首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
帕金森病(Parkinson's disease,PD)是一种以运动功能障碍为主要临床特征的神经退行性疾病。皮层-纹状体谷氨酸能通路活动异常增强,谷氨酸(glumate,Glu)释放增多引起的兴奋性毒作用与帕金森病的发生发展密切相关。内源性大麻素系统(endocannabinoid system,eCBs)作为一类神经调质系统,可调节突触前Glu的释放,并调节皮层-纹状体通路内源性大麻素介导的长时程抑制(endocannabinoid-mediated long-term depression,eCB-LTD)发生。帕金森病的病理机制可能与eCB-LTD受损存在一定关联。  相似文献   

2.
内源性大麻素系统在脊椎动物视网膜中广泛分布。大麻素受体(cannbinoid receptor)主要有CB1和CB2两个亚型,与内源性配体N-花生四烯酸氨基乙醇(N-arachidonoylethanolamide,anandamine,AEA)和2-花生四烯酸甘油(2-arachidonyl glycerol,2-AG)结合调控视网膜神经元和胶质细胞的功能,从而参与调控视网膜视觉信息的处理。本文结合我们研究组近年在视网膜大麻素受体系统的研究结果,综述了有关大麻素CB1和CB2受体对视网膜细胞离子通道和突触传递调控及其机制的研究进展。  相似文献   

3.
运动功能是在神经系统的调控下完成的,皮层及基底神经节在运动功能调节中发挥信息整合及指令发放的作用,其中纹状体是基底神经节中接受传入信息的主要核团。腺苷A2A受体(adenosine A2A receptor, A2AR)在纹状体中高度表达,并在纹状体中整合多巴胺、谷氨酸和大麻素信号,参与间接通路运动抑制的信息编码。该文阐述了腺苷A2AR与多巴胺D2受体、代谢型谷氨酸mGlu5受体以及大麻素CB1受体的交互作用,探讨腺苷表达异常在神经疾病,如帕金森病、酒精成瘾等产生的作用,以及靶向干预腺苷改善相关疾病运动功能的机制,并对A2AR在间接通路运动调控及相关运动障碍中的研究进行总结,为后期运动功能中枢靶向干预提供理论参考。  相似文献   

4.
Lu YL  Liu CJ  Li CD 《生理科学进展》2008,39(2):179-181
自内源性大麻素系统发现以来,越来越多的研究表明大麻素对神经系统具有广泛的生理作用和临床应用价值.大麻素可以在脊髓、脊髓上及外周多个水平参与对痛觉的调制.同时,大麻素对运动功能、学习和记忆、神经内分泌等具有调制作用,也有研究表明大麻素对神经细胞具有保护作用.本文对大麻素在神经系统中的作用及其机制的研究进展作一简要介绍.  相似文献   

5.
近年来,中枢神经系统功能障碍所引发的阿尔茨海默病、帕金森病、抑郁症和肥胖症等众多脑健康问题受到广泛关注。内源性大麻素(endocannabinoid)是脑内一类重要的神经调质和调节能量稳态的关键活性因子,与多种神经退行性疾病及脑健康问题的发生发展密切相关,被视为众多中枢神经系统功能障碍的潜在干预靶点。大量研究显示,规律的运动锻炼可有效改善或缓解中枢神经系统功能障碍,降低阿尔茨海默病、帕金森病、抑郁症及肥胖的发生风险,对促进不同人群脑健康具有积极作用,而内源性大麻素系统可能参与其中。此外,内源性大麻素系统还可通过调节奖赏系统功能促进运动参与,与运动促进脑健康形成"良性循环"。该文主要从内源性大麻素系统的结构与生物学功能、运动与内源性大麻素系统的互动关系、内源性大麻素系统在运动防治中枢神经系统功能障碍及肥胖中的作用等方面进行系统论述,为运动促进脑健康理论提供新的视角与研究思路。  相似文献   

6.
内源性大麻素系统包括大麻素受体、内源性配体以及参与其合成与降解的酶类,在人体内广泛分布,参与诸多生理和病理生理过程。新近报道内源性大麻素系统在中枢神经系统的许多疾病的病理生理过程中扮演重要的角色。对内源性大麻素系统的研究,不仅能阐明一些疾病的病理生理机制,还有助于新药研发并为疾病治疗提供新的方向。本文基于现有的文献报道,就内源性大麻素系统及其在一些中枢神经疾病特别是脑缺血和帕金森病的发病机制的新进展进行综述。  相似文献   

