首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spin-echo NMR studies showed that lyophilized yeast cells contain isolated mobile water (IMW), whose content varied from 0.25% (of the dry weight of cells) in the lyophilized exponential-phase yeast cells to 3.8% in the lyophilized lag-phase and stationary-phase yeast cells. The viability rate of yeast cells varied from 20% in the lyophilized preparation of exponential-phase cells to 86% in the lyophilized preparation of early-stationary-phase cells. In the lyophilized preparation of yeast cells grown in a chemostat mode at a constant specific rate, the content of IMW depended on the growth-limiting factor, being minimal in the case of growth limitation by carbon source. In the latter case, the viability rate of cells was also minimal. The data obtained show that there is a correlation between the IMW content and the viability rate of yeast cells in lyophilized preparations.  相似文献   

2.
The relationship between the free water fraction and the phosphate content in lyophilized yeast cells of Candida utilis was studied. The yeast were cultivated continuously and periodically, their growth rate being limited by phosphates. The decrease in the phosphate pool from 2% to 0.56% was followed by an increase in the fraction of free water by 6.3 times.  相似文献   

3.
The uptake of nutrients (glucose, glutamine, and N-acetylglucosamine), the intracellular concentrations of metabolites (glucose-6-phosphate, cyclic AMP, amino acids, trehalose, and glycogen) and cell wall composition were studied in Candida albicans. These analyses were carried out with exponential-phase, stationary-phase, and starved yeast cells, and during germ-tube formation. Germ tubes formed during a 3-h incubation of starved yeast cells (0.8 X 10(8) cells/mL) at 37 degrees C during which time the nutrients glucose plus glutamine or N-acetylglucosamine (2.5 mM of each) were completely utilized. Control incubations with these nutrients at 28 degrees C did not form germ tubes. Uptake of N-acetylglucosamine and glutamine was inhibited by cycloheximide which suggests that de novo protein synthesis was required for the induction of these uptake systems. The glucose-6-phosphate content varied from 0.4 nmol/mg dry weight for starved cells to 2-3 nmol/mg dry weight for growing yeast cells and germ tube forming cells. Trehalose content varied from 85 nmol/mg dry weight (growing yeast cells and germ tube forming cells) to 165 nmol/mg weight (stationary-phase cells). The glycogen content decreased during germ-tube formation (from 800 to 600 nmol glucose equivalent/mg dry weight) but increased (to 1000 nmol glucose equivalent/mg dry weight) in the control incubation of yeast cells. Cyclic AMP remained constant throughout germ-tube formation at 4-6 pmol/mg dry weight. The total amino acid pool was similar in exponential, starved, and germ tube forming cells but there were changes in the amounts of individual amino acids. The overall cell wall composition of yeast cells and germ tube forming cells were similar: lipid (2%, w/w); protein (3-6%), and carbohydrate (77-85%). The total carbohydrates were accounted for as the following fractions: alkali-soluble glucan (3-8%), mannan (20-23%), acid-soluble glucan (24-27%), and acid-insoluble glucan (18-26%). The relative amounts of the alkali-soluble and insoluble glucan changed during starvation of yeast cells, reinitiation of yeast-phase growth, and germ-tube formation. Analysis of the insoluble glucan fraction from cells labelled with [14C]glucose during germ-tube formation showed that the chitin content of the cell wall increased from 0.6% to 2.7% (w/w).  相似文献   

