首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Howard T. Odum 《Oecologia》1995,103(4):518-522
Tadpoles in small, ephemeral pools whose duration and food content are unpredictable can potentially encounter substantial variation in diet composition and availability. We compared the effects of 10 days of food deprivation occurring early, midway and late in ontogeny on the metamorphic size and bioenergetic properties of Hyla chrysoscelis tadpoles. Tadpoles fed throughout ontogeny were controls. Metamorphs from tadpoles starved early and midway in ontogeny had the same snout-vent length and dry mass as controls, but the time to metamorphosis was extended by 8 and 19% respectively. Metamorphs of tadpoles starved late in development attained 85% of the length and 55% of the mass of controls, metamorphosed at the same time as controls, and suffered mortality 15 times greater than other treatments, perhaps because they were near the absolute minimum necessary level of energy reserves. There were no significant differences in percent organic matter, percent tissue water, condition index, and protein or glycogen concentrations between any experimental and control treatments. If food deprivation occurred early in development, the tadpoles caught up to the size of controls, but an extended developmental time would increase the risk of predation or habitat loss. If food reductions occur late in development, perhaps magnified by pond desiccation, tadpoles are stimulated to metamorphose at the same time as controls but at a smaller size. The bioenergetic composition of tadpoles at metamorphosis is unaffected by time of food deprivation.  相似文献   

2.
The red-eyed treefrog, Agalychnis callidryas , lays eggs on leaves overhanging ponds. Tadpoles hatch and enter the water at different ages, and late-hatched tadpoles survive aquatic predators better than do early-hatched tadpoles. Here I assess developmental consequences of hatching age through: (1) a morphological study of embryos and tadpoles through the plastic hatching period; (2) a behavioural assay for an effect of hatching age on feeding; and (3) a field experiment testing the effect of hatching age on growth to metamorphosis. Substantial development of feeding, digestive, respiratory and locomotor structures occurs in embryos over the plastic hatching period. Hatchling morphology thus varies with age, with consequences for behaviour and predation risk. Hatched tadpoles develop faster than embryos, and early-hatched tadpoles feed before late-hatched tadpoles. After all tadpoles have hatched, the effect of hatching age on size decreases. I found no evidence for an effect of hatching age on size at metamorphosis and only weak evidence for an effect on larval period. Hatching age affects the sequence of developmental change: early-hatched tadpoles lose external gills while otherwise more developed embryos maintain them. Plasticity in external gill resorption may be adaptive given differences in the respiratory environments of embryos and tadpoles. Early-hatched tadpoles also diverge from embryos in shape, growing relatively smaller tails. The study of functional morphology and developmental plasticity will contribute to understanding hatching as an ontogenetic niche shift.  相似文献   

3.
In ecological models, the timing of amphibian metamorphosis is dependent upon rate of larval growth, e.g., tadpoles that experience a decrease in growth rate can initiate metamorphosis early. Recent authors have suggested that this plasticity may be lost at some point during the larval period. We tested this hypothesis by exposing groups of tadpoles of the gray treefrog, Hyla versicolor, to different growth schedules. In endocrine models, metamorphosis is dependent on thyroxine levels and thyroxine is antagonized by prolactin (amphibian larval growth hormone), consistent with the idea that a rapidly growing tadpole can delay metamorphosis. Thus, we also manipulated the rate of development by supplementing or maintaining natural thyroxine levels for half of the tadpoles in each growth treatment. All tadpoles that received thyroxine supplements metamorphosed at the same time regardless of growth history. They also metamorphosed earlier than tadpoles not treated with thyroxine. Tadpoles not given thyroxine supplements metamorphosed at different times: those growing rapidly during day 15-34 metamorphosed earlier than tadpoles growing slowly. Growth rate before day 15 and after day 34 had no effect on metamorphic timing. The difference in larval period between these rapidly growing tadpoles and their sisters given thyroxine treatments was less than the same comparison for tadpoles that grew slowly during the same period. This apparent prolactin/thyroxine antagonism did not exist after day 34. These results are consistent with the hypothesis of a loss of plasticity in metamorphic timing.  相似文献   

