首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using whole-cell patch-clamp technique and Fura-2 fluorescence measurement, the presence of ATP-activated ion channels and its dependence on intracellular Ca2+ concentration ([Ca2+]i) in the epithelial cells of the endolymphatic sac were investigated. In zero current-clamp configuration, the average resting membrane potential was -66.8+/-1.3 mV (n=18). Application of 30 microM ATP to the bath induced a rapid membrane depolarization by 43.1+/-2.4 mV (n=18). In voltage-clamp configuration, ATP-induced inward current at holding potential (VH) of -60 mV was 169.7+/-6.3 pA (n=18). The amplitude of ATP-induced currents increased in sigmoidal fashion over the concentration range between 0.3 and 300 microM with a Hill coefficient (n) of 1.2 and a dissociation constant (Kd) of 11.7 microM. The potency order of purinergic analogues in ATP-induced current, which was 2MeSATP>ATPgammas>/=ATP>alpha, beta-ATP>ADP=AMP>/=adenosine=UTP, was consistent with the properties of the P2Y receptor. The independence of the reversal potential of the ATP-induced current from Cl- concentration suggests that the current is carried by a cation channel. The relative ionic permeability ratio of the channel modulated by ATP for cations was Ca2+>Na+>Li+>Ba2+>Cs+=K+. ATP (10 microM) increased [Ca2+]i in an external Ca2+-free solution to a lesser degree than that in the external solution containing 1.13 mM CaCl2. ATP-induced increase in [Ca2+]i can be mimicked by application of ionomycin in a Ca2+-free solution. These results indicate that ATP increases [Ca2+]i through the P2Y receptor with a subsequent activation of the non-selective cation channel, and that these effects of ATP are dependent on [Ca2+]i and extracellular Ca2+.  相似文献   

2.
Internal and external K+ help gate the inward rectifier.   总被引:4,自引:2,他引:2       下载免费PDF全文
Recent investigations have demonstrated substantial reductions in internal [K+] in cardiac Purkinje fibers during myocardial ischemia (Dresdner, K.P., R.P. Kline, and A.L. Wit. 1987, Circ. Res. 60: 122-132). We investigated the possible role these changes in internal K+ might play in abnormal electrical activity by studying the effects of both internal and external [K+] on the gating of the inward rectifier iK1 in isolated Purkinje myocytes with the whole-cell patch-clamp technique. Increasing external [K+] had similar effects on the inward rectifier in the Purkinje myocyte as it does in other preparations: increasing peak conductance and shifting the activation curve in parallel with the potassium reversal potential. A reduction in pipette [K+] from 145 to 25 mM, however, had several dramatic previously unreported effects. It decreased the rate of activation of iK1 at a given voltage by several-fold, reversed the voltage dependence of recovery from deactivation, so that the deactivation rate decreased with depolarization, and caused a positive shift in the midpoint of the activation curve of iK1 that was severalfold smaller than the associated shift of reversal potential. These changes suggest an important role of internal K+ in gating iK1 and may contribute to changes in the electrical properties of the myocardium that occur during ischemia.  相似文献   

3.
We investigated whether transient step reductions in divalent cations would produce detectable changes in neuronal excitability similar to those reported in the total absence of divalent cations. Using cultured chick dorsal root ganglion cells as a model system, our results indicate that a step reduction in divalent cations induces a transient inward current. This response is mediated by a tetrodotoxin-resistant, Na+-permeable, cation channel that is blocked by cadmium. This, and our observation that the response is abolished by verapamil, suggests that the current passes through calcium channels. This transient inward current was estimated to be activated by decreases in extracellular calcium ([Ca2+]o) as small as 0.5-0.8 mM and thus represents a different response from the one previously observed when steady-state [Ca2+]o levels were reduced to micromolar levels.  相似文献   

4.
Serotonin (5-HT) produces presynaptic facilitation and FMRFamide produces presynaptic inhibition in Aplysia sensory neurons. These effects may involve the modulation of Ca2+ influx into sensory neuron terminals during action potentials. Here, we have used the Ca2+ indicator dye fura-2 to monitor directly the effects of 5-HT and FMRFamide on internal Ca2+ concentration ([Ca2+]i). 5-HT caused a 50% increase in the transient rise in [Ca2+]i in response to action potentials, whereas FMRFamide decreased the [Ca2+]i transient by 40%. Neither transmitter altered the resting [Ca2+]i, the time course of recovery of the [Ca2+]i transient, or the [Ca2+]i transients produced by intracellular injection of CaCl2 or inositol 1,4,5-trisphosphate. We conclude that the effects of the transmitters on the action potential-induced [Ca2+]i transient are due to changes in Ca2+ influx and not in intracellular Ca2+ homeostasis.  相似文献   