4.
In an attempt to bring some insight into how peptidoglycan synthesis is controlled in Escherichia coli, simple parameters, such as cell peptidoglycan content, the pool levels of its seven uridine nucleotide precursors, and the specific activities of five enzymes involved in their formation, were investigated under different growth conditions. When exponential-phase cells with generation times ranging from 25 to 190 min were examined, the peptidoglycan content apparently varied as the cell surface area changed, and no important variations in the pool levels of the nucleotide precursors or in the specific activities of the five enzymes considered were observed. The peptidoglycan of exponential-phase cells accounted for 0.7 to 0.8% of the dry cell weight, whereas that of stationary-phase cells accounted for 1.4 to 1.9%. Depending on the growth conditions, the number of peptidoglycan disaccharide peptide units per cell varied from 2.4 X 10(6) to 5.6 X 10(6). The levels of the nucleotide precursor pools as well as the specific activities of the D-glutamic acid- and D-alanyl-D-alanine-adding enzymes varied little with the growth phase. The specific activities of UDP-N-acetylglucosamine transferase, UDP-N-acetylglucosamine-enolpyruvate reductase, and the diaminopimelic acid-adding enzymes decreased by 20 to 50% at most in the late stationary phase. The results are discussed in terms of the possible importance for cell survival of the maintenance of a high capacity for peptidoglycan synthesis, whatever its rate under various growth conditions, and of a balance between the synthesis and breakdown of peptidoglycan during active growth.  相似文献   

5.
Cold Shock Lethality and Injury in Clostridium perfringens   总被引:3,自引:0,他引:3       下载免费PDF全文
Several observations have been made in regard to cold shock lethality of Clostridium perfringens: (i) loss of viability was not consequence of exposure of the cells to air; (ii) stationary-phase cells were much more resistant to cold shock at 4 C than exponential-phase cells; (iii) at 4 C 96% of an initial population of exponential-phase cells was killed upon cold shock and 95% of the remaining population was killed within 90 min of continued exposure at 4 C; (iv) the minimal temperature differential for detectable cold shock lethality was between 17 and 23 C, and the maximum beyond which lethality was not appreciably increased was between 28 and 33 C. Up to 75% of viable cold-shocked cells were injured, as demonstrated by cold shocking late exponential-phase cells at 10 C and using differential plating procedure for recovery. Repair of injury was temperature dependent, and occurred in a complex medium and 0.1% peptone but not water. Nalidixic acid, chloramphenicol, and rifampin did not inhibit repair of injury.  相似文献   

6.
Schwab C  Vogel R  Gänzle MG 《Cryobiology》2007,55(2):108-114
Freeze-drying is a process commonly used in starter culture preparation. To improve the survival rate of bacteria during the process, cryoprotectives are usually added before freezing. This study investigated the influence of the addition of sucrose, fructo-oligosaccharides (FOS), inulin and skim milk on the viability and membrane integrity of Lactobacillus reuteri TMW1.106 during freezing, freeze-drying and storage. The effect of drying adjuncts on survival was correlated to their interaction with bacterial membrane by determination of the parameters membrane fluidity and membrane lateral pressure. Sucrose, FOS and skim milk significantly enhanced survival of exponential-phase cells of L. reuteri during freeze-drying. Cellular viability during storage of exponential-phase cells remained highest for cells dried in the presence of skim milk and inulin. Membranes of these cells were completely permeabilized after freeze-drying. The application of FOS significantly improved survival of stationary phase cells of L. reuteri TMW1.106 after freeze-drying and storage. This increased viability of L. reuteri TMW1.106 in the presence of FOS correlated to improved membrane integrity. Fructo-oligosaccharides and fructans, but not gluco-oligosaccharides interacted with membrane vesicles prepared from L. reuteri TMW1.106 as indicated by increased membrane lateral pressure in the presence of FOS and fructans. Increased membrane integrity of stationary phase L. reuteri TMW1.106 was attributed to direct interactions between FOS and the membrane which leads to increased membrane fluidity and thus improved stability of the membrane during and rehydration.  相似文献   

7.
Survival of a nontoxigenic isolate of Escherichia coli O157:H7 at low pH (pH 3.0) was examined over prolonged time periods for each of three population types: exponential-phase cells, stationary-phase cells, and acid-adapted exponential-phase cells. In each population, approximately 5 x 10(4) CFU ml-1 were detected after a 24-h incubation at pH 3.0. Even after 3 days at pH 3.0, significant numbers of survivors from each of the three populations could be detected. The high level of acid tolerance exhibited by these survivors was found to be quickly lost once they were transferred to conditions which permitted growth to resume, indicating that they were not mutants. Proton flux measurements on the three populations of cells revealed that the initial rates of viability loss at pH 3.0 correlated well with net proton accumulation. Cells showing a high initial rate of viability loss (exponential-phase cells) accumulated protons at the highest rate, whereas resistant populations (adapted or stationary-phase cells) accumulated protons only slowly. Differences in the protein composition of the cell envelope between the three populations were studied by two-dimensional polyacrylamide gel electrophoresis. Complex differences in the pattern of proteins expressed by each population were uncovered. The implications of these findings are discussed in the context of a possible model accounting for acid tolerance in this important food-borne pathogen.  相似文献   

