首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
我国多基因疾病的研究目前已实现零的突破。由国家人类基因组南方研究中心、上海市高血压研究所、复旦大学遗传学研究所等多家单位联合组成的课题组,近日成功地定位了一处高血压易感基因的精细位点。高血压是人类心脑血管疾病中危害最大的一种多基因疾病,目前世界各国的科学家都在竞相寻找引起高血压的易感基因。我国的科研人员通过对上海地区346个原发性高血压家系的1500多名成员的基因样本,进行先进的微卫星全基因扫描、分型和连锁分析,发现在人类2号染色体2q14-q23区域存在高血压的易感基因。这一研究的相关论文已发表在美国的《高…  相似文献   

2.
《生物磁学》2012,(2):I0002-I0003
近日,中山大学附属第三医院风湿免疫科专家通过与国内12家医院合作,完成了基于我国人群的全基因组强直性脊柱炎(简称AS)易感基因筛查研究。发现该疾病两个新的易感基因位点,同时确认了HLA-B27基因与强直性脊柱炎发病风险的相关性。该项成果已发布于国际顶级杂志《自然-遗传学》(Nature Genetics)。  相似文献   

3.
王立  徐颜美  程竹君  熊招平  邓立彬 《遗传》2014,36(9):857-863
心血管病已成为威胁我国人群健康的首要疾病,而胆固醇代谢紊乱是心血管病发生发展的重要危险因素之一。近年来高通量技术的推广和群体基因组学的发展极大地促进了复杂性状(或疾病)易感基因或突变的发现,为深入解析胆固醇代谢紊乱的遗传学病因提供了机会。文章整合传统遗传分析和近期GWAS筛查的结果,对胆固醇代谢紊乱的分子遗传研究进展进行了综述,结合通路富集分析揭示胆固醇代谢紊乱的功能背景,以期更好地理解胆固醇代谢紊乱致病的分子机制,为其防治提供线索。  相似文献   

4.
原发性高血压全基因组关联研究进展   总被引:2,自引:0,他引:2  
Xu RW  Yan WL 《遗传》2012,34(7):793-809
原发性高血压是一种由遗传与环境因素共同导致的复杂疾病,具有高度的遗传异质性。自2007年首个高血压全基因组关联研究(Genome-wide association studies,GWAS)报道以来,许多GWAS相继开展。文章首先对2007年1月至2011年9月期间报道的24篇血压/高血压易感基因的GWAS按人种与染色体位置对其结果进行汇总,经统计位点rs17249754、rs1378942和rs11191548报道频数最多。其次介绍了GWAS方法学的研究进展,包括选择高质量的数量表型和选择多阶段研究设计来增加研究发现阳性关联的机会。统计分析方面,除强调了已经报道过的多重比较和重复(验证)研究等问题外,文章还介绍了通过Meta分析对GWAS数据进行深度发掘,并应用基因型填补法对缺失数据进行填补可以提高全基因组遗传标记的覆盖率的方法。尽管GWAS发现了许多我们未知的基因与疾病表型的关联,为了解高血压的发病机制提供了更多线索,但是目前GWAS发现的血压/高血压相关变异多为对人群血压的影响极其微弱的常见变异。因此今后的研究中可加强深度功能学研究对易感基因精细定位和外显子组测序技术的应用,结合GWAS的成果进行生物信息学通路分析和表观遗传学机制研究等,逐步揭示高血压的遗传机制。  相似文献   

5.
《生物磁学》2011,(5):I0003-I0004
最新出版的《自然-遗传学》杂志集中刊登了三篇独立研究的论文,分别在欧洲、南亚和中国汉族人群中。发现了冠心病的易感基因位点。  相似文献   

