kinetic analysis. Insights into the CALB performance via thermodynamic analysis were then addressed and compared with those by using (RS)-3-benzoylthio-2-methylpropyl 1,2,4-triazolide (2) as the substrate. A putative thermodynamic model was moreover hypothesised for elucidating the more enthalpy reduction of 68.92-70.86?kJ mol?1 from the acyl part of (S)-1 and (S)-2 as well as that of 23.69-25.63?kJ mol?1 from the triad imidazolium to Ser105 and leaving 1,2,4-triazole moiety of (R)-2 and (S)-2 on stabilising the corresponding transition states.  相似文献   

17.
(S)-1-(2,6-二氯-3-氟苯基)乙醇是抗癌药物克唑替尼的手性合成前体,可由2,6-二氯-3-氟苯乙酮经乙醇脱氢酶催化还原制备,还原中所需的还原型辅酶Ⅱ再生是该反应的技术瓶颈.本研究构建重组大肠杆菌E.coli BL21-ADH和E.coli BL21-GDH,实现了葡萄糖脱氢酶和乙醇脱氢酶的共表达,并进行偶联转化.结果表明,当在反应温度为30℃,pH为7的条件下,(S)-l-(2,6-二氯-3-氟苯基)乙醇的产量达到最高,在投料量为6%时,该体系转化率为93.75%.  相似文献   

18.
Two isoenzymes each of glucosephosphate isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.43) were separated by (NH4)2SO4 gradient solubilization and DEAE-cellulose ion-exchange chromatography from green leaves of the C3-plants spinach (Spinacia oleracea L.), tobacco (Nicotiana tabacum L.) and wheat (Triticum aestivum L.), of the Crassulacean-acid-metabolism plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen, and from the green algae Chlorella vulgaris and Chlamydomonas reinhardii. After isolation of cell organelles from spinach leaves by isopyenic centrifugation in sucrose gradients one of two isoenzymes of each of the four enzymes was found to be associated with whole chloroplasts while the other was restricted to the soluble cell fraction, implying the same intracellular distribution of these isoenzymes also in the other species.Among C4-plants, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in only one form in corn (Zea mays L.), sugar cane (Saccharum officinarum L.) and Coix lacrymajobi L., but as two isoenzymes in Atriplex spongiosa L. and Portulaca oleracea L. In corn, the two dehydrogenases were mainly associated with isolated mesophyll protoplasts while in Atriplex spongiosa they were of similar specific activity in both mesophyll protoplasts and bundle-sheath strands. In all five C4-plants three isoenzymes of glucosephosphate isomerase and phosphoglucomutase were found. In corn two were localized in the bundle-sheath strands and the third one in the mesophyll protoplasts. The amount of activity of the enzymes was similar in each of the two cell fractions. Apparently, C4 plants have isoenzymes not only in two cell compartments, but also in physiologically closely linked cell types such as mesophyll and bundle-sheath cells. New address: Institut für Pflanzenphyiologie und Zellbiologie, Freie Universität Berlin, Königin-Luise-Straße 12-16a, D-1000 Berlin 33  相似文献   

19.
In this study, the in vitro effects of some sulfonamide derivatives, which are carbonic anhydrase inhibitors, on the enzymes activities of glucose-6-phosphate dehydrogenase, 6-phospho gluconate dehydrogenase and glutathione reductase were investigated. For this purpose, these three enzymes were purified from human erythrocytes. Purification procedure composed of four steps; preparation of the hemolysate, ammonium sulfate precipitation, 2′,5′-ADP Sepharose 4B affinity chromatography, and gel filtration chromatography on Sephadex G-200. 5-(3α-Hydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3α,12α-Dihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3α,7α,12α-Trihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3), 5-(3α,Acetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (4), 5-(3α,7α,12α-Triacetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (5), 5-(3,7,12-Trioxo-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (6), acetazolamide, and dorzolamide were tested in this experiment. Compounds 3, 5, and dorzolamide showed inhibitory effects on the activity of 6-phosphogluconate dehydrogenase, and I50 values and Ki constants were calculated as 0.0601 mM, 0.00253 mM, and 1.41 mM and 0.0878 ± 0.0274 mM, 0.0042 ± 0.0009 mM, and 3.1446 ± 0.2081 mM, respectively. Glutathione reductase was also inhibited by 1 and 2. I50 values and Ki constants were 0.0471 mM and 0.0723 ± 0.0388 mM for 1 and 0.0045 mM and 0.0061 ± 0.0014 mM, for 2. If these sulfonamide derivatives are proposed as drugs, some of which are being used in glaucoma treatment such as acetazolamide and dorzolamide, these results should be taken into consideration concerning via these enzymes.  相似文献   

20.
Enantioselective GC analysis of 4-ethyloctanoic and 4-methylheptanoic acid, using heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin as the chiral stationary phase, is described and the sensory properties of several 4-alkyl-branched acids, using gas chromatography-olfactometry (GC-O) equipment and octakis(2,3-di-O-methyl-6-tert-butyldimethylsilyl)-γ-cyclodextrin as the stationary phase, are evaluated. The chirospecific analysis of various 2-, 3-, and 4-alkyl-branched acids from commercially available Roman chamomile (Chamaemelum nobile (L.) Allioni), Parmesan cheese, and subcutaneous mutton adipose tissue, using either GC-GC (MDGC) or GC-MS analytical methods, is described. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号