4.
Brain development shows high plasticity in response to environmental heterogeneity. However, it is unknown how environmental variation during development may affect brain architecture across life history switch points in species with complex life cycles. Previously, we showed that predation and competition affect brain development in common frog (Rana temporaria) tadpoles. Here, we studied whether larval environment had carry-over effects in brains of metamorphs. Tadpoles grown at high density had large optic tecta at metamorphosis, whereas tadpoles grown under predation risk had small diencephala. We found that larval density had a carry-over effect on froglet optic tectum size, whereas the effect of larval predation risk had vanished by metamorphosis. We discuss the possibility that the observed changes may be adaptive, reflecting the needs of an organism in given environmental and developmental contexts.  相似文献   

5.
Summary Hybridogenetic species possess a hybrid genome: half is clonally inherited (hemiclonal reproduction) while the other half is obtained each generation by sexual reproduction with a parental species. We addressed the question of whether different hemiclones of the hybridogenetic water frogRana esculenta are locally adapted for genetic compatibility with their sexual parental hostRana lessonae. We artificially crossedR. esculenta females of three hemiclones (GUT1, GUT2 and GUT3) from a pond near Gütighausen, Switzerland and one hemiclone (HEL1) from near Hellberg, Switzerland each toR. lessonae males from both populations. We also created primary hybrids by crossing the sameR. lessonae males from both populations toR. ridibunda females from Pozna, Poland (POZ). Tadpoles were then reared in the laboratory at two food levels to assess their performance related to early larval growth rate, body size at metamorphosis and length of the larval period. Tadpoles from hemiclones GUT1, GUT3 and POZ had higher growth rates than those from hemiclones GUT2 and HEL1 at the low food level, but at the high food level all growth rates were higher and diverged significantly between hemiclones GUT2 and HEL1. Tadpoles from the intrapopulational crosses GUT2 × GUT and HEL1 × HEL were larger at metamorphosis than those from the interpopulational crosses GUT2 × HEL and HEL1 × GUT. A high food level increased the size at metamorphosis in all tadpoles. A high food level also decreased the days to metamorphosis and tadpoles from GUT1, GUT3 and POZ had the shortest larval period whereas those from GUT2 and HEL1 had the longest. These results indicate that the differential compatibility of clonal genomes may play an important role in hybridogenetic species successfully using locally adapted sexual genomes of parental species and that interclonal selection is likely important in determining the distribution of hemiclones among local populations.  相似文献   

6.
M. L. Crump 《Oecologia》1989,78(4):486-489
Summary Bufo periglenes, a toad endemic to montane Costa Rica, produces an unusually small clutch of large, yolk-rich eggs. The toads breed in small ephemeral pools that are unpredictable in duration and may be low in food availability. Two congeners, Bufo coniferus and Bufo marinus, occur nearby, breed in more permanent bodies of water that offer more food, and exhibit the typical toad pattern of large clutches of small eggs. Tadpoles of all three species feed on detritus and suspended organic material. By raising tadpoles of the three species individually with and without food I investigated the relationship between egg size (yolk provision) and tadpole survival. All of the unfed B. coniferus and B. marinus tadpoles grew little and died soon after developing to the hindlimb bud stage. On the other hand, all of the unfed B. periglenes tadpoles metamorphosed successfully, demonstrating that the tadpoles are facultatively non-feeding; developmental time from hatching to metamorphosis was significantly shorter for unfed tadpoles than for fed tadpoles, but fed individuals were significantly larger at transformation. Faster developmental rate and larger body size at transformation are both advantageous for frogs and toads, but cannot be attained simultaneously. Large egg size may afford flexibility in unpredictable environments. In pools where food is available, tadpoles presumably eat, take longer to metamorphose, but are larger at transformation than tadpoles developing in nutrient-poor sites. Small body size at transformation (a consequence of not eating) has potential costs, but the large quantity of yolk provided by a large egg enhances the probability of metamorphosis in food-limited environments.  相似文献   

7.
Björn Lardner 《Oecologia》1998,117(1-2):119-126
Tadpoles of Rana arvalis originating from seven island populations were tested for responses to non-lethal predator presence. In general, tadpole growth was reduced and the relative tail depth was increased at predator presence. There was no effect of predator presence on the predicted size at metamorphosis. The differentiation rate, translating as length of the larval period, was lower at predator presence, but this seems to be merely an effect of the reduced growth. Although populations differed with respect to growth, relative tail length, relative tail depth, differentiation rate and predicted size at metamorphosis, no obvious differences were found in their responses to predator presence. Data on predator occurrences in the source ponds show that tadpoles originating from ponds with a high predation pressure have a higher differentiation rate, i.e. they will metamorphose at an earlier date than those from “safe” ponds (if raised under the same conditions). Moreover, they are also predicted to metamorphose at a smaller size, which is in accordance with theoretical models. Despite the fact that populations differed in growth, no correlation was found between growth and predation risk in the source ponds. Received: 16 March 1998 / Accepted: 18 July 1998  相似文献   