6.
《生物磁学》2010,(13):I0001-I0001
《自然-遗传学》(Nature Genetics)5月30日发表了由中国科学院院士、中山大学肿瘤防治中心曾益新带领的团队。与来自国内和新加坡等国科学家合作完成的一项研究。研究人员在世界上首次进行了基于大规模人群和全基因组水平的散发性鼻咽癌易感基因筛查研究。发现了3个新的易感基因位点,同时进一步确认了人类白细胞抗原(HLA)基因与鼻咽癌发病风险的相关性。  相似文献   

7.
精神分裂症是一类遗传倾向性较高的多基因疾病。近年来,随着遗传学和分子生物学为主的多学科研究技术的快速发展,不断有新的易感基因报道;一些重要易感基因的生物学功能及其在该疾病发病机制中的作用研究也取得了一定进展。  相似文献   

8.
冠心病易感基因的筛选   总被引:4,自引:0,他引:4  
作为一种多基因疾病 ,冠心病是由遗传和环境因素共同作用的结果 ,在许多国家是主要的死因之一。由于目前冠心病的发病机制尚不十分清楚 ,阻碍了其易感基因的定位分离研究。冠心病遗传因素的确定 ,显然将有助于其易感基因定位分离研究。迄今除发现了个别的相关基因外 ,绝大部分的遗传易感性相关基因尚未被发现 ,其研究仍然存在许多问题。为此 ,本文就其易感基因可能的研究策略和方法作一综述。这些方法同样也适用于诸如中风、外周血管阻塞、高血压、心力衰竭等心血管疾病以及其它多基因疾病  相似文献   

9.
2015年中国医学遗传学稳步发展,众多具有原创性的研究论文在国际顶级杂志上发表。中国科学家在医学遗传学的诸多领域,如罕见疾病的致病基因、复杂疾病的易感基因、癌症的体细胞突变、遗传学新方法新技术、疾病相关微小RNA(microRNA,miRNA)、疾病相关长链非编码RNA(Long non-coding RNA,lncRNA)、疾病相关竞争性内源RNA(Competing endogenous RNA,ceRNA)、疾病相关可变剪接和分子进化等研究领域均取得了突破性的进展。中国科学家在医学遗传学研究中逐步从常见变异延伸到罕见变异,从遗传学现象的描述到功能机制的确证,从单组学分析扩展至多组学数据整合,从基础研究走向临床应用。同时,中国科学家的研究成果引起了国际同行的高度关注。本文概括性综述了2015年中国科学家在医学遗传学领域取得的若干重要研究进展,旨在追踪当前中国医学遗传学领域发展的前沿,与国内读者分享我国科学家在该领域取得的重要成果以及研究思路。  相似文献   

10.
脊椎动物线粒体DNA的进化遗传学   总被引:22,自引:1,他引:21  
近年来,在分子进化遗传学研究中又产生出一个新的生长点,这就是线粒体DNA(mtDNA)的进化遗传学研究。因为mtDNA结构简单,与拥有4×10~8到4×10~(11)个碱基对的多细胞动物的核基因组相比,比其最小者小25000倍;在不同物种间,mtDNA上的基因成分相对稳定,很少受到序列重排的影响;另一方面,mtDNA又具有广泛的种内和种间多态性,且为母性遗传,在亲缘关系相近的物种间其进化速度比核基因快,因而它为从分子水平上研究种群遗传学和进化遗传学提供了理想的研究对象。  相似文献   

11.
Common complex polygenic diseases as autoimmune diseases have not been completely understood on a molecular level. While many genes are known to be involved in the pathways responsible for the phenotype, explicit causes for the susceptibility of the disease remain to be elucidated. The susceptibility to disease is thought to be the result of genetic epistatic interactions between common polymorphic genes. This polymorphism is mostly caused by single nucleotide polymorphisms (SNPs). Human subpopulations are known to differ in the susceptibility to the diseases and generally in the distribution of single nucleotide polymorphisms. The here presented approach retrieves SNPs with the most divergent frequencies for selected human subpopulations to help defining properties for the experimental verification of SNPs within defined regions. A web-accessible program implementing this approach was evaluated for multiple sclerosis (MS), a common human polygenic disease. A link to a summary of data from "The SNP Consortium" (TSC) with sex-dependencies of SNPs is available. Associations of SNPs to genes, genetic markers and chromosomal loci are retrieved from the Ensembl project. This tool is recommended to be used in conjunction with microarray analyses or marker association studies that link genes or chromosomal loci to particular diseases.  相似文献   