5.
Summary The inward membrane current was recorded under voltage clamp from nonbursting neurons of the snailHelix pomatia in Na-free solutions containing Ba ions but no other divalent cations. The inward current was separated into two components: (i) an early fast inactivating component and (ii) a smaller long-lasting component. Both components were dependent on the external Ba concentration. It is concluded that both components of the inward current are carried by Ba ions. The activation of the early fast inactivating component of the inward current occurred at more positive membrane potential than that of the long-lasting component. The shape of the inactivation curve for the peak value of the inward current was similar to that for the long-lasting component. The potentials of half-inactivation for the peak value of the inward current and for its long-lasting component were –28 and –22 mV, respectively. The blocking effect of Co++ on the early fast inactivating component was substantially greater. In some neurons after treatment with 15mm Co++ only the long-lasting component was recorded. The activation kinetics of the long-lasting component of the inward current were analyzed using the Hodgkin-Huxley equations. The results could be explained by assuming that two components of the inward current in Na–Ca-free solution with Ba ions flowed through the two different channels. The significance of the long-lasting inward current for the normal spike generation is discussed.  相似文献   

6.
We have demonstrated that prostaglandin E2 (PGE2) treatment of bovine adrenal chromaffin cells results in a sustained elevation of intracellular Ca2+ concentration ([Ca2+]i) in these cells. Because the continued elevation of [Ca2+]i was dependent on extracellular Ca2+ concentration, it can be assumed that the PGE2-induced [Ca2+]i increase is due, at least in part, to an opening of membrane Ca2+ channels. In this study, we used electrophysiological methods to examine the mechanism of the PGE2-induced [Ca2+]i increase directly. Puff application of PGE2 to the external medium resulted in a prolonged depolarization in about half of the chromaffin cells examined. In whole-cell voltage-clamp recordings, an increase in inward current was observed over a 6-7 min period following bath application of PGE2 (greater than or equal to 10 microM), even in the absence of external Na+. This inward current was abolished when the recordings were made with the cells in a Ca2(+)-free medium, but it was not inhibited by Mn2+, a blocker of voltage-dependent Ca2+ channels. In cell-attached patch-clamp configuration, PGE2 produced an increase in the opening frequency of inward currents. The reversal potential of the PGE2-induced currents was about +40 mV, which is close to the reversal potential of the Ca2+ channel. The opening frequency was not affected by membrane potential changes. In inside-out patch-clamp configuration, inositol 1,4,5-trisphosphate (2 microM) added to the cytoplasmic side activated the Ca2(+)-channel currents, but PGE2 was ineffective when applied to the cytoplasmic side. These results suggest that PGE2 activates voltage-independent Ca2+ channels in chromaffin cells through a diffusible second messenger, possibly inositol 1,4,5-trisphosphate.  相似文献   

7.
The effects ofcGMP and sodium nitroprusside (SNP) on odor responses in isolatedturtle olfactory neurons were examined. The inward current induced bydialysis of a mixture of 1 mM cAMP and 1 mM cGMP was similar to thatinduced by dialysis of 1 mM cAMP or 1 mM cGMP alone. After the neuronswere desensitized by the application of 1 mM cGMP, 3 mM8-(4-chlorophenylthio)-cAMP, a membrane-permeable cAMP analog, did notelicit any current, indicating that both cAMP and cGMP activated thesame channel. Extracellular application of SNP, a nitric oxide (NO)donor, evoked inward currents in a dose-dependent manner. However,application of SNP did not induce any currents after desensitization ofthe cGMP-induced currents, suggesting that SNP-induced currents aremediated via the cGMP-dependent pathway. Application of thecAMP-producing odorants to the neurons induced a large inward currenteven after neurons were desensitized to a high concentration of cGMP orSNP. These results suggest that the transduction pathway independent ofcAMP, cGMP, and NO also contributes to the generation of odor responsesin addition to the cAMP-dependent pathway.