8.
Temporal variation in predation risk may be an important determinant of prey antipredator behaviours. According to the risk allocation hypothesis, the strongest antipredator behaviours are expected when periods of high risk are short and infrequent. We tested this prediction in a laboratory experiment where common frog Rana temporaria tadpoles were raised form early larval stages until metamorphosis. We manipulated the time a predatory Aeshna dragonfly larva was present and recorded behavioural responses (activity) of the tadpoles at three different time points during the tadpoles' development. We also investigated how tadpole shape, size and age at metamorphosis were affected by temporal variation in predation risk. We found that during the two first time points activity was always lowest in the constant high-risk situation. However, antipredator response in the two treatments with brief high-risk situation increased as tadpoles developed, and by the third time point, when the tadpoles were close to metamorphosis, activity was as low as in the constant high-risk situation. Exposure to chemical cues of a predation event tended to reduce activity during the first time period, but caused no response later on. Induced morphological changes (deeper tail and shorter relative body length) were graded the response being stronger as the time spent in the proximity of predator increased. Tadpoles in the brief risk and chemical cue treatments showed intermediate responses. Modification of life history was only found in the constant high-risk treatment in which tadpoles had longer larval period and larger metamorphic size. Our results indicate that both behavioural and morphological defences were sensitive to temporal variation in predation risk, but behaviour did not respond in the manner predicted by the risk allocation model. We discuss the roles of concentration of predator chemical cues and prey stage-dependency in determining these responses.  相似文献   

9.
Effects of different combinations of stressors (viz. temperature, food level) on growth, developmental and survival rates of Rana temporaria tadpoles from two geographically widely (∼ 1500 km) separated populations were studied in a common garden experiment. In both populations, low temperature and low food level lead to towered growth rates and delayed metamorphosis, whereas high temperature and high food level had the opposite effect. Tadpoles from north metamorphosed earlier and exhibited higher growth rates than tadpoles from south, suggesting local adaptation to shorter growth period and cooler ambient temperature in north. Size at metamorphosis did not differ between the two populations, but when the differences in metamorphic age were accounted for, then the tadpoles from north were larger than those from south. These results suggest considerable adaptive genetic differentiation in growth rates, size and timing of metamorphosis between northern and southern R. temporaria populations. In both populations, high food levels tended to reduce tadpole survival rates and there was a negative correlation between growth and survival rates across different treatments in both populations. In general, tadpoles from north experienced high mortality rates in high food level - low temperature treatments, whereas southern tadpoles experienced high mortality in high food level-high temperature treatments. This suggest that there may be genetic differences among different populations as how they would be influenced by high nutrient loads, such as brought along for example by fertilization of forest or agricultural soils.  相似文献   

10.
Effects of density and kinship on growth and metamorphosis in tadpoles ofRana temporalis were studied in a 2×4 factorial experiment. Fifteen egg masses were collected from streams in the Western Ghat region of south India. The tadpoles were raised as siblings or in groups of non-siblings at increasing density levels, viz. 15, 30, 60 and 120/5 l water. With an increase in density level from 15 to 120 tadpoles/5 l water, duration of the larval stage increased and fewer individuals metamorphosed irrespective of whether they belonged to sibling or non-sibling groups by day 100 when the experiments were terminated. The size of individuals at metamorphosis declined significantly with increase in the density of rearing. However, at higher densities (60 and 120 tadpoles/5 l water) sibling group tadpoles performed better compared to mixed groups and took significantly less time to metamorphose. Also, more individuals of sibling groups metamorphosed compared to non-sibling groups at a given density. Mixed rearing retarded growth rates, prolonged larval duration resulting in a wider spectrum of size classes, and lowered the number of individuals recruited to terrestrial life. The study shows that interference competition occurred more strongly in cohorts of mixed relatedness than in sibling groups.  相似文献   