12.
Suzuki A  Kochi Y  Okada Y  Yamamoto K 《FEBS letters》2011,585(23):3627-3632
Autoimmune diseases are caused by multiple genes and environmental effects. In addition, genetic contributions and the number of associated genes differ among different diseases and ethnic populations. Genome-wide association studies (GWAS) on rheumatoid arthritis (RA) and multiple sclerosis (MS) show that these diseases share many genetic factors. Recently, in addition to the major histocompatibility complex (MHC) gene, other genetic loci have been found to be associated with the risk for autoimmune diseases. This review focuses on the search for genetic variants that influence the susceptibility to RA and MS as typical autoimmune diseases and discusses the future of GWAS.  相似文献   

13.
Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case-control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference.  相似文献   

14.
Cancer is one of the most catastrophic human genetic diseases. Experimental animal cancer models are essential for gaining insights into the complex interactions of different cells and genes in tumor initiation, promotion, and progression. Mouse models have been extensively used to analyze the genetic basis of cancer susceptibility. They have led to the identification of multiple loci that confer, either alone or in specific combinations, an increased susceptibility to cancer, some of which have direct translatability to human cancer. Additionally, wild-derived inbred mouse strains are an advantageous reservoir of novel genetic polymorphisms of cancer susceptibility genes, because of the evolutionary divergence between wild and classical inbred strains. Here, we review mapped Stmm (skin tumor modifier of MSM) loci using a Japanese wild-derived inbred mouse strain, MSM/Ms, and describe recent advances in our knowledge of the genes responsible for Stmm loci in the 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) two-stage skin carcinogenesis model.  相似文献   

15.
The molecular population genetics of regulatory genes   总被引:19,自引:0,他引:19  
Regulatory loci, which may encode both trans acting proteins as well as cis acting promoter regions, are crucial components of an organism's genetic architecture. Although evolution of these regulatory loci is believed to underlie the evolution of numerous adaptive traits, there is little information on natural variation of these genes. Recent molecular population genetic studies, however, have provided insights into the extent of natural variation at regulatory genes, the evolutionary forces that shape them and the phenotypic effects of molecular regulatory variants. These recent analyses suggest that it may be possible to study the molecular evolutionary ecology of regulatory diversification by examining both the extent and patterning of regulatory gene diversity, the phenotypic effects of molecular variation at these loci and their ecological consequences.  相似文献   

16.
Recently, genome-wide association studies (GWAS) have led to the discovery of hundreds of susceptibility loci that are associated with complex metabolic diseases, such as type 2 diabetes and hyperthyroidism. The majority of the susceptibility loci are common across different races or populations; while some of them show ethnicity-specific distribution. Though the abundant novel susceptibility loci identified by GWAS have provided insight into biology through the discovery of new genes or pathways that were previously not known, most of them are in introns and the associated variants cumulatively explain only a small fraction of total heritability. Here we reviewed the genetic studies on the metabolic disorders, mainly type 2 diabetes and hyperthyroidism, including candidate genes-based findings and more recently the GWAS discovery; we also included the clinical relevance of these novel loci and the gene-environmental interactions. Finally, we discussed the future direction about the genetic study on the exploring of the pathogenesis of the metabolic diseases.  相似文献   