  相似文献   

8.
The arginine at position 148 is highly conserved in the inward rectifier K+ channel family. Increases of external pH decrease the single-channel conductance in mutant R148H of the Kir2.1 channel (arginine is mutated into histidine) but not in the wild type channel. Moreover, in 100 mM external K+, varying external pH induced biphasic changes of open channel noise, which peaks at around pH 7.4 in the R148H mutant but not in the wild type channel. The maximum single-channel conductances are higher in the wild type channel and R148H mutant at pH 6.0 than those in the R148H mutant at pH 7.4. However, the maximal conductance is achieved with much lower external [K+] for the latter. Interestingly, the single-channel conductances and open channel noise of the wild type channel at pH 6. 0 and the R148H mutant at pH 6.0 and 7.4 become the same in [K+] = 10 mM. These results indicate that the residue at position 148 is accessible to the external H+ and probably is involved in the formation of two K+ binding sites in the external pore mouth. Effective repulsion between permeating K+ ions in this area requires a positive charge at position 148, and such K+-K+ interaction is the essential mechanism underlying high K+ conduction rate through the Kir2.1 channel pore.  相似文献   

9.
Frog skeletal muscle has a K+ channel called the inward rectifier, which passes inward current more readily than outward current. Gay and Stanfield (1977) described a voltage-dependent block of inward K+ currents through the inward rectifier by external Cs+ in frog muscle. Here, frog single muscle fibers were voltage clamped using the vaseline-gap voltage-clamp technique to study the effect of external [K+] on the voltage-dependent block of inward K+ currents through the inward rectifier by external Cs+. The block of inward K+ currents through the channel by external Cs+ was found to depend on external [K+], such that increasing the external concentration of the permeant ion K+ potentiated the block produced by the impermeant external Cs+. These findings are not consistent with a one-ion channel model for the inward rectifier. The Eyring rate theory formalism for channels, viewed as single-file multi-ion pores (Hille and Schwarz, 1978), was used to develop a two-site multi-ion model for the inward rectifier. This model successfully reproduced the experimentally observed potentiation of the Cs+ block of the channel by external K+, thus lending further support to the view of the inward rectifier as a multi-ion channel.  相似文献   

10.
We characterized ATP-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and membrane current in cultured rat myenteric neurons using ratiometric Ca2+ imaging with fura-2 and the whole cell patch-clamp technique, respectively. Neuronal cells were functionally identified by [Ca2+]i responses to high K+ and nicotine, which occurred only in cells positive for neuron-specific protein gene product 9.5 immunoreactivity. ATP evoked a dose-dependent increase of [Ca2+]i that was greatly decreased by the removal of extracellular Ca2+ concentration ([Ca2+]o). The amplitude of the [Ca2+]i response to ATP was reduced by half in the presence of voltage-dependent Ca2+ channel blockers. In [Ca2+]o-free solution, ATP produced a small transient rise in [Ca2+]i similar to that induced by P2Y agonists. At -60 mV, ATP evoked a slowly inactivating inward current that was suppressed by the removal of extracellular Na+ concentration. The current-voltage relation for ATP showed an inward rectification with the reversal potential of about 0 mV. The apparent rank order of potency for the purinoceptor agonist-induced increases of [Ca2+]i was ATP > or = adenosine 5'-O-3-triphosphate > or = CTP > or = 2-methylthio-ATP > benzoylbenzoyl-ATP. A similar potency order was obtained with current responses to these agonists. P2 antagonists inhibited inward currents induced by ATP. Ca2+ and Mg2+ suppressed the ATP-induced current, and Zn2+, Cu2+, and protons potentiated it. RT-PCR and immunocytochemical studies showed the expression of P2X2 receptors in cultured rat myenteric neurons. These results suggest that ATP mainly activates ionotropic P2X2 receptors, resulting in a [Ca2+]i increase dependent on [Ca2+]o in rat myenteric neurons. A small part of the ATP-induced [Ca2+]i increase may be also mediated via a P2Y receptor-related mechanism.  相似文献   

11.
Inward rectifier (IR) K+ channels of bovine pulmonary artery endothelial cells were studied using the whole-cell, cell-attached, and outside-out patch-clamp configurations. The effects of Rb+ on the voltage dependence and kinetics of IR gating were explored, with [Rb+]o + [K+]o = 160 mM. Partial substitution of Rb+ for K+ resulted in voltage-dependent reduction of inward currents, consistent with Rb+ being a weakly permeant blocker of the IR. In cells studied with a K(+)- free pipette solution, external Rb+ reduced inward IR currents to a similar extent at large negative potentials but block at more positive potentials was enhanced. In outside-out patches, the single-channel i-V relationship was approximately linear in symmetrical K+, but rectified strongly outwardly in high [Rb+]o due to a reduced conductance for inward current. The permeability of Rb+ based on reversal potential, Vrev, was 0.45 that of K+, whereas the Rb+ conductance was much lower, 0.034 that of K+, measured at Vrev-80 mV. The steady state voltage- dependence of IR gating was determined in Rb(+)-containing solutions by applying variable prepulses, followed by a test pulse to a potential at which outward current deactivation was observed. As [Rb+]o was increased, the half-activation potential, V1/2, changed less than Vrev. In high [K+]o solutions V1/2 was Vrev-6 mV, while in high [Rb+]o V1/2 was Vrev + 7 mV. This behavior contrasts with the classical parallel shift of V1/2 with Vrev in K+ solutions. Steady state IR gating was less steeply voltage-dependent in high [Rb+]o than in K+ solutions, with Boltzmann slope factors of 6.4 and 4.4 mV, respectively. Rb+ decreased (slowed) both activation and deactivation rate constants defined at V1/2, and decreased the steepness of the voltage dependence of the activation rate constant by 42%. Deactivation of IR channels in outside-out patches was also slowed by Rb+. In summary, Rb+ can replace K+ in setting the voltage-dependence of IR gating, but in doing so alters the kinetics.  相似文献   