8.
Survival of a nontoxigenic isolate of Escherichia coli O157:H7 at low pH (pH 3.0) was examined over prolonged time periods for each of three population types: exponential-phase cells, stationary-phase cells, and acid-adapted exponential-phase cells. In each population, approximately 5 × 104 CFU ml−1 were detected after a 24-h incubation at pH 3.0. Even after 3 days at pH 3.0, significant numbers of survivors from each of the three populations could be detected. The high level of acid tolerance exhibited by these survivors was found to be quickly lost once they were transferred to conditions which permitted growth to resume, indicating that they were not mutants. Proton flux measurements on the three populations of cells revealed that the initial rates of viability loss at pH 3.0 correlated well with net proton accumulation. Cells showing a high initial rate of viability loss (exponential-phase cells) accumulated protons at the highest rate, whereas resistant populations (adapted or stationary-phase cells) accumulated protons only slowly. Differences in the protein composition of the cell envelope between the three populations were studied by two-dimensional polyacrylamide gel electrophoresis. Complex differences in the pattern of proteins expressed by each population were uncovered. The implications of these findings are discussed in the context of a possible model accounting for acid tolerance in this important food-borne pathogen.  相似文献   

9.
Summary Very high gravity wheat mashes containing 300 g or more sugares per liter were prepared by enzymatic hydrolysis of starch and fermented with a commercial preparation of active dry yeast. The active dry yeast used in this study was a blend of several strains ofSaccharomyces cerevisiae. The fermentation was carried out at 20°C at different pitching rates (inoculation levels) with and without the addition of yeast extract as nutrient supplement. At a pitching rate of 76 million cells per g of mash an ethanol yield of 20.4% (v/v) was obtained. To achieve this yeast extract must be added to the wheat mash as nutrient supplement. When the pitching rate was raised to 750 million cells per g of mash, the ethanol yield increased to 21.5% (v/v) and no nutrient supplement was required. The efficiency of conversion of sugar to ethanol was 97.6% at the highest pitching rate. This declined slightly with decreasing pitching rate. A high proportion of yeast cells lost viability at high pitching rates. It is suggested that nutrients released from yeast cells that lost viability and lysed, contributed to the high yield of ethanol in the absence of any added nutrients.  相似文献   

10.
The adaptive response of the yeast Yarrowia lipolytica to heat shock has been studied. Experiments showed that, after 10 min of incubation at 45 degrees C, the survival rate of Yarrowia lipolytica cells was less than 0.1%. Stationary-phase yeast cells were found to be more thermotolerant than exponential-phase cells. The 60-min preincubation of cells at 37 degrees C or pretreatment with low concentrations of H2O2 (0.5 mM) and menadione (0.05 mM) made them more tolerant to heat and to oxidative stress (120 mM hydrogen peroxide). The pH dependence of yeast thermotolerance has also been studied. The adaptation of yeast cells to heat shock and oxidative stress was found to be associated with a decrease in the intracellular level of cAMP and an increase in the activity of antioxidant enzymes (catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase).  相似文献   