17.
Rheumatoid arthritis is a chronic and systemic autoimmune disease characterized by inflammation and destruction of the synovial joints. It affects approximately 0.5% of the Latin-American population and is three times more common in women than in men. Evidence of familial aggregation (lambdas=2-17) was the first indication of a genetic susceptibility to disease. As in other autoimmune diseases, it has a complex genetic basis. Results from whole-genome scans indicate that the HLA region contains a significant and consistent set of linked loci. However, HLA accounts for only one-third of the genetic susceptibility of disease, indicating that non-HLA genes are also involved in the disease susceptibility. In Latin-America, association with HLA-DRB1*0404 and TNF -308A alleles has been uniformly established; however, many other candidate genes remain to be studied. The identification of genetic factors conferring susceptibility to rheumatoid arthritis will contribute to the knowledge of the pathogenic mechanisms, ability to predict its occurrence, the development of diagnostic tools, prognosis, and treatment. The genetic epidemiology of rheumatoid arthritis is herein reviewed; a set of recommendations is provided for the design, analysis and interpretation of genetic association studies in the context of Latin-American populations.  相似文献   

18.
19.
PURPOSE OF REVIEW: Limited to 2003-2004 publications, this review focuses on 'big picture' concepts learned from rat genetic studies of cardiovascular disease. RECENT DEVELOPMENTS: Analysis reveals insights into pathogenic paradigms, as well as experimental perspectives into rat-based systems of analyses of complex cardiovascular disease. Key concepts are forwarded. Multiple susceptibility genes underlie several quantitative trait loci for blood pressure suggesting a 'quantitative trait loci cluster' concept; hypertension end-organ disease quantitative trait loci are distinct from blood pressure quantitative trait loci indicating differential susceptibility paradigms for hypertension and each complication (stroke, renal disease, cardiac hypertrophy); distinct blood pressure quantitative trait loci are found in males and females indicating gender-specific susceptibility; and genetic subtypes comprise polygenic hypertension in rat models suggesting a genetic basis for clinical heterogeneity of human essential hypertension. Gender specific genetic susceptibility plays a key role in coronary artery disease susceptibility; multiple distinct quantitative trait loci underlie hyperlipidemia and type-2 diabetes, indicating multiple susceptibilities in risk factors for cardiovascular disease. Studies in transgenic inbred rat-strain models demonstrate value for serial, complex, cardiovascular pathophysiological analyses within a genetic context. SUMMARY: Cognizant of the limitations of animal model studies, observations from rat genetic studies provide insight into respective modeled human cardiovascular diseases and risk factor susceptibility, as well as systematically dissect the multifaceted complexities apparent in human complex cardiovascular disease. Given the recapitulation of many features of human cardiovascular disease, the value of rat model-based genetic studies for complex cardiovascular disease is unequivocal, thus mandating the expansion of resources for maximization of rat-based genetic studies.  相似文献   

20.
Currently, there is much debate on the genetic architecture of quantitative traits in wild populations. Is trait variation influenced by many genes of small effect or by a few genes of major effect? Where is additive genetic variation located in the genome? Do the same loci cause similar phenotypic variation in different populations? Great tits (Parus major) have been studied extensively in long‐term studies across Europe and consequently are considered an ecological ‘model organism’. Recently, genomic resources have been developed for the great tit, including a custom SNP chip and genetic linkage map. In this study, we used a suite of approaches to investigate the genetic architecture of eight quantitative traits in two long‐term study populations of great tits—one in the Netherlands and the other in the United Kingdom. Overall, we found little evidence for the presence of genes of large effects in either population. Instead, traits appeared to be influenced by many genes of small effect, with conservative estimates of the number of contributing loci ranging from 31 to 310. Despite concordance between population‐specific heritabilities, we found no evidence for the presence of loci having similar effects in both populations. While population‐specific genetic architectures are possible, an undetected shared architecture cannot be rejected because of limited power to map loci of small and moderate effects. This study is one of few examples of genetic architecture analysis in replicated wild populations and highlights some of the challenges and limitations researchers will face when attempting similar molecular quantitative genetic studies in free‐living populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号