7.
Ma SY  Ma YX 《生理科学进展》2006,37(4):297-301
在心肌组织、血管平滑肌细胞、内皮细胞和血管壁周围的神经纤维末梢以及血液中某些细胞存在内源性大麻素和相应的大麻素(CB)受体。在不同的动物模型和器官,内源性大麻素发挥调节血压和扩张血管等效应。内源性大麻素还在减少休克和心肌梗死所致循环和心脏损伤方面发挥重要作用,在心肌预适应中亦发挥关键作用。目前对内源性大麻素在心血管系统中作用的研究还处于起步阶段,本文对内源性大麻素系统在心血管系统中的来源和分布,对血管和心脏的作用及其机制方面的研究进展作简要介绍。  相似文献   

8.
嗅觉与摄食相互关联和相互调节。在摄食过程中,体内的代谢信号及食物刺激产生的进食信号首先被下丘脑的弓状核及脑干的孤束核感受到,进一步投射到下丘脑室旁核,室旁核再将信号传递到与摄食相关的其他脑区,调控摄食行为。在此过程中,嗅觉信号可以通过嗅球及嗅皮层投射到下丘脑,调节摄食行为。与此同时,摄食过程中产生的胃肠激素(促生长激素释放素、胰岛素、瘦素等)和体内的一些神经递质(乙酰胆碱,去甲肾上腺素、五羟色胺、内源性大麻素等)又作用于嗅觉系统,对嗅觉功能进行调节,反过来影响摄食本身。本综述从神经调节、激素调节等方面总结了近年嗅觉与摄食之间的相互作用及其内在机制的研究进展。  相似文献   

9.
内源性大麻素系统(endocannabinoid system, ECS)由大麻素受体、内源性大麻素以及涉及内源性大麻素合成、运输和降解的酶所构成,广泛参与胃肠道的各种生理和病理生理过程,并且通过大麻素基本调节作用来维持体内肠道的平衡。本文综述了近几年关于内源性大麻素系统在正常胃肠功能与肠易激综合征、炎症性肠病和结肠癌等疾病中作用的主要研究进展,可为临床治疗胃肠道疾病提供有效的理论指导。  相似文献   

10.
植物大麻用于临床已有几千年的历史,在许多胃肠道疾病如呕吐、腹泻、炎症性肠病、肠源性疼痛治疗中发挥重要作用。本文旨在综述内源性大麻素系统的组成及其在胃肠道活动中的调节作用,为进一步研究提供相关信息,并为通过调节胃肠道内源性大麻素系统治疗胃肠道疾病提供新靶点。  相似文献   

11.
Regulation of energy metabolism is controlled by the brain, in which key central neuronal circuits process a variety of information reflecting nutritional state. Special sensory and gastrointestinal afferent neural signals, along with blood-borne metabolic signals, impinge on parallel central autonomic circuits located in the brainstem and hypothalamus to signal changes in metabolic balance. Specifically, neural and humoral signals converge on the brainstem vagal system and similar signals concentrate in the hypothalamus, with significant overlap between both sensory and motor components of each system and extensive cross-talk between the systems. This ultimately results in production of coordinated regulatory autonomic and neuroendocrine cues to maintain energy homeostasis. Therapeutic metabolic adjustments can be accomplished by modulating viscerosensory input or autonomic motor output, including altering parasympathetic circuitry related to GI, pancreas, and liver regulation. These alterations can include pharmacological manipulation, but surgical modification of neural signaling should also be considered. In addition, central control of visceral function is often compromised by diabetes mellitus, indicating that circuit modification should be studied in the context of its effect on neurons in the diabetic state. Diabetes has traditionally been handled as a peripheral metabolic disease, but the central nervous system plays a crucial role in regulating glucose homeostasis. This review focuses on key autonomic brain areas associated with management of energy homeostasis and functional changes in these areas associated with the development of diabetes.  相似文献   