11.
The structural gene encoding bacterioferritin comigratory protein (Bcp) was amplified using PCR from the genomic DNA of Schizosaccharomyces pombe, and transferred into the shuttle vector pRS316 to generate the recombinant plasmid pBCPlO. The bcp + mRNA level in the pBCPlO-containing yeast cells was significantly higher than that in the control yeast cells, indicating that the cloned gene is functioning. The S. pombe cells harboring the plasmid pBCPIO exhibited higher survival on the solid minimal media with hydrogen peroxide, tert-BOOH or cadmium than the control yeast cells. They also exhibited enhanced cellular viability in the liquid media containing the stressful agents. The increased viabilities of the fission yeast cells harboring the plasmid pBCP10 were also obtained with 0.4% glucose or 0.4% sucrose as a sole carbon source, and nitrogen starvation, compared with those of the control yeast cells. The total glutathione (GSH) content and total GSH/GSSG ratio were significantly higher in the yeast cells harboring the plasmid pBCP10 than in the control yeast cells. In brief, the S. pombe Bcp plays a protective role in the defensive response to oxidative stress possibly via up-regulation of total and reduced glutathione levels.  相似文献   

12.
In this study, an attempt was made to increase the survival rate of bifidobacteria entrapped in alginate in the gastrointestinal tract, and to investigate the potential industrial applications, for example lyophilized capsules and yogurt. First, the protective effect of various food additives on bifidobacterial survivability was determined after exposure to simulated gastric juices and bile salts. The additives used in this study were skim milk (SM), poly dextrose (PD), soy fiber (SF), yeast extract (YE), chitosan (CS), κ-carageenan (κ-C) and whey, which were added at 0.6% concentration (w/v) to 3% alginate-bifidobacterial solution. In the simulated gastric juices and bile salts, the protective effect of 0.6% skim milk-3% alginate (SM-A) beads on the survival rate of bifidobacteria proved to be higher than the other additives. Second, the hydrogen ion permeation was detected through SM-A vessel without bifidobacterial cells at different SM concentrations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). There were no differences in terms of the pH decrease in SM-A vessels at 0.6%, 0.8%, and 1.0% (w/v) SM concentrations. The survival rate of bifidobacteria in SM-A beads would appear to be related to the SM buffering capacity against hydrogen ions and its tendency to reduce the pore size of bead. In this experiment, the survival rate of bifidobacteria entrapped in beads containing 0.6% SM showed the highest viability after exposure to simulated gastric juices for 3 h, thereby indicating that 0.6% SM is the optimum concentration for 3% alginate bead preparation. Third, the effect of SM-A beads on the freeze-drying and yogurt storage for 10 days was investigated. SM-A beads were found to be more efficient for freeze drying and yogurt storage than untrapped cells and the alginate bead. Consequently, the survival rate of bifidobacteria entrapped in SM-A beads was increased in simulated gastric juices, bile salts and probiotic products such as lyophilized capsules and yogurt, SM-A beads can be expected to produce high value probiotic products.  相似文献   

13.
S-adenosyl-L-methionine (SAM), an important metabolic intermediate of mammals, is a well-known therapeutic agent. The molecule is chemically unstable, both in solution and in dry state, and forms different degradation products. Because the chemical instability represents a real problem during the preparation of therapeutic formulations, we investigated the capacity of some sugars to improve the SAM stability over time. In the present work, we demonstrated that the disaccharide trehalose exercises a protective effect towards the lyophilized SAM slackening its degradation (65% of SAM was detected after 50 days at 37 degrees C). A parallel study, performed to stabilize the SAM into lyophilized yeast cells enriched in the sulfonium compound, assessed the positive effect of trehalose also in whole cells, but in lesser measure.  相似文献   

14.
Both respiratory-competent and respiratory-deficient yeast cells reduce external ferricyanide. The reduction is stimulated by ethanol and inhibited by the alcohol dehydrogenase inhibitor, pyrazole. The reduction of ferricyanide is not inhibited by inhibitors of mitochondrial or microsomal ferricyanide reduction. Cells in exponential-phase growth show a much higher rate of ferricyanide reduction. The reduction of ferricyanide is accompanied by increased release of protons by the yeast cells. We propose that the ferricyanide reduction is carried out by a transmembrane NADH dehydrogenase.  相似文献   