12.
Enhancement of inward current by serotonin in neurons of Aplysia   总被引:1,自引:0,他引:1  
In RB cells of Aplysia, serotonin, in the presence of TEA, 4AP and Ba, elicits a voltage-dependent inward current. In Ba-TEA-4AP seawater, RB cells showed a negative slope region (NSR) in their current-voltage (I-V) relationship when measured at the end of 2-s commands from a holding potential of -60 mV. Addition of serotonin to the bathing solution enhanced the NSR. When holding potential was lowered to -10 mV, the NSR as well as the effects of serotonin were greatly reduced. Addition of 20 mM cobalt to the bathing solution blocked both the NSR and the inward current produced by serotonin. Changes in potassium concentration produced no consistent shift in voltage sensitivity nor change in amplitude of the current elicited by serotonin. Intracellular injection of cesium sufficient to broaden action potentials did not block the enhancement of NSR by serotonin. These results support the conclusion that in RB cells, serotonin produces a voltage-dependent current carried by calcium ions.  相似文献   

13.
1. The left upper quadrant neurons L2-L6 in the abdominal ganglion of Aplysia californica were voltage clamped in order to examine effects of acetylcholine on voltage-dependent Ca and Ca-dependent K currents. 2. "Puffed" application of 10-100 microM acetylcholine reduced both the early inward and late outward phases of the current elicited by depolarizing voltage steps. An identical effect of the peptide FMRFamide was previously found to result from a suppression of the Ca and Ca-dependent K currents. 3. This effect of acetylcholine was obscured by the simultaneous activation of a previously described K current resembling the "S" current. Extracellular tetraethylammonium (TEA) and 4-aminopyridine could not be used to eliminate this current, because both compounds also appeared to block the acetylcholine receptor mediating the putative suppression of Ca and Ca-dependent K currents. 4. The acetylcholine-induced "S"-like and other K currents could, however, be reduced or eliminated by injection of TEA+ or Cs+ into the cell, replacement of extracellular Ca2+ with Ba2+, and by shifting the K+ equilibrium potential so as to null K currents at the potential used to record Ca current, revealing in each case a partial (10-40%) suppression of the Ca (or Ba) current by acetylcholine. 5. The reduction of the outward phase of depolarization-activated current was confirmed to represent suppression of the Ca-dependent K current by acetylcholine. This effect was indirect, secondary to the suppression of Ca current, since acetylcholine had no effect on Ca-dependent K current elicited by direct injection of Ca2+ into the cell. 6. Activation of the "S"-like K current and suppression of the Ca current by FMRFamide are likely to be important in its proposed role as an agent of presynaptic inhibition in Aplysia. Since acetylcholine has identical effects, it too may have such a function.  相似文献   

14.
1. The effects of D-Ala2-Leu-enkephalin (DALEU), D-Ala2-Met-enkephalin (DAMET), and FMRFamide on the metacerebral cell (MCC) of Aplysia were determined in current- and voltage-clamp experiments. 2. Distinct receptors exist on this neuron for the three substances. 3. DALEU elicited a depolarizing response due to an inward current but not accompanied by a significant change in membrane conductance. 4. In contrast, DAMET elicited a hyperpolarizing response due to an outward current, also not associated with a significant change in membrane conductance. 5. Both the DALEU and the DAMET responses increased with hyperpolarization, decreased with depolarization, but did not reverse at potentials less than -30 mV. Neither response was sensitive to naloxone. 6. FMRFamide induced a voltage-dependent outward current that reversed at about -76 mV. This neuron was responsive to much lower concentrations of FMRFamide than either of the enkephalins, and the response to FMRFamide appears to be a conductance increase to K+. 7. These results suggest that the MCC neuron has distinct receptors for Leu- and Met-enkephalin that activate unusual responses of opposite polarity, as well as more usual inhibitory responses to FMRFamide.  相似文献   