12.
Recent work on the coding of spatial information in central otolith neurons has significantly advanced our knowledge of signal transformation from head-fixed otolith coordinates to space-centered coordinates during motion. In this review, emphasis is placed on the neural mechanisms by which signals generated at the bilateral labyrinths are recognized as gravity-dependent spatial information and in turn as substrate for otolithic reflexes. We first focus on the spatiotemporal neuronal response patterns (i.e. one- and two-dimensional neurons) to pure otolith stimulation, as assessed by single unit recording from the vestibular nucleus in labyrinth-intact animals. These spatiotemporal features are also analyzed in association with other electrophysiological properties to evaluate their role in the central construction of a spatial frame of reference in the otolith system. Data derived from animals with elimination of inputs from one labyrinth then provide evidence that during vestibular stimulation signals arising from a single utricle are operative at the level of both the ipsilateral and contralateral vestibular nuclei. Hemilabyrinthectomy also revealed neural asymmetries in spontaneous activity, response dynamics and spatial coding behavior between neuronal subpopulations on the two sides and as a result suggested a segregation of otolith signals reaching the ipsilateral and contralateral vestibular nuclei. Recent studies have confirmed and extended previous observations that the recovery of resting activity within the vestibular nuclear complex during vestibular compensation is related to changes in both intrinsic membrane properties and capacities to respond to extracellular factors. The bilateral imbalance provides the basis for deranged spatial coding and motor deficits accompanying hemilabyrinthectomy. Taken together, these experimental findings indicate that in the normal state converging inputs from bilateral vestibular labyrinths are essential to spatiotemporal signal transformation at the central otolith neurons during low-frequency head movements.  相似文献   

13.
The auditory system consists of the ascending and descending (corticofugal) systems. The corticofugal system forms multiple feedback loops. Repetitive acoustic or auditory cortical electric stimulation activates the cortical neural net and the corticofugal system and evokes cortical plastic changes as well as subcortical plastic changes. These changes are short-term and are specific to the properties of the acoustic stimulus or electrically stimulated cortical neurons. These plastic changes are modulated by the neuromodulatory system. When the acoustic stimulus becomes behaviorally relevant to the animal through auditory fear conditioning or when the cortical electric stimulation is paired with an electric stimulation of the cholinergic basal forebrain, the cortical plastic changes become larger and long-term, whereas the subcortical changes stay short-term, although they also become larger. Acetylcholine plays an essential role in augmenting the plastic changes and in producing long-term cortical changes. The corticofugal system has multiple functions. One of the most important functions is the improvement and adjustment (reorganization) of subcortical auditory signal processing for cortical signal processing.  相似文献   

14.
The neural control system for generation of locomotion is an important system for analysis of neural mechanisms underlying complex motor acts. In these studies, a novel experimental model using neonatal rat brain stem and spinal cord in vitro was developed for investigation of the locomotor system in mammals. The in vitro brain stem and spinal cord system was shown to retain functional circuitry for locomotor command generation, motor pattern generation, and sensorimotor integration. This system was exploited to investigate neurochemical mechanisms involved in neurogenesis of locomotion. Evidence was obtained for peptidergic and gamma-amino-butyric acid-mediated mechanisms in brain-stem circuits generating locomotor commands. Cholinergic, dopaminergic, and excitatory amino acid-mediated mechanisms were shown to activate spinal cord circuits for locomotor pattern generation. Endogenous N-methyl-D-aspartic acid receptors in spinal networks were found to play a central role in the generation of locomotion. The chemically induced patterns of motor activity and rhythmic membrane potential oscillations of spinal motoneurons were characteristic of those during locomotion in other mammals in vivo. The in vitro brain stem and spinal cord model provides a versatile and powerful experimental system with potentially broad application for investigation of diverse aspects of the neurobiology of mammalian motor control systems.  相似文献   

15.
Humor modulates the mesolimbic reward centers   总被引:1,自引:0,他引:1  
Mobbs D  Greicius MD  Abdel-Azim E  Menon V  Reiss AL 《Neuron》2003,40(5):1041-1048
Humor plays an essential role in many facets of human life including psychological, social, and somatic functioning. Recently, neuroimaging has been applied to this critical human attribute, shedding light on the affective, cognitive, and motor networks involved in humor processing. To date, however, researchers have failed to demonstrate the subcortical correlates of the most fundamental feature of humor-reward. In an effort to elucidate the neurobiological substrate that subserves the reward components of humor, we undertook a high-field (3 Tesla) event-related functional MRI study. Here we demonstrate that humor modulates activity in several cortical regions, and we present new evidence that humor engages a network of subcortical regions including the nucleus accumbens, a key component of the mesolimbic dopaminergic reward system. Further, the degree of humor intensity was positively correlated with BOLD signal intensity in these regions. Together, these findings offer new insight into the neural basis of salutary aspects of humor.  相似文献   