15.
The effects of yeast culture age, carbon source, growth temperature, and germ-tube inducers on adherence to primary fibroblast cultures was studied in conjunction with the determination of adherence-mediated mammalian cell damage by measuring chromium-51 release from fibroblast monolayers. The results indicated that yeast culture age affected adherence only when the yeasts were grown at 37 degrees C, not after growth at 28 degrees C. At 37 degrees C, quantitatively fewer exponential-phase, glucose- or galactose-grown yeasts adhered to fibroblasts than did yeasts that were in lag or stationary phases. The reduced adherence correlated with less chromium-51 release and reduced germ-tube formation. The addition of germ-tube inducers, such as N-acetyl-D-glucosamine or serum, to exponential-phase yeasts caused an increase in germ-tube formation with a concomitant increase in yeast adherence and release of chromium-51 from the monolayers. Exponential-phase galactose-grown yeasts were more responsive to serum-induced germ-tube formation, germ-tube elongation, and fibroblast adherence than were exponential-phase glucose-grown yeasts. In addition, exponential-phase galactose-grown yeasts caused more chromium-51 release from monolayers in the presence of serum than did glucose-grown yeasts. Overall, conditions that enhanced germ-tube formation and elongation resulted in greatest adherence-mediated damage to the monolayers.  相似文献   

16.
The addition of simple inorganic salts to aqueous enzyme solutions prior to lyophilization results in a dramatic activation of the dried powder in organic media relative to enzyme with no added salt. Activation of both the serine protease subtilisin Carlsberg and lipase from Mucor javanicus resulting from lyophilization in the presence of KCl was highly sensitive to the lyophilization time and water content of the sample. Specifically, for a preparation containing 98% (w/w) KCl, 1% (w/w) phosphate buffer, and 1% (w/w) enzyme, varying the lyophilization time showed a direct correlation between water content and activity up to an optimum, beyond which the activity decreased with increasing lyophilization time. The catalytic efficiency in hexane varied as much as 13-fold for subtilisin Carlsberg and 11-fold for lipase depending on the lyophilization time. This dependence was apparently a consequence of including the salt, as a similar result was not observed for the enzyme freeze-dried without KCl. In the case of subtilisin Carlsberg, the salt-induced optimum value of kcat/Km for transesterification in hexane was over 20,000-fold higher than that for salt-free enzyme, a substantial improvement over the previously reported enhancement of 3750-fold (Khmelnitsky, 1994). As was found previously for pure enzyme, the salt-activated enzyme exhibited greatest activity when lyophilized from a solution of pH equal to the pH for optimal activity in water. The active-site content of the lyophilized enzyme samples also depended upon lyophilization time and inclusion of salt, with opposite trends in this dependence observed for the solvents hexane and tetrahydrofuran. Finally, substrate selectivity experiments suggested that mechanism(s) other than selective partitioning of substrate into the enzyme-salt matrix are responsible for salt-induced activation of enzymes in organic solvents.  相似文献   

17.
Saccharomyces cerevisiae cells (strain W303) grown in a minimal medium (containing 2% or 0.1% glucose) until exponential or stationary phase, were subjected to chronological aging in water, and yeast viability and nucleotide content were analyzed along several days of nutrient starvation. Cells collected in exponential phase (whether grown in the presence of 0.1% or 2% glucose) were viable up to five days and thereafter the viability decreased linearly with a half-survival rate of around eight days. ATP and other nucleoside triphosphates decreased similarly in both cases. Cells collected in stationary phase, and transferred to water, behaved differently whether grown in 0.1% or in 2% glucose, with a half-survival life of around nine and 28 days respectively. A double mutant in glycogen synthase (gsy1delta gsy2delta) and its isogenic wild-type strain, grown to stationary phase in 2% glucose, presented a similar half-survival life of around eight days. The W303 cells grown to stationary phase in the presence of 2% glucose showed a 7-fold increase of UDP-N-acetylglucosamine (UDP-GlcNAc) as compared with the level present in the cells grown in any of the other three metabolic situations. The nature of UDP-GlcNAc was established by MALDI-TOF ionization analysis. It is also worth noting that the rate of decay of NAD+ was lower than that of ATP in any of the situations here considered.  相似文献   

