首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antimicrobial effects of aqueous garlic extracts are well established but those of garlic oil (GO) are little known. Methodologies for estimating the antimicrobial activity of GO were assessed and GO, GO sulfide constituents, and garlic powder (GP) were compared in tests against human enteric bacteria. Test methodologies were identified as capable of producing underestimates of GO activity. Antimicrobial activity was greater in media lacking tryptone or cysteine, suggesting that, as for allicin, GO effects may involve sulfhydryl reactivity. All bacteria tested, which included both gram-negative and -positive bacteria and pathogenic forms, were susceptible to garlic materials. On a weight-of-product basis, 24 h MICs for GO (0.02 to 5.5 mg/ml, 62 enteric isolates) and dimethyl trisulfide (0.02 to 0.31 mg/ml, 6 enteric isolates) were lower than those for a mixture of diallyl sulfides (0.63 to 25 mg/ml, 6 enteric isolates) and for GP, which also exhibited a smaller MIC range (6.25 to 12.5 mg/ml, 29 enteric isolates). Viability time studies of GO and GP against Enterobacter aerogenes showed time- and dose-dependent effects. Based upon its thiosulfinate content, GP was more active than GO against most bacteria, although some properties of GO are identified as offering greater therapeutic potential. Further exploration of the potential of GP and GO in enteric disease control appears warranted.  相似文献   

2.
The antimicrobial effects of aqueous garlic extracts are well established but those of garlic oil (GO) are little known. Methodologies for estimating the antimicrobial activity of GO were assessed and GO, GO sulfide constituents, and garlic powder (GP) were compared in tests against human enteric bacteria. Test methodologies were identified as capable of producing underestimates of GO activity. Antimicrobial activity was greater in media lacking tryptone or cysteine, suggesting that, as for allicin, GO effects may involve sulfhydryl reactivity. All bacteria tested, which included both gram-negative and -positive bacteria and pathogenic forms, were susceptible to garlic materials. On a weight-of-product basis, 24 h MICs for GO (0.02 to 5.5 mg/ml, 62 enteric isolates) and dimethyl trisulfide (0.02 to 0.31 mg/ml, 6 enteric isolates) were lower than those for a mixture of diallyl sulfides (0.63 to 25 mg/ml, 6 enteric isolates) and for GP, which also exhibited a smaller MIC range (6.25 to 12.5 mg/ml, 29 enteric isolates). Viability time studies of GO and GP against Enterobacter aerogenes showed time- and dose-dependent effects. Based upon its thiosulfinate content, GP was more active than GO against most bacteria, although some properties of GO are identified as offering greater therapeutic potential. Further exploration of the potential of GP and GO in enteric disease control appears warranted.  相似文献   

3.
Inhibition of Helicobacter pylori by garlic extract (Allium sativum)   总被引:6,自引:0,他引:6  
Abstract The antibacterial effect of aqueous garlic extract (AGE) was investigated against Helicobacter pylori . Sixteen clinical isolates and three reference strains of H. pylori were studied. Two different varieties of garlic were used. The concentration of AGE required to inhibit the bacterial growth was between 2–5 mg ml−1. The concentration, for both AGE types, to inhibit 90% (MIC90) of isolates was 5 mg ml−1. The minimum bactericidal concentration (MBC) was usually equal to, or two-fold higher than, minimum inhibitory concentration (MIC). Heat treatment of extracts reduced the inhibitory or bactericidal activity against H. pylori ; the boiled garlic extract showed a loss of efficacy from two-to four-fold the values of MIC and the MBC obtained with fresh AGR. The antibacterial activity of garlic was also studied after combination with a proton pump-inhibitor (omeprazole) in a ratio of 250:1. A synergistic effect was found in 47% of strains studied; an antagonistic effect was not observed.  相似文献   