11.
Anuran larvae exhibit high levels of phenotypic plasticity in growth and developmental rates in response to variation in temperature and food availability. We tested the hypothesis that alteration of developmental pathways during the aquatic larval stage should affect the postmetamorphic performance of the Iberian painted frog (Discoglossus galganoi). We exposed tadpoles to different temperatures and food types (animal- vs. plant-based diets) to induce variation in the length of the larval period and body size at metamorphosis. In this species, larval period varied with temperature but was unaffected by diet composition. In contrast, size at metamorphosis was shaped by the interaction between food quality and temperature; tadpoles fed on an animal-based diet became bulkier metamorphs than those fed on plant-based food at high (22°C) but not at low (12°C) temperature. Body condition of newly metamorphosed frogs was unrelated to the temperature or food type experienced during the premetamorphic stage. Frogs maintained at high temperature during the larval period showed reduced jumping ability, especially when fed on the plant-based diet. However, when considering size-independent jumping ability, cold-reared individuals exhibited the lowest performance, and herbivores reared at 17°C the highest. Cold-reared (12°C) frogs accumulated larger amounts of energy reserves than individuals raised at 17°C or 22°C. This was still the case after correction for differences in body mass, thus indicating some size-independent effect of developmental temperature. Despite the higher lipid content of the carnivorous diet, the differences in energy reserves between herbivores and carnivores were relatively weak and associated with differences in body size. These results suggest that the consequences of environmental variation in the larval habitat can extend to the terrestrial phase and influence juvenile growth and survival.  相似文献   

12.
实验室条件下,通过活动性水平,变态时的体重、增长率和完成变态所需时间考察同水塘分布的中华蟾蜍(Bufo gargarizans)和高原林蛙蝌蚪(Rana kukunoris)的竞争策略。实验按照2×3因子设计,即:食物资源2个水平(高、低),组合方式3个水平(10只中华蟾蜍蝌蚪,记为B组;5只中华蟾蜍蝌蚪和5只高原林蛙蝌蚪,记为BR组;10只高原林蛙蝌蚪,记为R组)。中华蟾蜍蝌蚪的活动性在食物水平低时显著低于食物水平高时,而高原林蛙蝌蚪的活动性在不同食物水平下无显著差异;食物水平低时,混合组的高原林蛙蝌蚪变态时体重和体重增长率都显著高于R组,而混合组中华蟾蜍蝌蚪与B组相比无显著差异;在不同处理组中,食物水平低时混合组中华蟾蜍蝌蚪幼体期最短。这些结果表明:中华蟾蜍蝌蚪在不同食物资源条件下所选择的生存策略可能不同,即食物资源充足时,增加活动性获取更多食物;食物资源有限时,降低活动性且提前完成变态;与中华蟾蜍蝌蚪相比,在食物资源有限时高原林蛙蝌蚪获取食物能力更强。  相似文献   

13.
Tadpoles of the microhylid frog Phrynomantis microps form swarms near the water surface of savannah ponds during the day. Observations of tadpole distribution at night showed that these aggregations disappear and that tadpoles instead swim in a random distribution near the water surface. The clarity of pond water had significant effects on the distribution of tadpoles during the day. The size of aggregations, and the densities of tadpoles within them, both increased with increasing water clarity. Since tadpoles of this species are known to aggregate in response to visually hunting aquatic predators, these results suggest that tadpoles respond to high water clarity as an indicator of increased predation risk. This supports the hypothesis that, under conditions of increasing predation risk, animals should form larger and more dense groups up to a critical group size. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

14.
Phenotypic plasticity can improve fitness in unstable environments and can be expressed in many traits, such as life history attributes, growth and behavioural features. Microhabitat choice can have important consequences for development and survival of aquatic organisms and is expected to vary in response to stimuli, such as predation risk, food availability and temperature. At seasonal sites, microhabitat availability and associated benefits may change from season to season, which might lead to altered patterns of microhabitat use by tadpoles. We investigated this hypothesis in 17 streams from two localities in south‐eastern Brazil. We tested whether water level drops significantly during the dry season, whether lower water level results in altered microhabitat availability and whether predation risk changes between seasons, based on predator density. We then tested whether tadpoles change their pattern of microhabitat use, their spatial niche breadth (given by diversity of used microhabitats) and spatial niche overlap (in the case of co‐occurring species). We were able to include in our analyses tadpoles of four species of Hylidae, that occurred throughout both seasons. Stream depth decreased in the dry season, but microhabitat availability remained relatively stable in many streams, and predator density did not change significantly. Tadpoles of three out of the four species studied were more abundant during the dry season, which may be an adaptation to adjust time of metamorphosis to the rainy season. Tadpoles changed their patterns of microhabitat use between seasons, although the potential causing factors investigated did not seem to be responsible. Tadpole plasticity in microhabitat use may indicate the existence of selective pressures that vary through time and space and are still not well understood.  相似文献   