18.
The viability of BCG vaccine has traditionally been monitored using a colony-forming unit (CFU) assay. Despite its widespread use, results from the CFU assay can be highly variable because of the characteristic clumping of mycobacteria, their requirement for complex growth media, and the three week incubation period needed to cultivate slow-growing mycobacteria. In this study, we evaluated whether an ATP luminescence assay (which measures intracellular ATP content) could be used to rapidly estimate the viability of lyophilized and/or frozen preparations of six different BCG vaccine preparations - Danish, Tokyo, Russia, Brazil, Tice, and Pasteur - and two live attenuated mycobacterial vaccine candidates - a ΔlysAΔpanCD M. tuberculosis strain and a ΔmmaA4 BCG vaccine mutant. For every vaccine tested, a significant correlation was observed between intracellular ATP concentrations and the number of viable attenuated bacilli. However, the extractable intracellular ATP levels detected per cell among the different live vaccines varied suggesting that validated ATP luminescence assays with specific appropriate standards must be developed for each individual live attenuated vaccine preparation. Overall, these data indicate that the ATP luminescence assay is a rapid, sensitive, and reliable alternative method for quantifying the viability of varying live attenuated mycobacterial vaccine preparations.  相似文献   

19.
The relationship between a loss of viability and several morphological and physiological changes was examined with Escherichia coli strain J1 subjected to high-pressure treatment. The pressure resistance of stationary-phase cells was much higher than that of exponential-phase cells, but in both types of cell, aggregation of cytoplasmic proteins and condensation of the nucleoid occurred after treatment at 200 MPa for 8 min. Although gross changes were detected in these cellular structures, they were not related to cell death, at least for stationary-phase cells. In addition to these events, exponential-phase cells showed changes in their cell envelopes that were not seen for stationary-phase cells, namely physical perturbations of the cell envelope structure, a loss of osmotic responsiveness, and a loss of protein and RNA to the extracellular medium. Based on these observations, we propose that exponential-phase cells are inactivated under high pressure by irreversible damage to the cell membrane. In contrast, stationary-phase cells have a cytoplasmic membrane that is robust enough to withstand pressurization up to very intense treatments. The retention of an intact membrane appears to allow the stationary-phase cell to repair gross changes in other cellular structures and to remain viable at pressures that are lethal to exponential-phase cells.  相似文献   

20.
Ten minutes after inhibition of protein synthesis with chloramphenicol (CAP) the ability of cells of Streptococcus faecalis (ATCC 9790) to autolyze decreased to less than 20% of the rate for exponential-phase cells. After threonine exhaustion, the time for a 50% drop in the rate of cellular autolysis was about 20 min. These rapid increases in resistance to cellular autolysis could not be accounted for by: (i) the relatively slow and small overall decrease in susceptibility of isolated cell walls to added autolysin, or (ii) a decreased content of either the active or latent (proteinase activatable) form of the autolysin in the wall fraction. Continued wall synthesis resulted in dilution of preexisting autolysin in the isolated wall fraction. The release of labeled "old" relative to "new" wall from CAP-treated cultures showed that wall synthesis shifted away from the areas of wall previously shown to be associated with wall synthesis (extension) in exponential-phase cells. A corresponding dispersal of active autolysin activity was not observed. By using actinomycin D and CAP, a requirement for ribonucleic acid and protein synthesis early in the recovery of cells from amino acid starvation was demonstrated for the recovery in the ability of cells to autolyze. Evidence was obtained which suggests that a protein is involved in the conversion of latent to active autolysin. During recovery from amino acid starvation, increase in wall synthesis and content of active autolysin was delayed (25 to 35 min), whereas an increase in turbidity and latent enzyme content began within 10 min. After treatment with CAP at 22 or 52 min of recovery, a further increase in levels of both active and latent autolysin was severely inhibited; however, the increase in rate of wall synthesis was indistinguishable from that of an untreated control. This suggests that an increase in rate of wall synthesis does not depend on an increase in level of active autolysin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号