4.
Oxidative stress and mitochondrial injury has been implicated in cadmium-induced apoptosis. In this study, we examined the protective effect of diallyl tetrasulfide from garlic on cadmium induced oxidative stress and apoptosis in vero cells. Exposure of vero cells to cadmium (10 microM) for 18 h showed the apoptotic events such as loss of cell viability, alterations in nuclear morphology and decreased mitochondrial membrane potential with significantly increased levels of reactive oxygen species (super oxide anion and hydrogen peroxide). Treatment of vero cells with cadmium (10 microM) and diallyl tetrasulfide (5-50 microg/ml) showed that diallyl tetrasulfide attenuated the cadmium-induced suppression of cell viability in a dose dependent manner and highly significant effect was observed at 40 microg/ml. The nuclei morphological analysis with 4',6-diamidino-2-phenylindole staining confirmed that diallyl tetrasulfide at 40 microg/ml prevented the Cd (10 microM) induced apoptosis. Flow cytometric analysis with 2',7'-dichlorofluorencein diacetate showed that the inhibitory effect of diallyl tetrasulfide (10-40 microg/ml) on reactive oxygen species generation parallel with its effect on cell viability. In addition, diallyl tetrasulfide (40 microg/ml) remarkably reduced the cadmium-induced accumulation of superoxide radical and hydrogen peroxide with in cells. Further, diallyl tetrasulfide significantly protected the cadmium-induced decrease in mitochondrial membrane potential, an indicator of mitochondrial function. Our study suggest that diallyl tetrasulfide affect the reactive oxygen species generation induced by cadmium, and possesses a novel protective effect on the cytolethality associated with mitochondrial injury, which contributes to the antiapoptotic effect of diallyl tetrasulfide against cadmium.  相似文献   

5.
Allicin, an extract from garlic, has been shown to be a systemic and pulmonary arterial vasodilator that acts by an unknown mechanism. In the present experiments, pulmonary vascular responses to allicin (10-100 microg), allyl mercaptan (0.3-1 mg), and diallyl disulfide (0.3-1 mg) were studied in the isolated lung of the rat under constant-flow conditions. When baseline tone in the pulmonary vascular bed of the rat was raised to a high-steady level with the thromboxane A(2) mimic U-46619, dose-related decreases in pulmonary arterial pressure were observed. In terms of the mechanism of action of allicin vasodilator activity in the rat, responses to allicin were not significantly different after administration of the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester, the K(ATP)(+) channel antagonist U-37883A, or the cyclooxygenase inhibitor sodium meclofenamate, or when lung ventilation was interrupted. These data show that allicin has significant vasodilator activity in the pulmonary vascular bed of the rat, whereas allyl mercaptan and diallyl disulfide produced no significant changes in pulmonary arterial perfusion pressure. The present data suggest that pulmonary vasodilator responses to allicin are independent of the synthesis of nitric oxide, ATP-sensitive K(+) channels, activation of cyclooxygenase enzyme, or changes in bronchomotor tone in the pulmonary vascular bed of the rat.  相似文献   

6.
The present study was undertaken to compare the effects of allyl mercaptan (AM), a major metabolite of garlic, with several garlic constituents and extracts on cytotoxicity, cholesterol synthesis and its secretion in Hep-G2 cells. The cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), and treated with 5, 25, 50, 125, 250 and 500 microg/ml of AM, diallyl disulfide (DD), diallyl trisulfide (DT), steam-distilled garlic oil (SD) or vinyl-dithiin oil of garlic (VD) for 4 h. At concentrations up to 50 microg/ml, no significant cytotoxic effect was found in any group, but at concentrations above 250 microg/ml, the cell viability decreased drastically in all groups compared to the control. The treatment of cells with 25 microg/ml (non-cytotoxic concentration) of AM, DD, DT, SD for 4 h significantly inhibited [3H]acetate incorporation into cholesterol compared to that of the control (P < 0.05). The secretion of cholesterol into the medium was also significantly decreased in all groups except for VD. The treatment of cells with those allium constituents had no effect on either [3H]acetate incorporation into fatty acids or [3H]glycerol incorporation into triglyceride or phospholipid.  相似文献   