15.
16.
Activation of serotonin, glutamate or muscarinic receptors, incorporated into the membrane of Xenopus oocytes following injection of messenger RNA from rat brain, caused the development of a transient inward (Tin) current when the membrane was hyperpolarized. A detailed study was made of the Tin current induced during serotonin activation. The current is due principally to efflux of chloride ions, and is presumably activated by an influx of calcium ions, because it was blocked by removal of calcium from the bathing medium, by addition of manganese, cobalt or lanthanum, or by intracellular injection of EGTA. During application of serotonin, the amplitude of the Tin current increased slowly, and after washing it persisted for longer than the direct serotonin-induced current. The amplitude of the Tin current was sensitive to temperature and pH, and was abolished at pH 6.5 or by cooling to 12 degrees C. The Tin current may be of importance in regulating the excitability of neurons in the central nervous system.  相似文献   

17.
Summary In order to study the relationship between the inward Ca current activated by hyperpolarization and the frequency increase in ciliary beating, Paramecium cells were voltage clamped under conditions where K current was suppressed by use of CsCl electrodes and by extracellular tetraethyl ammonium. A 2-s pulse of hyperpolarization from the resting potential activated an inward current consisting of two components, an initial transient current peaking at 0.1–0.2 s (which had been identified as a Ca current) and a subsequent sustained current. The initial component was not associated with the frequency increase because the frequency increase was normally induced even when the peak current was almost completely inhibited by external addition of Ba2+. The second sustained current was closely correlated with the frequency increase. The frequency rose steeply with the sustained current and saturated at –0.6 nA. External addition of La3+ or replacement of Ca2+ by Mg2+ suppressed this current, and at the same time the frequency increase was inhibited. As the amplitude of the sustained current was not changed by deciliation, this current must pass through the somatic membrane. These results suggest that the frequency increase upon hyperpolarization is triggered by the voltage-activated inward current passing through the somatic membrane of the interciliary compartment.Abbreviations cAMP cyclic adenosine monophosphate - HEPES hydroxyethylpiperazine ethanesulfonate - TEA+ tetraethyl ammonium  相似文献   

18.
19.
Neuronal nicotinic acetylcholine (ACh)-activated currents in rat parasympathetic ganglion cells were examined using whole-cell and single-channel patch clamp recording techniques. The whole-cell current-voltage (I-V) relationship exhibited strong inward rectification and a reversal (zero current) potential of -3.9 mV in nearly symmetrical Na+ solutions (external 140 mM Na+/internal 160 mM Na+). Isosmotic replacement of extracellular Na+ with either Ca2+ or Mg2+ yielded the permeability (Px/PNa) sequence Mg2+ (1.1) > Na+ (1.0) > Ca2+ (0.65). Whole-cell ACh-induced current amplitude decreased as [Ca2+]0 was raised from 2.5 mM to 20 mM, and remained constant at higher [Ca2+]0. Unitary ACh-activated currents recorded in excised outside-out patches had conductances ranging from 15-35 pS with at least three distinct conductance levels (33 pS, 26 pS, 19 pS) observed in most patches. The neuronal nicotinic ACh receptor-channel had a slope conductance of 30 pS in Na+ external solution, which decreased to 20 pS in isotonic Ca2+ and was unchanged by isosmotic replacement of Na+ with Mg2+. ACh-activated single channel currents had an apparent mean open time (tau 0) of 1.15 +/- 0.16 ms and a mean burst length (tau b) of 6.83 +/- 1.76 ms at -60 mV in Na+ external solution. Ca(2+)-free external solutions, or raising [Ca2+]0 to 50-100 mM decreased both the tau 0 and tau b of the nAChR channel. Varying [Ca2+]0 produced a marked decrease in NP0, while substitution of Mg2+ for Na+ increased NP0. These data suggest that activation of the neuronal nAChR channel permits a substantial Ca2+ influx which may modulate Ca(2+)-dependent ion channels and second messenger pathways to affect neuronal excitability in parasympathetic ganglia.  相似文献   

20.
Olfactory receptor neurons respond to odor stimulation with an inward cationic current. Under whole-cell patch clamp, individual, isolated olfactory receptors were exposed to pharmacological agents known to interact with distinct enzymes in a putative second messenger cascade, and their response to odors was measured. IBMX prolonged the odor-evoked current and also reduced its amplitude. cAMP and cGMP induced a current electrically identical to the odor current, but the current showed desensitization only with cAMP. GTP-gamma-s prolonged and GDP-beta-s interfered with the odor-evoked current. The long latency seen in the odor response appears to be mainly due to the loading of the G protein and secondarily to the requirement for cAMP accumulation. The main source of the response decay appears to be cyclic nucleotide hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号