15.
A. Hamer  S. Lane  M. Mahony 《Oecologia》2002,132(3):445-452
The introduction of fish has decimated many amphibian populations through increased predation, primarily on their larvae. Some amphibian species now occupy marginal habitats as a response to the presence of introduced fish predators. Such habitats may include ephemeral water bodies where fish do not usually occur, although breeding in these suboptimal environments may incur some cost to a species if its larvae are not adapted to develop under these conditions. We investigated this scenario of amphibian decline using the endangered green and golden bell frog (Litoria aurea) and the introduced mosquitofish (Gambusia holbrooki) in a factorial experiment to determine the responses of tadpoles to declining water levels and the introduced predator. Tadpoles metamorphosed asynchronously but did not accelerate development in declining water or when housed with mosquitofish. Mass at metamorphosis was 30% less in declining water. Mass increased with time to metamorphosis in constant water-level treatments, but decreased in declining water. Tadpoles did not respond to mosquitofish and were therefore assumed to be naive to this predator. These results suggest that ephemeral habitats may be suboptimal for breeding, and tadpoles appear better suited to develop in permanent water bodies free of introduced fish. Intra-clutch variability in larval development (i.e. bet-hedging) may allow L. aurea to cope with unpredictable pond duration, whereby even permanent water bodies may occasionally dry out. The responses observed in L. aurea suggest that introduced fish may have reduced the suitability of permanent water bodies as breeding sites for other pond-breeding amphibian species. The use of less favourable ephemeral habitats as breeding sites may be responsible for some of the declines reported in amphibians since the 1970s.  相似文献   

16.
Antipredator responses often involve changes in several phenotypic traits and these changes interactively influence fitness. However, gaining insight into how the overall fitness effect of the overall response comes about is notoriously difficult. One promising avenue is to manipulate a single defensive trait and observe how that modifies fitness as well as the expression of other inducible responses. In chemically‐defended animals, toxins are likely to be costly to produce but it is still unknown how their depletion influences other characteristics. In the present study, we artificially depleted bufadienolide toxin stores in common toad (Bufo bufo) tadpoles, and assessed the effect of this with respect to the interaction with predator presence and limited food availability. We found that toxin depletion in tadpoles did not significantly affect any of the measured life‐history traits. Tadpoles in the predator treatment exhibited an elevated development rate, although this was only apparent when food availability was limited. Also, body mass at metamorphosis was lower in tadpoles exposed to chemical cues indicating a predation threat and when food availability was limited. These results provide evidence that, in larval common toads, the expression of inducible defences may incur fitness costs, whereas chemical defences are either expressed constitutively or, if inducible, elevated toxin production has negligible costs.  相似文献   

17.
Kinship and density are believed to affect important ecological processes such as intraspecific competition, predation, growth, development, cannibalism, habitat selection and mate choice, In this work, we used Chinese tiger frog Hoplobatrachus chinensis tadpoles as an experimental model to investigate the effects of kinship and density on growth and development of this species over a 73 day period. The results showed that density can affect the growth and developmental traits (survival rate, larval period, size at the limb bud protrusion/metamorphic climax and body mass at different life stages) of H. chinensis tadpoles, while kinship does not. Tadpoles took longer to develop and potential metamorphosis was greater in high density groups of both sibling and non-siblings. The interaction of kinship and density did not significantly influenced growth traits of H. chinensis tadpoles during the experimental period. For coefficient variations of each growth trait, no differences were detected between sibling and non-sibling groups. These findings provide valuable information on the basic ecology of H. chinensis which will be helpful in future studies of other anuran species.  相似文献   