7.
Allicin, the main active principle related to Allium sativum chemistry, is considered to be responsible for the bacteriostatic properties of garlic. The work described here has demonstrated the direct implication of the allicin present in solvent-free garlic extracts obtained with ethanol (ethanolic garlic extract, EGE) and acetone (acetonic garlic extract, AGE) in the inhibition of the in-vitro growth of Helicobacter pylori (Hp), the bacterium responsible for serious gastric diseases such as ulcers and even gastric cancer. The evolution of allicin concentration as a function of time and temperature has been the subject of a kinetic study. The reaction order, activation energy, and preexponential factor (in accordance with Arrhenius theory) have been determined for the decomposition process of allicin in these organic media. First-order decomposition, an activation energy of 97.4 kJ/mol, and an Arrhenius preexponential factor of 8.9 x 10(10) s(-1) have been determined for allicin in EGE. For allicin in AGE the kinetic order determined was 1.5, the activation energy 184.5 kJ/mol, and the preexponential factor 3.1 x 10(24) s(-1) (mg/L)(-0.5). The presence or absence of allicin in these garlic products was found to be crucial for the inhibition of the in-vitro growth of Hp, as demonstrated by microbiological analysis for AGE. A relationship has been identified between the effectiveness and durability of the anti-Hp properties shown by AGE and the allicin content of these products. The bacteriostatic properties were active for up to 10 months if the samples were maintained at 6 degrees C.  相似文献   

8.
The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics.  相似文献   

9.
Garlic (Allium sativum L.) has a long history as being a food having a unique taste and odor along with some medicinal qualities. Modern scientific research has revealed that the wide variety of dietary and medicinal functions of garlic can be attributed to the sulfur compounds present in or generated from garlic. Although garlic produces more than 20 kinds of sulfide compounds from a few sulfur-containing amino acids, their functions are different from one another; e.g., allicin, methyl allyl trisulfide, and diallyl trisulfide have antibacterial, antithrombotic, and anticancer activities, respectively. The present paper reviews the physiological functions of garlic in the limited study fields of its antithrombotic and anticancer effects. Before describing these effects, however, we will discuss briefly some characteristics of garlic as a plant and some modes of absorption of orally-administered sulfur compounds from garlic.  相似文献   

10.
S-allyl cysteine sulphoxide (SACS), a sulphur containing amino acid of garlic which is the precursor of allicin and garlic oil, has been found to show significant antidiabetic effects in alloxan diabetic rats. Administration of it at a dose of 200 mg/kg body weight decreased significantly the concentration of serum lipids, blood glucose and activities of serum enzymes like alkaline phosphatase, acid phosphatase and lactate dehydrogenase and liver glucose-6-phosphatase. It increased significantly liver and intestinal HMG CoA reductase activity and liver hexokinase activity.  相似文献   

11.
硫对大蒜生理生化指标及营养品质的影响   总被引:21,自引:2,他引:19  
采用盆栽试验探讨了硫对大蒜生理生化指标及营养品质的影响.结果表明,土壤硫含量8.41mg·kg^-1时,大蒜叶片硝酸还原酶、POD活性、光合色素含量、光合速率、气孔导度和蒸腾速率较高;可溶性蛋白质含量及CAT活性却是以土壤硫含量为7.92mg·kg^-1时最高;SOD活性以较低土壤硫含量6.45mg·kg^-1时较高.同时,土壤硫含量为8.41mg·kg^-1时,鳞茎中大蒜素、可溶性糖和Vc及蒜薹中大蒜素、可溶性糖和可溶性蛋白质含量分别比对照增加33.67%、23.75%、68.82%、40.95%、3.45%和7.45%;较高土壤硫含量9.48mg·kg^-1有利于蒜薹中Vc和游离氨基酸及鳞茎中游离氨基酸和可溶性蛋白质含量的提高,分别比对照高出15.17%、20.93%、6.49%和8.07%.  相似文献   