16.
Zhang J  Li B  Yu L  He YC  Li HZ  Zhu JN  Wang JJ 《Neuron》2011,69(4):793-804
The absence of orexin results in narcolepsy-cataplexy. While the function of the central orexinergic system in sleep regulation has been well studied, the role of orexin in motor control is largely unknown. Here, we show that orexin-A acts via OX(1) and OX(2) receptors to directly depolarize neurons in the rat lateral vestibular nucleus (LVN), a subcortical motor center, and enhance their sensitivity. A dual ionic mechanism involving both Na+-Ca2+ exchangers and inward rectifier K+ channels underlies these effects. Furthermore, orexin-A regulates central vestibular-mediated posture, motor balance and negative geotaxis. Orexin is critical when an animal is facing a major motor challenge as opposed to during rest and general movements. Therefore, orexin participates not only in sleep and emotion (nonsomatic) but also in motor (somatic) regulation, suggesting that the central orexinergic system plays an important role in somatic-nonsomatic integration. These findings may account for why the absence of orexin results in narcolepsy-cataplexy.  相似文献   

17.
Obesity and cardiometabolic risk continue to be major public health concerns. A better understanding of the physiopathological mechanisms leading to obesity may help to identify novel therapeutic targets. The endocannabinoid system discovered in the early 1990s is believed to influence body weight regulation and cardiometabolic risk factors. This article aims to review the literature on the endocannabinoid system including the biological roles of its major components, namely, the cannabinoid receptors, their endogenous ligands the endocannabinoids and the ligand-metabolising enzymes. The review also discusses evidence that the endocannabinoid system constitutes a new physiological pathway occurring in the central nervous system and peripheral tissues that has a key role in the control of food intake and energy expenditure, insulin sensitivity, as well as glucose and lipid metabolism. Based on the important finding that there is a close association between obesity and the hyperactivity of the endocannabinoid system, interest in blocking stimulation of this pathway to aid weight loss and reduce cardiometabolic risk factor development has become an important area of research. Among the pharmacological strategies proposed, the antagonism of the cannabinoid receptors has been particularly investigated and several clinical trials have been conducted. One challenging pharmacological task will be to target the endocannabinoid system in a more selective, and hence, safe way. As the management of obesity also requires lifestyle modifications in terms of healthy eating and physical activity, the targeting of the endocannabinoid system may represent a novel approach for a multifactorial therapeutic strategy.  相似文献   

18.
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infection model for human multiple sclerosis (MS). Cannabinoids have been shown to exert beneficial effects on animal models of MS and evidence suggests that the endocannabinoid system plays a role in the tonic control of spasticity. In this study we show that OMDM1 [(R)-N-oleoyl-(1'-hydroxybenzyl)-2'-ethanolamine] and OMDM2 [(S)-N-oleoyl-(1'-hydroxybenzyl)-2'-ethanolamine], two selective inhibitors of the putative endocannabinoid transporter and hence of endocannabinoid inactivation, provide an effective therapy for Theiler murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Treatment of TMEV-infected mice with OMDM1 and OMDM2 enhanced anandamide levels in the spinal cord and ameliorated motor symptoms. This was associated with a down-regulation of inflammatory responses in the spinal cord. In addition we show that OMDM1 and OMDM2 down-regulate macrophage function by (i) decreasing the surface expression of major histocompatibility complex (MHC) class II molecules, (ii) inhibiting nitric oxide synthase-2 (NOS-2) expression and (iii) reducing the production of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and interleukin-12 (IL-12p40). Taken together, these results point to the manipulation of the endocannabinoid system as a possible strategy to develop future MS therapeutic drugs.  相似文献   

19.
The endocannabinoid system plays a critical role in the control of energy homeostasis, but the identity and localization of the endocannabinoid signal involved remain unknown. In the present study, we developed transgenic mice that overexpress in forebrain neurons the presynaptic hydrolase, monoacylglycerol lipase (MGL), which deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). MGL-overexpressing mice show a 50% decrease in forebrain 2-AG levels but no overt compensation in other endocannabinoid components. This biochemical abnormality is accompanied by a series of metabolic changes that include leanness, elevated energy cost of activity, and hypersensitivity to β(3)-adrenergic-stimulated thermogenesis, which is corrected by reinstating 2-AG activity at CB(1)-cannabinoid receptors. Additionally, the mutant mice are resistant to diet-induced obesity and express high levels of thermogenic proteins, such as uncoupling protein 1, in their brown adipose tissue. The results suggest that 2-AG signaling through CB(1) regulates the activity of forebrain neural circuits involved in the control of energy dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号