18.
We evaluated differences in larval habitats and life history of three species of spadefoot toads, then compared their life histories in a common garden study. Our field work defined the selective regime encountered by each species. Our Great Basin spadefoot (Spea intermontana) bred asynchronously in permanent streams and springs where there was no risk of larval mortality due to drying. The water chemistry remained fairly stable throughout the larval period. The western spadefoot toad, Sp. hammondii, bred fairly synchronously following heavy spring rains in temporary pools that remained filled an average of 81 d. Fifteen % of the breeding pools dried completely on or before the day the first larvae metamorphosed. The desert spadefoot toad, Scaphiopus couchii, bred synchronously after heavy summer showers in very short duration pools; 62% of the breeding pools dried completely on or before the day the first larvae metamorphosed. The concentration of ammonium nitrogen and CaCO3 increased markedly as the Sp. hammondii and S. couchii pools dried. S. couchii attained metamorphosis at a much earlier age and smaller size than the other two species. S. couchii also showed little variation in the age at metamorphosis but considerable variation in the size at metamorphosis, while the other two species varied in both age and size. The results identify some variables that could serve as cues of pool drying and demonstrate an association between breeding pool duration, breeding synchrony, development rate, and larval development. Our laboratory study yields information about the genetic basis of the differences in development and controlled comparisons of phenotypic plasticity. We manipulated food supply to study the plastic response of age and size at metamorphosis and hence construct the reaction norm for these variables as a function of growth rate. The growth rates ranged from below to above those observed in natural populations. As in the field, in the lab S. couchii attained metamorphosis at an earlier age and smaller size than the other two species. All three species had a similarly shaped reaction norm for size(y‐axis) and age (x‐axis) at metamorphosis, which was a concave upward curve. A consequence of this shape is that age at metamorphosis changes more readily at low levels of food availability and size at metamorphosis changes more readily at high levels of food availability. If we restrict our observations to just those growth rates that are seen in nature, then S. couchii has almost no variation in the age at metamorphosis but considerable variation in size at metamorphosis, while the other two species vary in both age and size at metamorphosis. All three species increased in size at metamorphosis with increased food levels. Our comparative reaction norm approach thus demonstrates that S. couchii has adapted to ephemeral environments by shifting its growth rate reaction norm so that age at metamorphosis is uniformly fast and is not associated with growth rate. The realized variation is concentrated in size rather than age at metamorphosis.  相似文献   

19.
Fast‐growing genotypes living in time‐constrained environments are often more prone to predation, suggesting that growth‐predation risk trade‐offs are important factors maintaining variation in growth along climatic gradients. However, the mechanisms underlying how fast growth increases predation‐mediated mortality are not well understood. Here, we investigated if slow‐growing, low‐latitude individuals have faster escape swimming speed than fast‐growing high‐latitude individuals using common frog (Rana temporaria) tadpoles from eight populations collected along a 1500 km latitudinal gradient. We measured escape speed in terms of burst and endurance speeds in tadpoles raised in the laboratory at two food levels and in the presence and absence of a predator (Aeshna dragonfly larvae). We did not find any latitudinal trend in escape speed performance. In low food treatments, burst speed was higher in tadpoles reared with predators but did not differ between high‐food treatments. Endurance speed, on the contrary, was lower in high‐food tadpoles reared with predators and did not differ between treatments at low food levels. Tadpoles reared with predators showed inducible morphology (increased relative body size and tail depth), which had positive effects on speed endurance at low but not at high food levels. Burst speed was positively affected by tail length and tail muscle size in the absence of predators. Our results suggest that escape speed does not trade‐off with fast growth along the latitudinal gradient in R. temporaria tadpoles. Instead, escape speed is a plastic trait and strongly influenced by the interaction between resource level and predation risk.  相似文献   

20.
Our objective was to determine how green frogs (Rana clamitans) are affected by multiple exposures to a sublethal level of the carbamate insecticide, carbaryl, in outdoor ponds. Tadpoles were added to 1,000-l ponds at a low or high density which were exposed to carbaryl 0, 1, 2, or 3 times. Length of the larval period, mass, developmental stage, tadpole survival, and proportion metamorphosed were used to determine treatment effects. The frequency of dosing affected the proportion of green frogs that reached metamorphosis and the developmental stage of tadpoles. Generally, exposure to carbaryl increased rates of metamorphosis and development. The effect of the frequency of carbaryl exposure on development varied with the density treatment; the majority of metamorphs and the most developed tadpoles came from high-density ponds exposed to carbaryl 3 times. This interaction suggests that exposure to carbaryl later in the larval period stimulated metamorphosis, directly or indirectly, under high-density conditions. Our study indicates that exposure to a contaminant can lead to early initiation of metamorphosis and that natural biotic factors can mediate the effects of a contaminant in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号