12.
Background and objectivesGarlic and its number of preparations are known to be effective for treatment of dyslipidemia, but the data about the specific active constituents of the garlic on the possible therapeutic value is scarce. Therefore, the aim of this research was to evaluate the role of garlic oil (GO) and its active element, diallyl disulphide (DADS) for obviating dyslipidemia in animal model.MethodsHigh fat diet (HFD) was given to animals to induce dyslipidemia. Animals of HFD groups were fed with atherogenic diet for 15 days prior to treatment. Animals in their respective groups received vehicle, GO (50 and 100 mg/kg), and DADS (4.47 and 8.94 mg/kg) for five consecutive days. Lipid profiles were estimated in serum, oxidant/antioxidant and liver profile were measured in liver tissue homogenate (LTH).ResultsAnimals fed on HFD developed significant increase in the serum levels of triglycerides (TG), total cholesterol (TC), lactate dehydrogenase (LDL), malondialdehyde (MDA), glutathione peroxidase (GSHPx), glutathione (GSH), and glutathione disulfide (GSSG) that reduced significantly in groups that received GO and DADS treatments. Additionally, significant elevation in serum high density lipoprotein (HDL) level was observed in animals that received GO and DADS. Moreover, hepatic markers such as alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine transferase (ALT), that were abnormally altered by high fat diet, were significantly restored to almost normal values with GO and DADS treatments. Also, antioxidants such as superoxide dismutase (SOD), catalase (CAT), ferric reducing antioxidant power (FRAP), and total thiol (SH) levels in LTH were increased significantly in GO and DADS treated groups. When compared to DADS, GO showed better therapeutic effectiveness in terms of antihyperlipidemic and antioxidant properties.ConclusionIn hyperlipidemic rats, garlic and its principal active component, diallyl disulphide, were effective in avoiding dyslipidemia and neutralizing reactive free radicals induced by a high fat diet. It's an intriguing observation that GO has a larger therapeutic influence than its active constituent, DADS. These findings suggest that other constituents, in addition to GO's DADS, are involved in the compound's synergistic antihyperlipidemic and antioxidant activities.  相似文献   

13.
Since green tea catechins are known to have antimicrobial activity against a variety of microorganisms, their possible effects on Helicobacter pylori in combination with antibiotics were examined. Fifty-six clinical isolates of H. pylori, including 19 isolates highly resistant to metronidazole (MTZ) and/or clarithromycin (CLR), were used to determine in vitro sensitivity to tea catechins. The MIC90 of both epigallocatechin gallate (EGCg) and epicatechin gallate (ECg) was 100 microg/ml. However, other tea catechins tested did not show any anti-H. pylori activity. Highly antibiotic-resistant clinical isolates showed a similar sensitivity to both EGCg and ECg. The kinetic study of antibacterial activity in liquid cultures revealed a relatively slow but strong activity on the growth of H. pylori. In combination with sub-MIC of amoxicillin (AMX), the antibacterial activity of AMX was significantly enhanced by the presence of EGCg. To estimate the general combination effect between EGCg and other antibiotics, such as MTZ and CLR, on the antibacterial activity against clinical isolates, the fraction inhibitory concentration (FIC) was determined by checkerboard study. The FIC indexes showed additive effects between EGCg and antibiotics tested. These results indicatethat EGCg may be a valuable therapeutic agent against H. pylori infection.  相似文献   

14.
Sulfur containing constituents of garlic are considered responsible for conveying the antioxidative properties of garlic preparations. The radical scavenging properties of garlic preparations against oxygen radicals, specifically their ability to inhibit the formation of superoxide anions, were investigated using human granulocytes activated with 10 nM phorbol myristyl acetate (PMA). A garlic powder preparation inhibited the production of superoxide with a calculated IC50 of 390 micrograms/ml. An 8-10% alliin enriched garlic extract (alliinase inactivated) did not inhibit superoxide production even at concentrations as high as 1000 micrograms/ml. When the extract was mixed with garlic powder (90% garlic powder, 10% garlic extract), there was a clear inhibition of superoxide production with an IC50 value of 295 micrograms/ml. An even stronger inhibitory effect could be achieved when garlic powder was added to garlic extract (10% garlic powder, 90% extract, IC50 = 160 micrograms/ml). These experimental results suggest that the alliin metabolite allicin may be responsible for the oxygen radical scavenging properties of garlic.  相似文献   

15.
Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy were used to study the cell injury and inactivation of Campylobacter jejuni from exposure to antioxidants from garlic. C. jejuni was treated with various concentrations of garlic concentrate and garlic-derived organosulfur compounds in growth media and saline at 4, 22, and 35°C. The antimicrobial activities of the diallyl sulfides increased with the number of sulfur atoms (diallyl sulfide < diallyl disulfide < diallyl trisulfide). FT-IR spectroscopy confirmed that organosulfur compounds are responsible for the substantial antimicrobial activity of garlic, much greater than those of garlic phenolic compounds, as indicated by changes in the spectral features of proteins, lipids, and polysaccharides in the bacterial cell membranes. Confocal Raman microscopy (532-nm-gold-particle substrate) and Raman mapping of a single bacterium confirmed the intracellular uptake of sulfur and phenolic components. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to verify cell damage. Principal-component analysis (PCA), discriminant function analysis (DFA), and soft independent modeling of class analogs (SIMCA) were performed, and results were cross validated to differentiate bacteria based upon the degree of cell injury. Partial least-squares regression (PLSR) was employed to quantify and predict actual numbers of healthy and injured bacterial cells remaining following treatment. PLSR-based loading plots were investigated to further verify the changes in the cell membrane of C. jejuni treated with organosulfur compounds. We demonstrated that bacterial injury and inactivation could be accurately investigated by complementary infrared and Raman spectroscopies using a chemical-based, "whole-organism fingerprint" with the aid of chemometrics and electron microscopy.  相似文献   

16.
Antioxidant activity of thiosulfinates derived from garlic   总被引:1,自引:0,他引:1  
Garlic extract significantly inhibited the oxidation of methyl linoleate in homogeneous acetonitrile solution, whereas the antioxidant effect of allicin-free garlic extract, prepared by removing allicin by prepared by removing allicin by preparative HPLC, was much lower than that of the garlic extract. These results suggest that the antioxidant properties are mostly attributed to the presence of allicin in the garlic extract. Allicin a major component of the thiosulfinates in garlic extract, was found to be effective for inhibiting methyl linoleate oxidation, but its efficiency was less than that of alpha-tocopherol. Next, the reactivity of allicin toward the peroxyl radical, which is a chain-propagating species, was investigated by direct ESR detection. The addition allicin to 2,2'-azobis(2,4-dimethylvaleronitrile)-peroxyl radical solution caused the signal intensity of the peroxyl radical to dose-dependently decrease, indicating that allicin is capable of scavenging the the peroxyl radical and acting as an antioxidant. Finally, we studied the structure-anioxidant activity relationship for thiosulfinates and suggested that the combination of the allyl group (-CH2CH=CH2) and the -S(O)S- group is necessary for the antioxidant action of thiosulfinates in the garlic extract. In addition, one of the two possible combinations, -S(O)S-CH2CH=CH2, was found to make a much larger contribution to the antioxidant activity of the thiosulfinates than the other, CH2=CH-CH2-S(O)S-.  相似文献   

17.
A novel class of selective anti-Helicobacter pylori agents, 2-oxo-2H-chromene-3-carboxamide derivatives, were prepared and evaluated for their anti-bacterial activity. All synthesized compounds showed little or no activity against different species of Gram-positive and Gram-negative bacteria and against various strains of pathogenic fungi. Some of them exhibited a potent and specific inhibitory effect on the growth of H. pylori, including metronidazole-resistant strains, in the 0.0039-16 microg/mL MIC range. A cytotoxic screening by the Trypan blue dye exclusion assay was also carried out on the most active compounds as anti-H. pylori agents. Among the derivatives examined for their cytotoxic potential, a number of them induced low cytotoxic effects.  相似文献   

18.
The epithelial sodium channel (ENaC) is a key factor in the transepithelial movement of sodium, and consequently salt and water homeostasis in various organs. Dysregulated activity of ENaC is associated with human diseases such as hypertension, the salt-wasting syndrome pseudohypoaldosteronism type 1, cystic fibrosis, pulmonary oedema or intestinal disorders. Therefore it is important to identify novel compounds that affect ENaC activity. This study investigated if garlic (Allium sativum) and its characteristic organosulfur compounds have impact on ENaCs. Human ENaCs were heterologously expressed in Xenopus oocytes and their activity was measured as transmembrane currents by the two-electrode voltage-clamp technique. The application of freshly prepared extract from 5g of fresh garlic (1% final concentration) decreased transmembrane currents of ENaC-expressing oocytes within 10 min. This effect was dose-dependent and irreversible. It was fully sensitive to the ENaC-inhibitor amiloride and was not apparent on native control oocytes. The effect of garlic was blocked by dithiothreitol and l-cysteine indicating involvement of thiol-reactive compounds. The garlic organosulsur compounds S-allylcysteine, alliin and diallyl sulfides had no effect on ENaC. By contrast, the thiol-reactive garlic compound allicin significantly inhibited ENaC to a similar extent as garlic extract. These data indicate that thiol-reactive compounds which are present in garlic inhibit ENaC.  相似文献   

19.
Abstract The angoumois grain moth, Sitotroga cerealella (Olivier), is one of the most serious stored grain pests around the world. In attempts to reduce the losses caused by the moth and to suppress its populations, the fumigant activities, behavioral influence and ovipositional inhibition of garlic (Allium sativum) essential oil and its two major components, diallyl disulfide and diallyl trisulfide, were investigated against the adult grain moth. Their effects on reduction in survival of first instar larvae to adult emergence were also evaluated. Results showed that these three materials (garlic essential oil, diallyl disulfide and diallyl trisulfide) had significant fumigant activity with 50% lethal concentration values at 1.33, 0.99, and 1.02 μL/L air space, respectively; meanwhile, the three materials possessed high behavioral deterrent activities against adults in the Y‐tube olfactometer. When applied to rice grains, these materials reduced adult longevity and inhibited oviposition, with ovipositional inhibition above 70% at a concentration of 1.5 μL/25 g in either no‐choice or two‐choice tests. In short, the study showed that both diallyl disulfide and diallyl trisulfide, like garlic essential oil, acted as fumigants, produced behavioral deterrence and inhibited oviposition against angoumois grain moth. Our work here indicates that diallyl disulfide and diallyl trisulfide may serve as potential alternatives for grain protectants since both of them can be prepared easily from readily available chemicals.  相似文献   

20.
Allicin (diallyl thiosulfinate) is a major biologically active component of garlic that is known to inhibit cell proliferation and induce apoptosis. The effects of allicin are attributed to its ability to react with thiol groups. However, the mechanism underlying the cytostatic activity of allicin, as well as the identity of the relevant subcellular targets, are not known. In the present study, we found that the effects of allicin on cell polarization, migration, and mitosis are similar to the effects of microtubule-depolymerizing drugs such as nocodazole. Moreover, treatment of cultured fibroblasts with micromolar doses of allicin results in microtubule depolymerization in cells within minutes of its application, without disrupting the actin cytoskeleton or inducing direct cytotoxic effects. Furthermore, allicin blocks the polymerization of pure tubulin in vitro in a concentration-dependent manner, suggesting that it acts directly on tubulin dimers. Sulfhydryl (SH)-reducing reagents such as 2-mercaptoethanol and dithiothreitol abolish the effect of allicin on microtubule polymerization. Thus, allicin is a potent microtubule-disrupting reagent interfering with tubulin polymerization by reaction with tubulin SH groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号